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Neuromyelitis optica spectrum disorders (NMOSD) are mostly relapsing autoimmune

inflammatory disorders of the central nervous system (CNS) with optic neuritis, myelitis,

and brainstem syndromes as clinical hallmarks. With a reported prevalence of up to

70%, cognitive impairment is frequent, but often unrecognized and an insufficiently

treated burden of the disease. The most common cognitive dysfunctions are decline in

attention andmemory performance. Magnetic resonance imaging can be used to access

structural correlates of neuropsychological disorders. Cognitive impairment is not only a

highly underestimated symptom in patients with NMOSD, but potentially also a clinical

correlate of attack-independent changes in NMOSD, which are currently under debate.

This article reviews cognitive impairment in NMOSD and discusses associations between

structural changes of the CNS and cognitive deficits.
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INTRODUCTION

Neuromyelitis optica spectrum disorders (NMOSD) are inflammatory autoimmune conditions
of the central nervous system (CNS) with a typically relapsing course and a strong female
preponderance (1–6). Key clinical features comprise optic neuritis, myelitis, and brainstem
syndromes (7–13). Approximately 80% of the patients with NMOSD have pathogenic serum
autoantibodies against aquaporin-4 (AQP4), a bidirectional water channel protein predominantly
expressed by astrocytes, which is present all over the CNS (7, 14–21). AQP4 appears to not only be
important for the internal water balance but its downstream mechanisms also seem to be essential
for synaptic plasticity and neuronal functioning due to the involvement of astrocytes, although
the exact mechanism of action is still unclear (22). In a subgroup of AQP4 antibody (AQP4-IgG)
seronegative NMOSD patients as well as in patients with recurrent optic neuritis and a few patients
with multiple sclerosis (MS) an antibody against myelin oligodendrocyte glycoprotein (MOG-IgG)
can be detected (23–33). Nowadays, MOG-IgG seropositive patients are mostly assigned to a
separate disease entity called MOG-IgG autoimmunity [or MOG encephalomyelitis (MOG-EM)],
although they are formally still part of the NMO spectrum (5, 34–36).
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In clinical routine, detection of AQP4-specific antibodies
in serum allows for discriminating NMOSD from its most
common differential diagnosis, MS. The high specificity of
AQP4-IgG together with various immunological studies has
made clear that NMOSD are not a variant of MS but
a separate disease entity (7, 37–39). Subsequently, disease-
modifying drugs used in MS, for example interferon-beta,
glatiramer acetate, or natalizumab, were found to be ineffective
or even harmful for patients with NMOSD (40–45). In
contrast, current treatment strategies for patients with NMOSD
comprise immunosuppressive therapies with azathioprine or
mycophenolate-mofetil and B cell targeting therapies with
rituximab (46–54). For most NMOSD patients, these drugs
effectively reduce the attack frequency and attack-related
accumulation of disability. However, recent studies suggested
attack- and lesion-independent “covert” tissue damage in patients
with NMOSD, from which clinical implications are not yet
entirely clear (55–64) but which presumably contributes to
attack-independent symptoms as of which one appears to be
cognitive impairment (CI). CI as attack independent symptom
was further supported by a study by Saji et al. (65) who
tried to proof a permanent interaction between astrocytes and
AQP4-IgG which lead finally to dysfunctional synaptic plasticity
and hence could be involved in CI in NMOSD AQP4-IgG
positive patients. Furthermore, even though CI appears to
be a persistent and progressive symptom it still seems to be
underrepresented in clinical monitoring and disability scores
and often not sufficiently treated (66–70). Over the last years,
those neuropsychiatric symptoms in NMOSD came to the
forefront, and comparable larger cohorts in observational studies
and the application of advanced imaging techniques allowed
for the investigation of incidence and structural correlates of
these neuropsychological symptoms. This article reviews CI in
NMOSD and discusses associations between structural CNS
changes and cognitive deficits.

COGNITIVE IMPAIRMENT IN NMOSD

NMOSD show high rates of comorbidity with other physical
and psychological conditions, including CI (67–69, 71). While
cognitive dysfunctions have been commonly recognized as a
burden in MS, this acknowledgment is still missing in NMOSD
and hence studies investigating the link between NMOSD and
CI are scarce (72, 73) despite NMOSD patients naming CI as
one of their most relevant concerns (74) (see Table 1). In the few
studies conducted, patients demonstrate a significant decrease of
cognitive abilities and the prevalence of CI in different samples
varies between 30 and 70% (71, 75–77). In addition to investigate
cognition, each study has used its own assessment method to the
end that one common disease specific cognitive test battery for
patients with NMOSD ismissing (71). Hence, meta-analyses such
as the one of Meng et al. are difficult and are usually only able
to analyse and make inferences from a small sample of studies
(75). Currently, the most commonly used test battery appears
to be the Rao’s Brief Repeatable Battery of Neuropsychological
tests (65, 76, 78). This battery assesses different aspects of

cognition for example verbal memory, short and long term
memory, processing speed, attention, concentration, and verbal
fluency (65).

Studies investigating which aspects of cognition are most
dysfunctional in patients with NMOSD depict ambiguous results:
One of the first studies was conducted by Blanc et al. (79). They
found alterations in attention, information processing and verbal
fluency (79). The meta-analysis of Meng et al. concluded that
patients with NMOSD perform generally worse than healthy
controls and that patients are significantly worse in the areas
of attention, language, memory, processing speed and executive
function (75). Similar findings were made by Saji et al., who
found that 57% of patients performed significantly worse in
at least three cognitive tests compared to healthy controls
(65). Furthermore, they found that deficits are predominantly
overt in sustained attention, concentration, verbal memory,
and speed of information processing (65). However, verbal
fluency on semantic stimulation and spatial reasoning were
intact (65). Opposed to these results, Vanotti et al. demonstrated
a more pronounced dysfunction in the areas of attention
and verbal fluencies (76). The variations across results are
not only due to heterogeneity of samples including ethnic
background, heterogeneity with regards to antibody status, and
other interindividual differences, but also due to differences
in assessment, the definition and percentage of CI in samples,
correction for depression, as well as analysis of magnetic
resonance imaging (MRI) and overall differences in study design
(72). In particular, the heterogeneous antibody status and MOG-
IgG could be a major confounder, as many studies had mixed
samples for example Blanc et al. (17 AQP4-IgG seropositive
patients/13 AQP4-IgG seronegative patients who were not tested
for MOG-IgG) (79). Other studies for example Vanotti et al. or
Liu et al. have not reported antibody status, and hence may have
missed a possible association between antibody status and CI (76,
80). Further constraints entail that most of the studies recruited
rather small sample sizes, ranging from 12 to 91 patients, and
cover only a limited spectrum of ethnic backgrounds, with
most studies being from Asian countries (71). Thus, while CI
seems to be commonly present in a high percentage of NMOSD
patients the specific domain of dysfunctional performance varies
greatly between studies and samples. It appears that the most
common cognitive dysfunction across all studies is decline in
attention and memory performance. Moreover, the question as
to the whether NMOSD pathobiology is causative for CI has not
been clarified.

AQP4-IGG AND COGNITIVE IMPAIRMENT

Currently, attack-independent structural changes as part of
the pathology in NMOSD are a matter of debate (56–59,
64, 81, 82). The continuous and sometimes deteriorating
neuropsychological symptoms might point toward a smoldering
disease process in NMOSD independent of clinical attacks, for
instance directly caused by the pathogenic antibody AQP4-
IgG (56–59). Hence, few studies have tried to investigate the
interplay of AQP4-IgG, which usually are a persistent disease
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factor, and cognitive impairment. Fan et al. investigated the
link between AQP4-IgG and cognitive functioning, in particular
spatial memory, in mice: They concluded that AQP4-IgG appear
to inhibit neuronal plasticity and thus lead to a worsening
in memory consolidation and spatial memory, as mice AQP4
knockout mice showed deficits in the acquisition and reversal
phase in the Morris water maze (83, 84). This link is further
supported by Skucas et al. (86) who found impaired long
term potentiation and thus deficits in spatial memory in AQP4
knockout mice (83). While this finding would explain deficits
in spatial memory, it provides no explanation for attention
deficits, which are often observed in NMOSD patients. An
attempt to explain the full extent of poor cognitive functioning
in patients with NMOSD was made by Saji et al. who claimed
that a unique dynamic between AQP4-IgG and astrocytes is
the underlying mechanism belonging to CI (65). According
to Saji et al. the unique dynamic exhibited by AQP4-IgG is
leading to substantial diffuse cortical neuronal loss throughout
the whole brain and hence may lead to neurodegeneration
independent of clinical attacks (65). Thus, in contrast to MS
where the disease causes demyelinating lesions, AQP4-IgG
seropositive NMOSD results in pathological changes of the gray
matter especially in the cortical layer II (65). These processes
are suggested to include a disruption of glutamate and/or
water homeostasis and thus excitotoxicity, release of soluble
neurotoxic factors, which may trigger neurodegeneration by
diffusing into the gray matter (GM) (65). This pathomechanism
would further explain the GM atrophy observed by some
studies in patients with AQP4-IgG seropositive NMOSD (80, 85).
Other processes possibly induced by downstream mechanisms
of AQP4 dysfunction are the activation of the innate immune
system and hence activation of microglia as well as other
autoimmune properties that could be involved not only in
AQP4-IgG seropositive NMOSD but also as response to
AQP4-IgG (37, 65, 86, 87). The hypothesis of an immune
reaction, leading to pathological downstream mechanisms is
further supported by Takeshita et al. (38). They found that, in
cell cultures, AQP4-positive astrocytes produced interleukin-6
when exposed to AQP4-IgG. The cytokine interleukin-6 was
found to disrupt endothelial cell functioning, which results
in impaired blood barrier function (38, 88). On top of that,
AQP4 expression seems to play an important role in regulating
synaptic plasticity, which might be altered in NMOSD due to
AQP4-IgG (88). Although the exact mechanism remains unclear,
the existence of CI and other neuropsychological symptoms
in AQP4-IgG seropositive NMOSD points toward an attack-
independent pathology, potentially induced by the pathogenic
antibodies themselves.

LINK BETWEEN COGNITIVE IMPAIRMENT
AND DEPRESSION IN NMOSD

Depression is known to also be a common and insufficiently
treated symptom in NMOSD: Whereas around 50% of
moderately to severely depressed patients with NMOSD receive
antidepressant medical treatment, only 50% of treated patients

report satisfactory treatment responses (68). Nevertheless, only
few studies have investigated the link between depression and
CI in patients with NMOSD. On the one hand, studies found
a strong association between poor cognitive performance and
high levels of depressive symptoms (71, 76). On the other, the
study of Blanc et al. reported no association between cognition
and depression (79). These opposing results could be explained
by small sample sizes, heterogeneous cohorts, and different
ethnic backgrounds. Furthermore, as both CI and depression
tend to have high prevalence in NMOSD, an association but
not causation could be possible (67, 71). On top of that,
even if a causal link could be proven, the direction of this
association would still be questionable. Especially, since studies
focusing on fatigue and quality of life are implying a role of
these in depression as well as in cognition (89–91). Therefore,
it is advisable to investigate the full spectrum of the disease
and its psychological comorbidities instead of only exploring
the link between depression and CI and thus eliminating
possible confounders.

ASSOCIATION BETWEEN COGNITIVE
IMPAIRMENT AND STRUCTURAL
CHANGES

Numerous studies have described brain tissue alterations in MS
[global atrophy, microstructural damage of normal-appearing
white matter (WM) and GM)], but studies investigating MRI
characteristics in NMOSD are still scarce (92–98). According
to the current state of knowledge, up to 80% of AQP4-
IgG seropositive NMOSD patients present with cerebral
lesions in AQP4-rich sites for example the hypothalamus and
periependymal regions and—in contrast to MS—cortical lesions
are usually absent (99–105). Also, the few existing MRI studies
on MOG-IgG seropositive encephalomyelitis suggest a high
similarity with MRI features of AQP4-IgG positive patients
with the occasional incidence of characteristic fluffy brainstem
lesions (106–108). However, several groups recently reported
seizures with cortical MRI involvement on MRI in MOG-IgG
seropositive patients which is considered very rare in AQP4-
IgG positive NMOSD (109, 110). Whereas, several studies exist
describing transsynaptic damage after optic neuritis and myelitis,
the existence of global atrophy, and diffuse tissue alterations of
WM and GM in AQP4-IgG seropositive NMOSD is still a matter
of debate (13, 58, 63, 64, 93, 95, 111, 113, 114).

In order to explain the cognitive dysfunction observed,
studies have focused on cortical abnormalities (80, 115). While
in MS cognitive dysfunction is linked to cortical lesions, no
such correlation can be observed in patients with NMOSD
(71, 79, 80, 115). In the study of Liu et al. (80) when
comparing 54 NMOSD patients, 28 of which were cognitively
preserved and 26 of which had CI, there was no association
found between overall brain lesion load and CI (76, 80). Some
studies found a correlation between WM and GM atrophy, and
CI: Blanc et al. linked focal WM volumes of the brainstem,
cerebellum, corticospinal tract, corpus callosum, longitudinal
fascicle, and inferior longitudinal fascicle with general CI in
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TABLE 1 | The most important original publications on cognitive impairment in NMOSD.

References Country Sample size Portion of AQP4-IgG

seropositive Patients

Neuro-psychological

assessment

Main findings

Blanc et al. (79) France 30 NMOSD

vs. 30MS

vs. 30 HCs

17/30 BRB-N

CTT

DST

Go-no-go

SDMT

-57% CI Compared to HC reduced scores

in PASAT, SDMT, phonemic fluencies, the

direct & indirect digit span test

-compared to MS no differences

Blanc et al. (116) France 28 NMOSD

vs. 28 HCs

12/28 BRB-N

CTT

DST

Go-no-go

-54%CI compared to HC decreased global

& focal WMCorrelation of WM volumes and

cognitive test performance

-no Gm differences

Cho et al. (118) Korea 14 NMOSD vs. 21 HCs 13/14 BRB-N

MACFIMS

PASAT

Digit Span Test

DSCT

BNT

RCFT

CVLT

TMT

COWAT

SST

-patients perform significantly worse in

attention/working memory, processing

speed, executive function and visuospatial

processing

- CI in patients associated with local

efficiency, regional efficiency and nodal

clustering coefficient of two

disrupted sub-networks

Fujimori et al. (78) Japan 12 NMOSD

vs. 14MS

12/12 BRB-N

WAIS-III

WMS-R

-impairment in perceptual organization,

working memory and processing speed

-compared to MS less CI

He et al. (89) China 22 NMOSD

(acute relapse)

vs. 22 patients with

depression

vs. 22 HCs

Not reported CLOX

CVLT II

DST-backward

PASAT

SDMT

-compared to patients with depression

reduced scores on immediate and short-

term memory, information processing

speed, and attention

-suggesting that CI in NMOSD is not only

due to depression but also due to

cognitive connectivity distortions

Hyun et al. (85) Korea 91 NMOSD

vs. 52MS

vs. 44 HCs

Not reported COWAT

DST

PASAT

RCFT

SDMT

Stroop

SVLT

-compared to HCs reduced thalamic

volume in NMOSD and MS (more severe

in MS), a finding mainly observed in Asian

patient populations

-association between CI and volume of

the thalamus

Kim et al. (77) Korea 82 NMOSD

vs. 58MS

vs. 45 HCs

Not reported COWAT

Digit span test

HVLT-R

PASAT

RCFT

SDMT

Stroop

SVLT

-29 % CI

-compared to MS less cognitive

dysfunctions, especially in verbal learning,

verbal and visual memory tests

Liu et al. (119) China 26 NMOSD vs. 26 HCs Only 18 patients tested:

16/18

/ -patients showed abnormal small-world

network properties

-regional efficiency of patients decreased

in the visual, sensorimotor and default

mode networks

Masuda et al.

(115)

Japan 16 NMOSD

vs. 20MS

15/16 CAT

TMT

WAIS-III

WMS-R

-compared to MS better performance

in verbal memory, general memory and

delayed recall and larger superior temporal

gyrus volume

-left superior temporal gyrus volume

correlated with scores on the

delayed recall

(Continued)
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TABLE 1 | Continued

References Country Sample size Portion of AQP4-IgG

seropositive Patients

Neuro-psychological

assessment

Main findings

Moore et al. (71) United Kingdom 42 NMOSD

vs. 42MS

vs. 42 HCs

30/42 CVLT-II

DKEFS

DST

Hayling

phonemic and semantic

SDMT

-67% CI substantial cognitive and

psychiatric comorbidities in NMOSD

-compared to MS greater psychological

burden, but similar CI prevalence & profiles

Saji et al. (65) Japan 14 NMO

vs. 17MS

vs. 37 HCs

14/14 BRB-N -57% CI compared to HC significant

cortical neuron density decrease in layers

II, III, and IV

-cognitive deficits in sustained attention

concentration, speed of information

processing and verbal memory

Vanotti et al. (76) Argentine 14 NMOSD

vs. 14MS

vs. 14 HCs

Not reported BRB-N

SDMT

Semantic fluency

-57% CI compared to HC dysfunctions in

verbal fluencies & attention

-compared to MS similar pattern

of dysfunction

BRB-N, brief repeatable battery of neuropsychological tests; BNT, Boston naming test; CAT, cognitive abilities test; CLOX, clock drawing executive test; COWAT, controlled oral word

association test; COWAT, Controlled Oral Word Association Test; CTT, color trails test; CVLT, California verbal learning test; DGM, deep gray matter; DKEFS, Delis-Kaplan executive

function system; DSCT, digit symbol coding test; DST, drive self-test; HCs, healthy controls; GM, gray matter; HVLT-R, Hopkins verbal learning test–revised; MACFIMS, minimal

assessment of cognitive function in multiple sclerosis; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorders; PASAT, paced auditory serial addition test; RCFT, Rey-

Osterrieth complex figure test and recognition trial; SDMT, symbol digit modalities test; SST, spatial span test; SVLT, Shiraz verbal learning test; TMT, trail making test; WAIS, Wechsler

adult intelligence scale; WCST, Wisconsin card sorting test; WM, white matter; WMS-R, Wechsler memory scale–revised.

NMOSD patients (79). In particular, visual memory, verbal
memory, speed of information processing, short term memory
and executive functions were found to be impaired (116). Hence,
both focal and global WM volume were linked to CI, but
no GM atrophy was observed (116). This finding is in line
with the work of Finke et al., who observed no changes in
deep GM volumes in AQP4-IgG seropositive NMOSD (112).
This is further underlined by so far unpublished results from
our groups suggesting missing atrophy of the entire thalamic
volumes in AQP4-IgG seropositive patients compared to HCs
and only selective subnuclei atrophy in attack-related nuclei
such as the lateral geniculate nucleus (117). Conflicting with
the missing GM and thalamus atrophy was the study conducted
by Hyun et al. (85). They described a significant link between
volume of the thalamus and CI in patients with NMOSD, with
reduced volumes in patients with poorer cognitive performance
(85). Nevertheless, the different conclusions about thalamus
volume could be due to the fact that Hyun et al. (85) measured
their patients after a mean disease duration of 8 years where
advanced degeneration has taken place, which potentially could
not only be a confounder on its own but also could possibly
lead to confounding through depression, advanced disability,
and pain. Furthermore, the sample population appears to play
an important role when comparing results in respect to GM
atrophy, as reduced volume is mainly observed in Asian samples
while studies examining a Caucasian sample fail to replicate
these results (117). Hence, studies examining cortical volumes in
NMOSD should be interpreted carefully.

Further studies investigating structural changes indicate that
whitematter network alternations could be the underlying reason
for cognitive decline in some NMOSD patients (118, 119). One
study by Liu et al. investigated the structural connectivity of

26 NMO-patients and 26 sex- and age-matched HCs with help
of diffusion tensor tractography (DTI) (119). After performing
network analysis, they found alternations in the small-world
topology of the white matter structural networks, including
abnormal parameters in path length, an increase in small-
worldness as well as an increase in normalized clustering.
Furthermore, they found an altered global network organization,
which is in line with reduced cognitive efficacy observed in
NMOSD patients. They suggest that in particular the reduced
efficacy of the precuneus (PCUN), a hub belonging to the
default-mode network, which is highly involved in cognitive
processing, could partially contribute to CI in patients. A similar
DTI study investigating white matter networks and cognitive
dysfunction in NMOSD was performed by Cho et al. (118).
They enrolled 14 NMOSD patients and 21 HCs, and could
confirm the finding of Liu et al., that global network strength is
decreased (118, 119). Furthermore, they indicated two disrupted
sub-networks, each consistent of six hub nodes, including the
PCUN. The disrupted networks were significantly linked to
poor performance in attention, processing speed and working
memory, as well as to visuospatial processing and executive
functions. In particular, the local efficiency, regional efficiency
and clustering coefficient of these two sub-networks appear to
play a role in CI in NMOSD.

Hence, while several structural changes in GM as well
as in WM networks seem to occur in NMOSD it appears
to be rather difficult to link CI with one particular tissue
alternation. On top of that these studies that have investigated
the underlying structures of CI face limitations of which
a mixed cohort with heterogeneous antibody-status of the
patients is one of the most prominent (96).These limitations,
in particular the heterogeneous antibody-status, with earlier
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studies like Blanc et al. (79, 116) reporting a higher seronegative-
seropositive ratio than current studies, hamper comparison
between studies.

OUTLOOK

Cognitive impairment (CI) appears to be one of the more
prominent progressive and attack independent symptoms of
NMOSD. Hence, a sensitization of the treating neurologists
as well as early and standardized screening tests are therefore
necessary to improve the management and treatment of
cognitive impairment and other neuropsychiatric symptoms in
NMOSD. In the future, adequately powered studies investigating
CI, its underlying pathobiological mechanisms as well as

longitudinal changes and clinical impact should be a priority of
NMOSD research.

With regards to NMOSD-specific pathology, continuous and
sometimes deteriorating neuropsychological symptoms might
point to covert disease activity in NMOSD independent of
clinical attacks. In light of the ongoing discussion on attack-
independent structural changes in NMOSD, we should therefore
keep in mind that CI might represent a clinical correlate of
underlying subtle microstructural CNS changes.
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