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Background: The mesial prefrontal cortex, cingulate cortex, and the ventral striatum

are key nodes of the human mesial fronto-striatal circuit involved in decision-making

and executive function and pathological disorders. Here we ask whether deep wide-field

repetitive transcranial magnetic stimulation (rTMS) targeting the mesial prefrontal cortex

(MPFC) influences resting state functional connectivity.

Methods: In Study 1, we examined functional connectivity using resting state multi-echo

and independent components analysis in 154 healthy subjects to characterize default

connectivity in the MPFC and mid-cingulate cortex (MCC). In Study 2, we used inhibitory,

1Hz deep rTMS with the H7-coil targeting MPFC and dorsal anterior cingulate (dACC) in

a separate group of 20 healthy volunteers and examined pre- and post-TMS functional

connectivity using seed-based and independent components analysis.

Results: In Study 1, we show that MPFC and MCC have distinct patterns of functional

connectivity with MPFC–ventral striatum showing negative, whereas MCC–ventral

striatum showing positive functional connectivity. Low-frequency rTMS decreased

functional connectivity of MPFC and dACC with the ventral striatum. We further showed

enhanced connectivity between MCC and ventral striatum.

Conclusions: These findings emphasize how deep inhibitory rTMS using the H7-coil

can influence underlying network functional connectivity by decreasing connectivity

of the targeted MPFC regions, thus potentially enhancing response inhibition and

decreasing drug-cue reactivity processes relevant to addictions. The unexpected

finding of enhanced default connectivity between MCC and ventral striatum may

be related to the decreased influence and connectivity between the MPFC and

MCC. These findings are highly relevant to the treatment of disorders relying on

the mesio-prefrontal-cingulo-striatal circuit.
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INTRODUCTION

Neuromodulation with magnetic stimulation is emerging as a
valuable treatment alternative for a wide range of psychiatric
and neurologic disorders (1). Repetitive transcranial magnetic
stimulation (rTMS) is a technique that can be used to
apply multiple brief magnetic pulses to neuronal structures,
thus transiently modulating neural excitability in a manner
that is dependent mainly on the intensity and frequency of
stimulation (2). It is a non-invasive, non-pharmacological,
and safe treatment, in which abnormal communication within
neuronal networks can be entrained andmodified. Depending on
the target, the depth at which stimulation occurs appears to be a
crucial factor underlying potential therapeutic efficacy in certain
disorders, such as major depressive disorder (3–5). In this study,
we investigate the modulation of resting neural activity in mesial
prefrontal-striatal circuits in healthy subjects by inhibitory deep
wide-field stimulation with an Hesed (H-)7 coil (6, 7).

Fronto-striatal circuits are critical for the processing
of reward, anticipation of outcomes, and behavioral
control (8–11). Latent neural network organization and
behavioral mechanisms in humans can be explored with
resting state functional magnetic resonance imaging
(fMRI) connectivity (rsFC), a method that measures the
synchronization between intrinsic low-frequency fluctuations
of brain regions in the absence of any specific task (12–
14). Since the connections identified at rest closely mirror
anatomical connections (15) and predict brain activations
associated with behavioral performance (16), rsFC is
an important tool for characterizing in vivo circuit-
level dynamics, which may support particular behavioral
responses (17, 18).

Studies of substance use disorders have revealed the critical

role of fronto-striatal circuits, highlighting large scale disruptions

in functional connectivity between themesolimbic reward system
and cortical regions involved in decision making and executive

function (e.g., ventromedial prefrontal cortex, dorsolateral
prefrontal cortex)(19–27). In particular, altered rsFC between
the dorsal and ventral mesial prefrontal cortex (d/vMPFC),
anterior cingulate cortex (ACC) and ventral striatum (VS)
is most consistently observed across disorders of addiction
such as cocaine (28), heroin (29), nicotine (30–33), and even
internet addiction (32–35), but also in obsessive-compulsive
disorder (OCD) (34). Furthermore, vMPFC activity seems to be
tightly linked to dMPFC activity (36, 37). Thus, understanding
whether and how deep rTMS targeting the MPFC influences the
connected networks is critical to its potential clinical efficacy.

In Study 1, we first assess rsFC betweenMPFC and striatum in
a relatively large sample of healthy controls. In Study 2, we then
ask whether inhibitory deep wide-field stimulation with an H7-
coil positioned over theMPFC [which, given the non-focal nature
of the H7-coil (38, 39), we have defined here as supplementary
motor area (SMA), preSMA, and dMPFC] influences rsFC with
VS in a separate group of healthy controls. We focused on VS
given its aberrant rsFC observed in pathological disorders as well
as in our findings in Study 1 of negative connectivity of MPFC
with VS and positive connectivity of mid-cingulate with VS. We

hypothesize that low-frequency inhibitory rTMS will decrease
rsFC of the MPFC with VS.

METHODS AND MATERIALS

Protocol Design and Participants
In Study 1, seed to whole brain intrinsic rsFC was examined
for the mesial PFC (SMA, pre-SMA and dMPFC) and the mid-
cingulate. For intrinsic baseline mapping, blood-oxygenation
level dependent (BOLD) fMRI data was collected during rest
(10min, eyes open, watching white fixation cross on black screen)
from 154 healthy volunteers (71 females; age 31± 13 years) at the
Wolfson Brain Imaging Center, University of Cambridge, UK,
with a Siemens Tim Trio 3T scanner and 32-channel head coil.

In Study 2, we used inhibitory, 1Hz rTMS deep wide-field
stimulation with an H7-coil targeting the mesial PFC. In order to
examine the effects of rTMS on neural fluctuations, we used both
ROI-to-ROI analyses and confirmed findings with independent
component analysis (ICA). Resting state fMRI data (10min, eyes
open, watching white fixation cross) was collected immediately
before and after rTMS (average time between rTMS end and
EPI sequence was 285 ± 27 s) in a separate group of 20 healthy
volunteers (15 females; age 36 ± 12 years) at the National
Institutes of Health (Bethesda, MD, USA) core fMRI Facility,
with a Siemens Skyra 3T scanner and 32-channel head coil.

All subjects provided informed written consent. This study
was approved by the Research Ethics Committee of the
University of Cambridge and the Institutional Review Board of
the National Institutes of Health.

Transcranial Magnetic Stimulation With the
H-coil (Study 2)
To modulate the excitability of deep frontal areas in Study
2, we used a Hesed coil type 7 (H7-coil). Its design aims at
stimulating frontal brain regions (i.e., the PFC) and reaching
deep brain regions without increasing the electric field levels in
the more superficial cortical regions (6, 40). Deep TMS using
other coils (e.g., classical double-cone coil) can be uncomfortable
due to excessive stimulation of superficial structures and painful
muscular contractions. The frames of the inner rim of H7-coil
are also flexible to accommodate a variety of human skull shapes
and allow a comfortable and closer fit of the coils to the scalp
(Supplementary Figure S1).

We first found the hotspot and determined the active motor
threshold (AMT) of the Tibialis anterior muscle, as an area
situated medially at a depth similar to our regions of interest
(Figure 1A). The AMT was defined as the lowest intensity able
to evoke a motor potential with an amplitude at least 200 µV
above the background EMG activity of a 10% maximal voluntary
contraction of the left Tibialis anterior in 5 out of 10 consecutive
trials. The coil was always maintained in the midline to avoid
the problem of left-right anatomical and functional asymmetry,
on top of the unknown exact geometrical location of the
maximum field intensity of the H7-coil. In this way, the threshold
determined for the left TA corresponded to an intensity strong
enough to evoke action potentials in the pyramidal neurons on
the mesial cortex at that depth in each individual. Repetitive
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FIGURE 1 | Stimulation paradigm. (A) Schematic representation of the

movement of the projection of the geometric center of the H7 coil 5 cm in front

of the empirically found hot-spot for the left Tibialis anterior muscle (41, 42).

The points represent an ideal (not neuronavigated) center of the interior of the

H7 helmet. (B) Estimation of the induced electrical field intensity with distance

from the coil for stimulation at 110% of the active motor threshold (AMT)—our

(Continued)

FIGURE 1 | intensity of choice, and 120% AMT and 110% resting motor

threshold—higher intensities distribution modeled for comparison. The dotted

line represents the theoretical intensity of the induced electrical field for AMT.

(C) Sagittal section showing the area in the dorso-mesial prefrontal cortex

found at an equivalent depth to the Tibialis anterior motor representation.

TMSwas delivered with a biphasic magnetic stimulator (Magstim
Rapid2; The Magstim Company, Whitland, South West Wales,
UK) with a frequency of 1Hz and at 110% AMT intensity.
Nine hundred pulses were administered over the MPFC, 5 cm
anterior to the Tibialis anterior hot-spot, for 15min. By choosing
this location, we assured that the maximum field would cross
areas BA 8/9, which are located in front of the peSMA (41, 42).
When administered in accordance with current international
guidelines, transcranial magnetic stimulation has been shown
to be safe (43, 44), with few mild adverse effects, although we
acknowledge that these safety guidelines are derived primarily
from studies using conventional figure-8 coils.

We used medium intensity stimulation (i.e., 110% of the
active motor threshold; average effective intensity 66± 8% of the
maximum stimulator output) of the H7-coil, which would have
penetrated effectively up to a depth of 3.5 cm from the surface
of the scalp (Figure 1B), corresponding to the mesial PFC region
(Figure 1C).

Resting State Functional MRI
The following describes the resting state acquisitions and analyses
used for Study 1 and 2.

Acquisition Study 1: Functional images were acquired

with a multi-echo echo planar imaging sequence with online
reconstruction (repetition time (TR), 2.47 s; flip angle, 78◦;

matrix size 64 × 64; resolution 3.0 × 3.0 × 3.0mm; FOV,
240mm; 32 oblique slices, alternating slice acquisition slice
thickness 3.75mm with 10% gap; iPAT factor, 3; bandwidth

(BW)= 1,698 Hz/pixel; echo time (TE)= 12, 28, 44 and 60 ms).
Study 2: Functional images were acquired with a multi-echo

echo planar imaging sequence (TR, 2.47s; flip angle, 70◦; matrix
size 70 × 60; in-plane resolution, 3.0mm; FOV, 210mm; 34

oblique slices, alternating slice acquisition slice thickness 3.0mm
with 0% gap; iPAT factor, 3; bandwidth (BW) = 2,552 Hz/pixel;
TE= 12, 28, 44, and 60 ms).

For both studies, anatomical images were acquired using
a T1-weighted magnetization prepared rapid gradient echo
(MPRAGE) sequence (76 × 240 field of view (FOV); resolution
1.0× 1.0× 1.0mm; inversion time, 1,100 ms).

Preprocessing
The following processing and analyses apply to both
resting state fMRI data unless stated otherwise. To enhance
signal-to-noise ratio, we used multi-echo EPI sequence
and independent component analysis (ICA), which
allows data to be denoised for motion, physiological, and
scanner artifacts in a robust manner based on physical
principles (45).
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Multi-echo independent component analysis (ME-ICA v2.5
beta6; http://afni.nimh.nih.gov) was used for data analysis
and denoising. ME-ICA decomposes the functional data into
independent components using FastICA. BOLD percent signal
changes are linearly dependent on echo time (TE), a characteristic
of the T2∗ decay. TE dependence of BOLD signal is measured
using the pseudo-F-statistic, Kappa, with components that scale
strongly with TE having high Kappa scores (46). Non-BOLD
components are TE independent and measured by the pseudo-
F-statistic, Rho. Components are thus categorized as BOLD
or non-BOLD based on their Kappa and Rho weightings,
respectively. Non-BOLD components are removed by projection,
robustly denoising data. Each individual’s denoised echo planar
images were coregistered to their MPRAGE and normalized
to the Montreal Neurological Institute (MNI) template. Spatial
smoothing of the functional data was performed with a Gaussian
kernel (full width half-maximum= 6 mm).

Region of Interest (ROI)-Driven Analysis
We performed ROI-driven functional connectivity analysis
using CONN-fMRI Functional Connectivity toolbox (47)
for Statistical Parametric Mapping SPM8 (http://www.fil.ion.
ucl.ac.uk/spm/software/spm8/), using denoised, coregistered,
smoothed functional data. The time course for each voxel
was temporally band-pass filtered (0.008 < f < 0.09Hz). Each
individual’s anatomical scan was segmented into gray matter,
white matter and cerebrospinal fluid. Significant principle
components of the signals from white matter and cerebrospinal
fluid were removed.

Study 1: Intrinsic functional connectivity mapping
For intrinsic rsFC mapping in 154 healthy volunteers, ROI-to-
whole brain connectivity was computed for mesial PFC and mid
cingulate ROI’s. Connectivity maps were thresholded at FWE p<

0.05 whole brain corrected. Both positive and negative functional
connectivity was examined across the whole brain. Anatomically-
defined ROIs were manually created or altered using MarsBaR
ROI toolbox (48) for SPM (see Supplementary Methods for
seed definitions).

Study 2: Effects of rTMS: ROI-based
To address the a priori hypothesis, ROI-to-ROI functional
connectivity was first computed using Pearson’s correlation
between BOLD time courses for mesial PFC with ventral
striatum, both pre- and post-TMS. These were entered into a
paired samples t-test to compare between pre- and post-TMS. For
the a priori ROI-to-ROI functional connectivity analysis between
the mesial PFC and VS, p<0.05 was considered significant.
On an exploratory basis, to assess the impact of rTMS on
rsFC of deeper structures such as the mid-cingulate which
lies immediately below the mesial PFC, ROI-to-ROI functional
connectivity of mesial PFC to mid cingulate and mid cingulate to
VS were examined pre- and post-TMS. P<0.025 was considered
significant (Bonferonni corrected for multiple comparisons). The
VS anatomical ROI has previously been used (49) and hand
drawn using MRIcro (http://www.cabiatl.com/mricro/mricro/)
based on a published definition of VS (50).

Effects of rTMS: Independent Component Analysis

(Study 2)
To confirm the ROI-to-ROI findings, we then conducted ICA.
While ICA has been shown to engender statistically similar
results as seed based approaches in healthy volunteers (51), ICA
is a multivariate data-driven approach that requires fewer a
priori assumptions and takes into account interacting networks.
Therefore, if TMS affects larger scale neural networks, ICA
should succeed in highlighting this. Denoised, coregistered, and
smoothed functional data was entered into ICA analysis using
FSL MELODIC 3.14 software (FMRIB, University of Oxford,
UK; www.fmrib.ox.ac.uk/fsl/melodic2/index.html) that performs
probabilistic ICA to decompose data into independently
distributed spatial maps and associated time courses to identify
independent component variables (52). A high model order
of 40 was used as a fair compromise between under- and
over-fitting (53). Multi-session temporal concatenation was
used to allow computation of unique temporal responses per
subject/session. Comparisons between pre- and post-TMS was
performed using FSL dual regression for reliable and robust
(54) voxel-wise comparisons using non-parametric permutation
testing with 5,000 permutations and using threshold free cluster
enhancement (TFCE) controlling for multiple comparisons (55).
Group differences of components that include MPFC were
calculated with p < 0.05 thresholds.

RESULTS

Baseline Mapping
Intrinsic resting state whole brain connectivity maps for mesial
PFC and mid cingulate are displayed in Figure 2 and reported
in Supplementary Tables S1, S2. Both positive and negative
functional connectivity are displayed. Mesial PFC and mid
cingulate showed opposite patterns of connectivity with ventral
striatum: mesial PFC had negative but mid cingulate had positive
functional connectivity with VS.

Effects of TMS
Focusing on our a priori hypothesis, we show that after
rTMS, mesial PFC had reduced functional connectivity with
ventral striatum (t = 2.201, p = 0.043) (Figure 3). We then
show an effect on mid-cingulate functional connectivity with
reduced functional connectivity following rTMS between the
mesial PFC and mid-cingulate (t = 4.325, p = 0.001) and
enhanced functional connectivity between mid-cingulate and
VS (t =−2.495 p= 0.024).

We conducted ICA on the resting state data pre- and post-
rTMS to confirm our a priori hypothesis and analysis. Out of
40 components, three included prominent mesial frontal cortex
(Figure 4). Of the three mesial frontal network components,
dual regression revealed that one of these components (IC11)
was significantly decreased post-rTMS (TFCE p = 0.0360). The
IC00 included prominent dmPFC; the IC11 included dmPFC,
preSMA, and SMA; the IC38 included prominent anterior and
mid cingulate, and dmPFC. The dmPFC/ACC can be considered
part of the dorsal attention network.
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FIGURE 2 | Intrinsic resting state connectivity maps for mesial prefrontal cortex (PFC) and mid cingulate cortex seeds to whole brain in healthy controls. Positive

(yellow-red) and negative (green-blue) functional connectivity are displayed. The rectangular insets at y = 8 highlighting differences in direction of connectivity of the

striatum are shown for the mesial PFC (bottom row, left) and mid cingulate (bottom row, right). Coronal images (y-values shown above image) are thresholded at whole

brain family-wise error, corrected p < 0.05 on a standard MNI template.

FIGURE 3 | Effects of repetitive transcranial magnetic stimulation (rTMS) on intrinsic functional connectivity in healthy controls. Functional connectivity is schematically

illustrated at baseline (i.e., pre-rTMS; top left) and post-rTMS (bottom left); pre- and post-rTMS effects on seed-to-seed functional connectivity are shown in the bar

graphs. After rTMS, functional connectivity between mesial prefrontal cortex (mPFC) and ventral striatum (VS), and between mPFC and mid cingulate cortex (MCC)

was reduced, while functional connectivity between MCC and VS was increased (the thickness of the arrows correspond to strength, and color to direction: red,

positive connectivity; blue, negative connectivity). Error bars are shown as standard error of the mean. *p < 0.05, **p = 0.001.
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FIGURE 4 | Functional connectivity at rest between different regions of interest explored with independent component analysis pre- and post-rTMS. Three

components included prominent mesial-frontal cortex (IC00, IC11, and IC38). The insert shows IC11, which included supplementary motor area (SMA), pre-SMA,

dorsomedial prefrontal cortex/dorsal cingulate, and ventral caudate/striatum, and bilateral inferior frontal cortices was significantly decreased post-rTMS. *p < 0.05.

DISCUSSION

We characterized the effects of deep wide-field mesial prefrontal

rTMS on the resting-state functional network in healthy
individuals. We first mapped intrinsic functional connectivity
of mesial prefrontal and mid-cingulate cortical regions in a
large sample of healthy volunteers. We found that intrinsic

functional connectivity of the mesial PFC region of interest with
ventral striatum was negative, whereas the intrinsic functional
connectivity of mid-cingulate connectivity with ventral striatum

was positive. Then, we show that deep wide-field inhibitory rTMS
targeting the mesial PFC decreases rsFC between this broad
mesial PFC region and the ventral striatum. These findings were
further confirmed with ICA analysis, a data-driven approach.
Based on the modeling of the magnetic field distribution,
induced-electrical field decay, and the depth of the target region
stimulated, we likely also inhibited directly the dorsal posterior
regions of Brodmann Area 32, corresponding to dorsal anterior
cingulate—a fact subsequently confirmed by the ICA analysis.
Inhibitory rTMS also decreased functional connectivity of the
“stopping” network including pre-SMA, right inferior frontal
cortex, and ventral caudate. This is in line with previous reports,
in which inhibitory rTMS (including continuous theta burst
stimulation) targeting the pre-SMAwith standard figure-of-eight
coil has been shown to enhance motor response inhibition (56).

We also found effects of deep rTMS on connectivity between
deeper structures such as the mid-cingulate cortex, which
was unlikely to be directly stimulated with our stimulation
parameters: decreased rsFC between the broad mesial PFC and
mid-cingulate cortex, and, unexpectedly, enhanced rsFC between
mid-cingulate cortex and ventral striatum. These findings suggest
that while deep wide-field mesial prefrontal inhibitory rTMS

might directly decrease the functional connectivity between the
stimulated and the connected structures, the decreased influence
from superficial cortical regions might indirectly enhance the
intrinsic connectivity between remote structures (i.e., the mid-
cingulate cortex and ventral striatum).

Application of rTMS to superficial cortical regions with the
strongest negative functional connectivity with subgenual ACC
has already been shown to be most clinically efficacious in
reducing depression (57). Thus, based on the deep cortical
or subcortical structure of interest for a given disorder,
appropriate superficial sites for rTMS can be selected based on
intrinsic functional connectivity strengths and patterns. Since we
demonstrate in our second study that there is an exaggeration of
intrinsic functional connectivity strengths with deep inhibitory
rTMS, detailed mapping of baseline connectivity patterns will
inform the selection of rTMS targets with the aim to “normalize”
aberrant underlying functional connectivity in disease states.
The outcome of this modulation could be of interest in the
treatment of disorders relying on the mesioprefrontal-cingulo-
striatal circuit.

The H-coil series was originally designed to have a significant
impact on deep structures, like the anterior cingulate cortex
(6, 7). It has been used with different degrees of success to treat
depression (58, 59), alcohol use disorders (60), nicotine addiction
(61), and even as adjunctive therapy in Parkinson’s disease (62),
blepharospasm (63), and chronic migraine (64). Due to the quick
drop in TMS efficacy with increasing target depth (65), it has
been proposed that any stimulation outside the primary motor
cortex should be referenced to motor cortex excitability and
adjusted to the target depth (66, 67). The original assertion that
the H-coil can modulate the activity of deep structures has been
based mainly on calculating the intensity of the induced electrical
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field at different depths for a given stimulation intensity (40).
However, other factors can significantly influence the efficacy
of rTMS, including the orientation of the coil (68–70) and
the configuration of the subjacent and/or target cortex (71–
75), as well as the secondary electrical fields generated at the
boundary between the cerebrospinal fluid and the gray matter
(76). Subsequent studies of the distribution of the magnetic field
generated by the H-coil revealed that the largest field intensity
variation and hence, the functional effect covers first the mesial
neuronal structures in close proximity to the coil, i.e., superior
MF areas, like dMPFC, pre-SMA, SMA (40, 77–79), and only
secondarily deeper structures such as the cingulate cortex if
stimulation intensity is high enough (7, 40). In order to reach
the stimulation threshold of neurons, a total field of 30–100 V/m
is needed, depending on the neurons (80). Since focal coils, like
flat 8-shaped or double-cone coils, produce very strong fields that
decay fast as a function of distance, 500 V/m would be induced
at 1 cm depth (i.e., scalp) for 50 V/m at 5 cm, which would be
very uncomfortable due to superficial muscle contraction under
the stimulated site (6). According to our simulations (Figure 1B)
using a spherical headmodel, the structure of the H7-coil induces
only 150 V/m at 1 cm in the same conditions, albeit at the cost
of focality, making it more tolerable. In this study, we used
medium intensity stimulation (i.e., 110% of the active motor
threshold; average effective intensity 66 ± 8% of the maximum
stimulator output), which would have stimulated a region of
interest corresponding to the mesial PFC. This allowed us to
influence directly the output of these areas and indirectly the
activity of functionally linked structures (81–86). Based on the
simulated model of the target and depth reached using our
stimulation parameters, we likely directly stimulated down to
dorsal posterior regions of Brodmann Area 32 corresponding to
dorsal anterior cingulate. However, it is unlikely that we directly
stimulated the mid-cingulate; thus any change in connectivity
observed in the mid-cingulate would likely be an indirect effect
via changing the functional output of connected areas. Here, we
extend the understanding of the effects of magnetic stimulation
over the middle frontal areas, following previous TMS studies
investigating more superficial stimulation of the lateral frontal
areas (57, 87–89). Subsequent studies are indicated to investigate
the influence of higher intensities and higher frequencies (90)
on rsFC of frontal superficial and deep structures, when applied
with coils designed to reach broader regions. The magnetic field
generated by an H7-coil is covering a much wider area of the
frontal lobe, but as with the classical double-cone coil, which has
a similar shape but smaller, the magnetic field generated at the
edges of the coil is assumed to be non-focal and weak enough as
not to induce a meaningful neuronal depolarization.

We delivered magnetic pulses at 1Hz for 15min. This
frequency can induce a long term depression (LTD)-like effect
in the targeted neuronal networks that outlasts the stimulation
for a sufficient duration to assess the influence on resting-
state fMRI (91–94). By using low stimulation intensities, we
effectively depressed the excitability of the superior mesial
prefrontal areas and possibly also the dorsal posterior region
of Brodmann Area 32 corresponding to dorsal anterior
cingulate cortex. An LTD-like effect would thus decrease

neuronal excitability in the mesial PFC, rendering it less
responsive to incoming information. Decreased responsiveness
would functionally decouple this region from both neighboring
and deeper structures. Indeed, we found reduced functional
connectivity of the broad mesial PFC with mid-cingulate, and
between the broad mesial PFC and ventral striatum, with ICA
confirming decreases in the network including mesial PFC,
dorsal anterior cingulate and ventral caudate/ventral striatum.
Since the fronto-striatal network relies on a dynamic equilibrium
between its different parts (11, 95, 96), functionally “nudging”
one part should entrain a reconfiguration of all functional
connections, including functional connectivity between remote
regions receiving projections from the stimulated region. This
seems to be the case in our study: we found increased functional
connectivity between the mid-cingulate area and ventral striatum
after inhibiting the mesial PFC.

The outcome of this modulation could be of interest in
treatment of disorders relying on the mesioprefrontal-cingulo-
striatal circuit. In healthy humans, this circuit is involved in
cognitive and emotional control, error and conflict monitoring
(97–99), response inhibition (100), and positive and negative
prediction error and anticipation (101–103). Abnormal cortico-
ventro striatal hyperconnectivity has been OCD (104–106) and
addictions [for a review see (107)]. In disorders of addiction,
decreased functional connectivity between the ventral striatum
and the cingulate cortex bilaterally is commonly observed (29,
32), with enhanced dorsal cingulate and ventral striatal activity
in the context of drug cues (108). Numerous targets had
been proposed for invasive deep brain stimulation aimed at
correcting these imbalances, including the anterior limb of the
internal capsule (109), subthalamic nucleus (110), and ventral
striatum/nucleus accumbens (111). In order to avoid the risks of
an invasive procedure, studies have explored stimulating other
nodes of these networks that are accessible to TMS at the surface
of the brain. Stimulation of the dorsolateral prefrontal cortex,
is [arguably (58, 59)] successful in treatment-resistant major
depressive disorder (4, 112), with modest results in OCD (113).
On the other hand, stimulation of the dorso-medial prefrontal
cortex (114) or preSMA/SMA complex (115–117) seems slightly
more encouraging. Notably, there is no gold standard yet for the
frequencies to be used. The stimulation frequencies used thus far
in most studies cover a wide range including continuous delivery
at 1Hz, or intermittently at 10 or 18Hz in 5 s trains separated by
breaks of 10 s. While 1Hz stimulation is known to induce LTD-
like effects, the mechanism of action and the eventual outcome
of other multiple medium-frequency trains is still open to debate
and investigation (118, 119).

Wide inhibitory stimulation of the dorso-mesial areas of the
frontal lobe might have both clinical and mechanistic benefit.
Wider superficial stimulation has a clear clinical benefit allowing
a reduction in the intensity of the stimulation with deeper
stimulation, thus increasing patients’ comfort and adherence
by decreasing superficial muscle contraction, and minimizing
risks. Aberrant activity in networks in psychiatric disorders may
affect broader regions that can be targeted via wide inhibitory
stimulation. We show that stimulation that is both wide and
deep is associated with decreased connectivity between themesial
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prefrontal areas and deeper structures (like the mid-cingulate
areas and ventral striatum), with possibly a secondary effect of
increasing connectivity between cingulate and ventral striatum.
Wider stimulation will also have a broader effect on multiple
neural regions, impacting a wide range of cognitive functions.
Using the H7-coil with inhibitory rTMS is thus consistent
with both inhibition of the pre-SMA shown to enhance motor
response inhibition (56) and decreased dorsal cingulate activity
associated with drug cue reactivity (108). Therefore, the H7-
coil has the capacity to both enhance the response inhibition
associated with the stopping network in disorders of addiction,
and decrease drug cue reactivity associated with the dorsal
cingulate and ventral striatum. However, it is unclear whether
decreasing dorsal cingulate activity across all conditions would
be the optimal approach, as resting state functional connectivity
between cingulate and ventral striatal regions are commonly
decreased in disorders of addiction. Further studies investigating
a state-specific effect of rTMSmay be relevant with pairing H-coil
stimulation with drug cues with or without concurrent response
inhibition. It also remains to be established whether our findings
are specific to wide-field deep rTMS or whether focal deep rTMS
(which is be more difficult to tolerate) would show similar rsFC
pattern changes within cingulate regions.

This study is not without limitations. While we did not have a
sham control, we note that our findings revealed both increases
and decreases in connectivity—suggesting that an order effect is
unlikely to account for these observations. It is also technically
impossible to achieve a realistic sham with the H-coil, since
the real stimulation evokes a specific, unconfoundable small
contraction of the anterior belly of the occipitofrontal muscle.
The localization of the peak stimulus effect is also more difficult
with the H-coil, since the coils’ positions inside the helmet are
flexible and the precise technical characteristics of the coils are
proprietary to the company. We do present, however, an X-ray
of the coil structure and the geometrical approximation of the
coil used in the modeling of the magnetic field penetration depth
(Supplementary Figure S1). Subsequent studies testing higher
frequencies and/or intensities are indicated, as well as repeated
stimulation sessions (over minimum 4 weeks) in preparation for
clinical trials.

We highlight that non-invasive wide and deep inhibitory
brain stimulation appears to decrease the underlying functional
connectivity of regions immediately within the stimulation zone
while enhancing functional connectivity of deeper structures
such as mid-cingulate to ventral striatum. This unexpected
finding might be related to the decreased influence from
superficial cortical regions via decreased cortico-cortical
connectivity. A deep wide-field coil allows both greater

tolerability and the capacity to influence multiple relevant neural
regions and cognitive functions. These dissociable findings
may be relevant particularly to disorders of addiction and
OCD, and have implications for designing interventional deep
rTMS studies.
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