
ORIGINAL RESEARCH
published: 11 June 2019

doi: 10.3389/fneur.2019.00590

Frontiers in Neurology | www.frontiersin.org 1 June 2019 | Volume 10 | Article 590

Edited by:

Jack Tsao,

University of Tennessee Health

Science Center (UTHSC),

United States

Reviewed by:

Can Ozan Tan,

Harvard Medical School,

United States

Ramona E. Von Leden,

University of Texas at Austin,

United States

*Correspondence:

Corey M. Thibeault

corey@neuralanalytics.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Neurotrauma,

a section of the journal

Frontiers in Neurology

Received: 21 February 2019

Accepted: 20 May 2019

Published: 11 June 2019

Citation:

Thibeault CM, Thorpe S, Canac N,

Wilk SJ and Hamilton RB (2019)

Sex-Based Differences in Transcranial

Doppler Ultrasound and Self-Reported

Symptoms After Mild Traumatic Brain

Injury. Front. Neurol. 10:590.

doi: 10.3389/fneur.2019.00590

Sex-Based Differences in
Transcranial Doppler Ultrasound and
Self-Reported Symptoms After Mild
Traumatic Brain Injury
Corey M. Thibeault*†, Samuel Thorpe †, Nicolas Canac, Seth J. Wilk and

Robert B. Hamilton

Neural Analytics, Inc., Los Angeles, CA, United States

The possibility of sex-related differences in mild traumatic brain injury (mTBI) severity

and recovery remains a controversial subject. With some studies showing that female

subjects suffer a longer period of symptom recovery, while others have failed to

demonstrate differences. In this study, we explored the sex-related effects of mTBI on

self-reported symptoms and transcranial Doppler ultrasound (TCD) measured features

in an adolescent population. Fifty-eight subjects were assessed—at different points

post-injury—after suffering an mTBI. Subjects answered a series of symptom questions

before the velocity from themiddle cerebral artery wasmeasured. Subjects participated in

breath-holding challenges to evaluate cerebrovascular reactivity. The Pulsatility Index (PI),

the ratio of the first peaks (P2R), and the Breath-Hold Index (BHI), were computed. Linear

mixed effects models were developed to explore the interactions between measured

features, sex, and time since injury while accounting for within subject variation. Over

the first 10 days post-injury, the female group had significant interactions between sex

and time since injury that was not present in the TCD features. This is the first study

to compare sex-related differences in self-reported symptoms and TCD measurements

in adolescents suffering an mTBI. It illustrates the pitfalls clinicians face when relying

on subjective measures alone during diagnosis and tracking of mTBI patients. In

addition, it highlights the need for more focused research on sex-related differences in

concussion pathophysiology.
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INTRODUCTION

The presence of sex-related differences in mild traumatic brain injuries or concussions (mTBI), is
a contentious subject. Several studies have found increased symptoms in females (1–3), as well as
increased length of recovery (4–6). In the case of Preiss-Farzanegan et al. (7), a difference existed in
adults (18 years-old or older), but not in minors (17 years-old and younger). Conversely, others
have failed to demonstrate increases in female symptoms at all (8–12). In general, the current
state of the literature suggests that the existence of gender dependence in concussion recovery and
severity is still an open question (13, 14).
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One commonality between these studies however, is that
they all rely on neurocognitive evaluations, patient symptoms,
or physical performance testing. Although these have been
shown to provide insight into concussion severity and prognosis,
they do not objectively measure physiological changes resulting
from concussive injury. Here, we present a study comparing
features of the cerebral blood flow velocity (CBFV) as measured
with Transcranial Doppler (TCD) ultrasound in addition to
self-reported symptoms to investigate sex-related differences
in concussion.

With recent research demonstrating abnormalities in cerebral
blood flow after a mTBI, it is clear that the microvasculature
is affected (15–24). In Thibeault et al. (23), the cerebral
hemodynamic changes in adolescents between 14 and 19 years
old after suffering a clinically diagnosed mTBI were assessed
using TCD. In that study two distinct phases of hemodynamic
alterations after a concussive injury were identified. In the
initial phase, beginning within an hour of injury and lasting
through the first 48 h, Pulsatility Index (PI), and peak ratio
(P2R), showed a significant difference from controls. After 48 h
however, these differences in pulsatile features were no longer
observable. At this point in their recovery the breath-holding
index (BHI), a measure of the cerebral vascular reactivity (CVR),
was significantly increased when compared to controls. This
lasted through day seven. After which, the population level
increase was no longer significant.

Although Thibeault et al. (23) was the first study to suggest
the presence of multiple phases of hemodynamic dysfunction,
there have been others demonstrating measurable alterations in
mTBI subjects using TCD. Utilizing a hypercapnia challenge, Len
et al. (15) found significant changes in a population of concussed
subjects. A subsequent study found significant differences during
hypocapnia (24). Similarly, the study from Albalawi et al. (25),
found vasoreactivity was linearly related to both severe headaches
and cognitive symptoms. Baily et al. (18), found lowered CVR
in a population of subjects suffering from chronic symptoms.
The present study, however, appears to be the first to explore sex
specific abnormalities in mTBI subjects with both self-reported
symptoms and an objective physiological measure.

METHODS

Patient Population
Participants in this study consisted of adolescents between 14 and
19 years old from the Los Angeles, California metropolitan area.
Subjects classified with an mTBI were diagnosed by independent
physicians and were scanned at different times post-injury. For
this analysis these longitudinal measurements were restricted to
13 days post-jury from 58 unique subjects. The population was
comprised of 37 male and 21 female participants, with 81 and
57 total exams for each group, respectively. Within the male
group, 17 subjects had more than one scan during the course
of recovery and a median number of scans of 1.0 with an IQR
of 2.0. In the female group, 13 subjects had more than one scan
and there as an overall median 2.0 scans with an IQR 3.0. The
control group consisted of 109 age-matched subjects, 89male and
12 female, who had no reported head-injuries in the preceding

12-months. The control group was only scanned a once. The
study was approved by Western Institutional Review Board (IRB
#20141111). This data was previously used in Thibeault et al. (23).

Data Collection
The TCD signals were acquired from the middle cerebral arteries
(MCA) transtemporally by ultrasonographers utilizing 2 MHz
probes held by an adjustable headset. End-tidal CO2 was collected
concurrently through a nasal cannula. The exam protocol,
illustrated in Figure 1, began with a 5-min baseline period of
normal breathing. This was followed by a series of 4 breath-
holding challenges as an estimate of CVR. Each of these consisted
of a 25-s period where the subject was instructed to hold their
breath, followed by 35-s of normal breathing.

Symptom Reporting
Before each of the data collection session, subjects were asked to
answer a number of questions similar to the graded symptom
scale checklist. Table 1 presents the list of questions where
subjects were asked to numerically rate their current symptom
state. The ratings were used both individually and summed
together as an estimate of severity.

Analysis
The TCD features found to correlate withmTBI in Thibeault et al.
(23), were used to compare with the self-reported symptoms.
The first pulse level feature, extracted from the baseline section,
was the PI. This is generally believed to be related to distal
resistance however, it appears to be more modulated by a number
of physiological processes (26), PI is found by

PI = (P1 − D) / VB.

Where P1, D, and VB are defined in Figure 1.
The second, P2R, is the ratio of P2, and P1, as illustrated in

Figure 1. This has been hypothesized to be related to distal bed
compliance (27). This is found by

P2R = P2/P1.

These features were individually averaged across all the extracted
pulses from the baseline section.

The CVR was estimated using the BHI. This was found by first
finding the highest peak of the low-pass filtered CBFV waveform
between the four breath-hold sections as illustrated in Figure 1.
This is then related to the baseline mean velocity by

BHI =

PBH − VBL

VBL

.

Statistical Modeling
Linear mixed-effect models were developed to explore the
interactions between effects of time and sex on the measured
variables while compensating for the unbalanced groupings and
the potential individual subject variation. The models were
developed in R using the lme4 package (28). Summary statistics
and significance values—using the satterthwaite method of
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FIGURE 1 | Experimental Protocol and TCD Analysis. (A) The individual pulses are extracted before the systolic peak (P1), diastolic trough (D), second peak (P2), and

the mean velocity (VB) are identified. (B) The CVR protocol consists of a 5-min baseline, left of the first vertical bar, followed by the four breath-holding challenges,

between the vertical bars. The low-frequency component of the global signal (solid gray line), is used to compute the baseline mean velocity (VBL, dashed line) and the

largest peak velocity (PBH ) used to calculate the BHI.

degrees of freedom and t-test—were computed with the lmertest
package (29). Additional model analysis was completed with
the Psycho library (30). Effects were considered significant if p
< 0.05, and the reported beta was at least twice the standard
error (SE).

The models were developed for each of the three TCD
features as well as the summed symptom scores, as dependent
variables. For symptoms and BHI, the random-effects were
explored by fitting differentmodels with themaximum likelihood
method and comparing with the likelihood ratio test—the
models with significant improvement were selected. The fixed-
effects and interactions were similarly compared, and the final
models were then fit with the restricted maximum likelihood
method. The models for PI and P2R failed to converge with the
maximum likelihoodmethod, however, the restrictedmethod did
reach convergence. Because of this, the resulting models both
used a similar structure, with days-post injury, sex, and their
interactions as fixed effects, and subject specific intercepts as
random effects. For the sex category, a contrast encoding of [0.5,
−0.5] with males as the reference was employed. Similarly, a
dummy encoding with the controls as the reference group was
used for the days-post category. These were grouped similar
to Thibeault et al. (23). Correlations between features were
evaluated using the Pearson correlation coefficient and the sex
dependent interactions of the resulting regression lines were
explored using the ANCOVA method with a set of linear models
fit with the ordinary least squares method from lme4 (28). A one-
way ANOVA was conducted to compare the effect of sex and
condition (case or control), on age using the StatsModels package
(31) in Python.

RESULTS

Population
There was no significant interaction between the effects of sex
and condition on age [F(1, 163) = 0.08, p = 0.78], or main effects
of either sex [F(1, 163) = 1.86, p = 0.17] or condition [F(1, 163)
= 0.004, p = 0.96]. All subjects identified as athletes, with the

TABLE 1 | Subjects were asked score themselves on the following symptoms

based on how they feel now–None (0), Mild (1,2), Moderate (3,4), Severe (5,6).

Symptoms

Headache

Pressure in head

Neck pain

Nausea or vomiting

Dizziness

Blurred vision

Balance problems

Sensitivity to light

Sensitivity to noise

Vision problems

Feeling like in a “fog”

“Don’t feel right”

Difficulty concentrating

Difficulty remembering

Fatigue or low energy

Confusion

Drowsiness

Trouble falling asleep

More emotional

Irritability

Sadness

Nervous or anxious

majority of males, 26 (74%) subjects from the mTBI group and 77
(87%) from the control group, playing football as their primary
sport. The other subjects were split between rugby, soccer,
basketball, baseball, lacrosse, ice hockey, and quidditch. Although
within the female population soccer was the most popular, 10
(45%) from the mTBI group and 7 (75%) subjects from the
control group, the overall spread was more diverse and included
volleyball, dance, track, swimming, basketball, softball and cheer.
Within the mTBI population there was a slight difference in the
reported mechanism of injury. For the male population 33 (89%)
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TABLE 2 | Mixed effect model results for symptoms.

Variable β (SE) 95% CI t(DF) p

(Intercept) 2.7 (1.97) [−1.03, 6.52] 1.37(215) p > 0.1

Sex 2.91 (3.94) [−4.58, 10.51] 0.74(215) p > 0.1

0–1 Days-Post 27.54 (3.99) [19.89, 35.06] 6.9(214) p < 0.001

2–3 Days-Post 24.4 (3.5) [17.65, 30.99] 6.97(222) p < 0.001

4–5 Days-Post 18.84 (3.15) [12.78, 24.78] 5.97(223) p < 0.001

6–7 Days-Post 21.98 (3.01) [16.01, 27.64] 7.29(230) p < 0.001

8–9 Days-Post 13.34 (3.15) [7.23, 19.28] 4.23(230) p < 0.001

10–11 Days-Post 9.42 (3.25) [3.21, 15.56] 2.9(228) p < 0.01

12–13 Days-Post 8.56 (3.48) [1.95, 15.14] 2.46(222) p < 0.05

Sex:0–1 Days-Post 30.85 (7.98) [15.43, 45.85] 3.87(214) p < 0.001

Sex:2–3 Days-Post 20.4 (7.01) [−1.08, 23.6] 2.91(222) p < 0.01

Sex:4–5 Days-Post 16.88 (6.31) [−2.29, 24.09] 2.67(223) p < 0.01

Sex:6–7 Days-Post 27.98 (6.03) [6.93, 33.6] 4.64(230) p < 0.001

Sex:8–9 Days-Post 23.46 (6.31) [4.82, 28.79] 3.72(230) p < 0.001

Sex:10–11 Days-Post 11.22 (6.49) [−1.08, 23.6] 1.73(228) p > 0.05

Sex:12–13 Days-Post 10.92 (6.95) [−2.29, 24.09] 1.57(222) p > 0.1

The bold rows indicate significant effects or interactions.

subjects reported being injured playing a sport, while 4 (11%) did
not provide amechanism.Within the female population 16 (76%)
identified their cause of injury from a sport, whereas 5 (24%)
reported another mechanism or did not provide a cause.

Symptoms
The model for symptoms had an explanatory power (conditional
R2) of 76.74%, in which the fixed effects explain 49.95% of the
variance (marginal R2). Though there was no overall main effect
of sex in the model (β = 2.91, SE = 3.94, 95% CI [−4.58, 10.51],
t(215) = 0.74, p> 0.1), there were significant interactions between
sex and days-post groups for the first 11 days, see Table 2. This
is illustrated by the increased self-reported summed symptoms
scores in the female population in Figure 2A. In addition, the
individual symptom averages in Figure 3 illustrate that it was not
a small subset of symptoms dominating the summed score for the
female population. Additionally, there were large main effects for
all days-post groupings, see Table 2.

TCD Features
BHI

The BHImodel had a total a total explanatory power (conditional
R2) of 45.16%, in which the fixed effects explain 13.83% of the
variance (marginal R2). There was no main effect of sex found in
the model, (β = −0.03, SE = 0.03, 95% CI [−0.09, 0.04], t(215)
= −0.73, p > 0.1), but there was one large interaction between
sex and days-post at the 0–1 days grouping (β = 0.15, SE = 0.07,
95% CI [0.01, 0.29], t(215) = 1.98, p < 0.05), Table 3. However,
within this grouping, all of the male subjects were collected on
the day of their injury, while the female subjects were all collected
the day after their injury occurred. In this instance, it seems more
feasible that the interaction is a product of the female subjects
being collected closer to the period of hyperreactivity found in
Thibeault et al. (23), as opposed to a sex-related disparity.

TABLE 3 | Mixed effect model results for BHI.

Variable β (SE) 95% CI t(DF) p

(Intercept) 0.41 (0.02) [0.37, 0.44] 23.35(215) p < 0.001

Sex −0.03 (0.03) [−0.09, 0.04] −0.73(215) p > 0.1

0–1 Days-Post −0.02 (0.04) [−0.09, 0.05] −0.58(215) p > 0.1

2–3 Days-Post 0.14 (0.03) [0.08, 0.21] 4.44(224) p < 0.001

4–5 Days-Post 0.09 (0.03) [0.04, 0.15] 3.17(222) p < 0.01

6–7 Days-Post 0.06 (0.03) [0.01, 0.12] 2.32(231) p < 0.05

8–9 Days-Post 0.05 (0.03) [0, 0.11] 1.81(231) p > 0.05

10–11 Days-Post −0.01 (0.03) [−0.07, 0.05] −0.32(228) p > 0.1

12–13 Days-Post 0.01 (0.03) [−0.05, 0.07] 0.24(223) p > 0.1

Sex:0–1 Days-Post 0.15 (0.07) [0.01, 0.29] 1.98(215) p < 0.05

Sex:2–3 Days-Post 0.05 (0.07) [−0.1, 0.12] 0.71(224) p > 0.1

Sex:4–5 Days-Post 0.05 (0.06) [−0.05, 0.2] 0.82(222) p > 0.1

Sex:6–7 Days-Post 0 (0.06) [−0.08, 0.17] 0.09(231) p > 0.1

Sex:8–9 Days-Post −0.01 (0.06) [−0.06, 0.16] −0.23(231) p > 0.1

Sex:10–11 Days-Post 0.01 (0.06) [−0.1, 0.12] 0.17(228) p > 0.1

Sex:12–13 Days-Post 0.08 (0.06) [−0.05, 0.2] 1.18(223) p > 0.1

The bold rows indicate significant effects or interactions.

The overall longitudinal profile found in Thibeault et al. (23)
was also predicted here by main effects for days-post 2–3 (β =

0.14, SE= 0.03, 95% CI [0.08, 0.21], t(224) = 4.44, p < 0.001), 4–5
(β = 0.09, SE= 0.03, 95% CI [0.04, 0.15], t(222) = 3.17, p < 0.01),
and 6–7 (β = 0.06, SE= 0.03, 95% CI [0.01, 0.12], t(231) = 2.32, p
< 0.05), see Figure 1B.

PI

The model for PI had total explanatory power (conditional R2) of
72.02%, in which the fixed effects explain 8.35% of the variance
(marginal R2). Here, a main effect of sex was predicted (β =

−0.13, SE = 0.04, 95% CI [−0.21, −0.04], t(195) = −2.96, p <

0.01). Exploring the population results in Figure 2C suggest that
this effect may be a product of an inherent difference between
males and females in the control population, as opposed to a
sex-related difference. This is supported by the lack of significant
interactions between sex and days-post injury grouping, Table 4.
There was a significant main effect found at days-post 8–9 (β =

0.07, SE = 0.03, 95% CI [0.01, 0.13], t(227) = 2.14, p < 0.05), that
cannot be fully explained.

P2R

The model predicting P2R had a total explanatory power
(conditional R2) of 74.42%, in which the fixed effects explain
10.32% of the variance (marginal R2). A main effect of sex was
present (β = 0.05, SE = 0.02, 95% CI [0.01, 0.10], t(196) = 2.21, p
< 0.05). However, similar to PI, Figure 2D illustrates a difference
between control groups. There were no significant interactions
between sex and days-post found, see Table 5.

Correlations

The correlations between features provides additional
information about the sex-related differences in this population,
Figures 4A,B. Both sexes had significant negative correlations
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FIGURE 2 | Features for each sex grouped by days post-injury. (A) Summed symptoms. (B) BHI. (C) PI (D) P2R. Significance values are indicated where a large

interaction between sex and days-post was found (**P < 0.01, ***P < 0.001).

FIGURE 3 | Self-reported mean symptom scores. (A) Males. (B) Females. The shaded squares without a value are below 1.

between PI and P2R (rmale = −0.8, p < 0.001; rfemale = −0.67,
p < 0.001). For the male population there were significant
correlations between BHI and PI (r = 0.27, p < 0.001), as well

as BHI and P2R (−0.18, p = 0.02), that were no present in the
female population, Table 6. Conversely, the female population
had significant correlations between symptoms and BHI (r =
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TABLE 4 | Mixed effect model results for PI.

Variable β (SE) 95% CI t(DF) p

(Intercept) 0.77 (0.02) [0.73, 0.81] 35.95(195) p < 0.001

Sex −0.13 (0.04) [−0.21,−0.04] −2.96(195) p < 0.01

0–1 Days-Post −0.05 (0.04) [−0.13, 0.02] −1.33(186) p > 0.1

2–3 Days-Post 0.03 (0.04) [−0.04, 0.09] 0.8(205) p > 0.1

4–5 Days-Post 0.02 (0.03) [−0.04, 0.08] 0.62(211) p > 0.1

6–7 Days-Post 0.06 (0.03) [0, 0.12] 1.99(228) p = 0.05

8–9 Days-Post 0.07 (0.03) [0.01, 0.13] 2.14(227) p < 0.05

10–11 Days-Post 0.03 (0.03) [-0.04, 0.09] 0.8(220) p > 0.1

12–13 Days-Post 0.05 (0.04) [-0.01, 0.12] 1.55(205) p > 0.1

Sex:0–1 Days-Post 0.05 (0.08) [−0.1, 0.2] 0.68(186) p > 0.1

Sex:2–3 Days-Post 0.11 (0.07) [−0.09, 0.16] 1.54(205) p > 0.1

Sex:4–5 Days-Post 0.05 (0.06) [0, 0.27] 0.72(211) p > 0.1

Sex:6–7 Days-Post 0.08 (0.06) [−0.02, 0.24] 1.23(228) p > 0.1

Sex:8–9 Days-Post 0.01 (0.07) [−0.08, 0.17] 0.21(227) p > 0.1

Sex:10–11 Days-Post 0.04 (0.07) [−0.09, 0.16] 0.56(220) p > 0.1

Sex:12–13 Days-Post 0.14 (0.07) [0, 0.27] 1.96(205) p > 0.05

The bold rows indicate significant effects or interactions.

TABLE 5 | Mixed effect model results for P2R.

Variable β (SE) 95% CI t(DF) p

(Intercept) 0.78 (0.01) [0.75, 0.8] 62.97(196) p < 0.001

Sex 0.05 (0.02) [0.01, 0.1] 2.21(196) p < 0.05

0–1 Days-Post 0.04 (0.02) [0, 0.08] 1.69(185) p > 0.05

2–3 Days-Post 0.01 (0.02) [−0.02, 0.05] 0.72(205) p > 0.1

4–5 Days-Post 0 (0.02) [−0.03, 0.04] 0.17(210) p > 0.1

6–7 Days-Post 0 (0.02) [−0.03, 0.04] 0.28(227) p > 0.1

8–9 Days-Post −0.01 (0.02) [−0.05, 0.02] −0.57(226) p > 0.1

10–11 Days-Post 0 (0.02) [−0.03, 0.04] 0.16(220) p > 0.1

12–13 Days-Post 0 (0.02) [−0.03, 0.04] 0.14(204) p > 0.1

Sex:0–1 Days-Post 0.02 (0.04) [−0.06, 0.11] 0.42(185) p > 0.1

Sex:2–3 Days-Post 0.01 (0.04) [−0.06, 0.09] 0.17(205) p > 0.1

Sex:4–5 Days-Post 0 (0.04) [−0.1, 0.05] 0.09(210) p > 0.1

Sex:6–7 Days-Post 0 (0.04) [-0.07, 0.08] 0.08(227) p > 0.1

Sex:8–9 Days-Post 0.01 (0.04) [−0.07, 0.07] 0.31(226) p > 0.1

Sex:10–11 Days-Post 0.01 (0.04) [−0.06, 0.09] 0.39(220) p > 0.1

Sex:12–13 Days-Post −0.03 (0.04) [−0.1, 0.05] −0.65(204) p > 0.1

The bold rows indicate significant effects or interactions.

0.28, p < 0.01), as well as symptoms and PI (r = 0.28, p < 0.01),
that were not found in the male population, Table 6.

Further exploring the sex-related correlation structure by an
ANCOVA analysis reveals a significant difference in the slopes of
the regression lines for symptoms and BHI between sexes (β =

58.55, SE = 19.07, 95% CI [20.98, 96.12], t = 3.07, p < 0.01). A
difference in slopes was also found comparing symptoms and PI
(β = 69.08, SE = 17.58, 95% CI [34.45, 103.70], t = 3.93, p <

0.001). For symptoms and P2R however, there was no significant
difference in slope (β = −56.21, SE = 31.79, 95% CI [−118.82,
6.40], t = −1.77, p = 0.08), instead a difference in y-intercepts

was found (β = 69.45, SE = 25.11, 95% CI [20.00, 118.91], t =
2.77, p < 0.01).

DISCUSSION

Symptoms
Several studies have found a similar increase in self-reported
symptoms for female subjects (1, 2). In the study from Baker
et al. (4), the increased symptoms in the acute stage may have
influenced recovery time—explaining the prolonged recovery
for females. Although the difference between sexes here does
appear more pronounced, comparing that difference to those
other studies is not possible given the heterogeneity of the
symptom collection.

The mechanism of injury presents a potentially confounding
factor. In this study themajority of male subjects played helmeted
sports (68%). The protection afforded by these helmets could
have contributed to the overall lowered symptoms. However, in
the study from Broshek et al. (1), female subjects were more than
twice as likely to experience cognitive impairments than males
in unhelmeted sports—illustrating that a difference existed even
when accounting for helmets. The sex differences in reported
symptoms observed in the current study were not accompanied
by evidence for corresponding concussion-related differences in
the TCD features. Moreover, the main effects of time observed
for BHI suggest the progression of vascular injury to be similar
for both sexes. A more compelling explanation would be an
inherent reporting bias in the female group. Other studies have
shown that female athletes tend to report more symptoms than
males (7, 32). In addition, females are generally more focused on,
and aware of, their health (33), suggesting that there is more of
a motivation to ensure a complete recovery. Conversely, male
athletes have a number of societal and cultural motivations to
perceptually diminish the magnitude of their injury and return
to sport as soon as possible (34). Similarly, it was shown in Kerr
et al. (35), that male athletes were significantly more likely to hide
a concussive injury.

There have been several studies exploring the physiological
differences between sexes that contribute to the susceptibility
and recovery from concussion, many of which center on the
possible role of estrogen. In more severe traumatic brain injuries,
estrogen has been shown to have a neuroprotective effect in
male rats, but a deleterious one in females (36). In humans,
the study from Gallagher et al. (5), found that female subjects
suffering from a sport-related concussion who used hormonal
contraceptives reported lower symptom severity than those who
did not, suggesting that hormonal contraceptives may play a
role in modulating the collapsing neurometabolic cascade that
is a hallmark of concussive injuries (16). Another consistent
theme in mTBI gender differences is decreased neck strength in
women (37, 38), which has been shown to be inversely related
to concussion susceptibility. A similar confound of this study is
the role physical maturity plays in how someone responds to an
mTBI. The study from Krix et al. (39) found that male subjects
in early stages of puberty had increased odds of a prolonged
recovery from a concussive injury. Although puberty clearly
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FIGURE 4 | Feature correlations. (A) Male correlations. (B) Female correlations. Correlations that are not significant at the 0.05 level are set to zero.

TABLE 6 | Feature Correlations for the male and female groups.

BHI PI P2R

MALE GROUP

Symptoms 0.05 (p = 0.5) −0.12 (p = 0.12) 0.14 (p = 0.07)

BHI 0.27 (p < 0.001) −0.18 (p < 0.05)

PI −0.8 (p < 0.001)

FEMALE GROUP

Symptoms 0.28 (p < 0.01) 0.28 (p < 0.01) −0.11 (p < 0.05)

BHI 0.35 (p < 0.01) −0.01 (p > 0.05)

PI −0.67 (p < 0.001)

affects the adolescent brain (40), it is still unclear how that would
contribute to the results of this work.

TCD Features
It is important to note that in this context BHI is not meant
an exact measure of reactivity. Breath-holding can introduce
other autonomic and sympathetic responses that can confound
its use for directly quantifying reactivity. However, as illustrated
in Thibeault et al. (23), and confirmed by the main effects of
days-post here, BHI as measured in this population, is a robust
biomarker of mTBI. The difference in slopes of the regression
lines between symptoms and BHI illustrate the vulnerability of
relying on subjective measures alone.

The overall sex-related main effect for both PI and P2R is
most surprising aspect of this analysis. For both features that
effect did not appear to be based on the injury, but rather an
inherent sex-related difference in this population. Previously,
when sex was ignored both were altered immediately following
an mTBI (23). The alterations of these features here, as illustrated
in Figure 2, appear to only be present in the male population.
PI is a complex metric that is influenced by the combinations of
cerebral perfusion pressure, cerebrovascular resistance, arterial
bed compliance, heart rate, and the pulse amplitude (26).
Similarly, It has proposed that P2R is associated with distal
bed compliance dynamics (41), however there is no established

physiological correlation. Why either of these features would
have a sex-related dependence is unclear and will need to be
explored further in the future. Regardless, these results illustrate
that that dependence is not due to the injury.

The study from Esposito et al. (42) showed that women had
higher Cerebral Blood Flow (CBF) compared to males. Although,
in the population here there was no significant trend in mean
velocity during injury recovery, that may be because TCD cannot
measure CBF directly, only the velocity. In addition, a post-
concussive change in mean velocity has not been demonstrated
with TCD (23).

CONCLUSIONS

This is the first study to compare sex-related differences between
clinical symptoms and TCD measurements in adolescent mTBI
subjects. The objective measures highlight the need to mitigate
patient heterogeneity when assessing concussion recovery and
the discrepancy in clinical symptoms illustrates how difficult
this can be for clinicians. In the case of males the possibility
of under-reporting may need to be considered. A physiological
measurement such as TCD may eventually help remove
ambiguity and provide clinicians with an objective physiological
measure of mTBI recovery.
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