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Epidemiological data suggest an increased risk of developing Alzheimer’s disease

(AD) in individuals with type 2 diabetes (T2D). AD is anatomically associated with an

early progressive accumulation of Aβ leading to a gradual Tau hyperphosphorylation,

which constitute the main characteristics of damaged brain in AD. Apart from these

processes, mounting evidence suggests that specific features of diabetes, namely

impaired glucose metabolism and insulin signaling in the brain, play a key role in AD.

Moreover, several studies report a potential role of Aβ and Tau in peripheral tissues

such as pancreatic β cells. Thus, it appears that several biological pathways associated

with diabetes overlap with AD. The link between peripheral insulin resistance and

brain insulin resistance with concomitant cognitive impairment may also potentially be

mediated by a liver/pancreatic/brain axis, through the excessive trafficking of neurotoxic

molecules across the blood-brain barrier. Insulin resistance incites inflammation and

pro-inflammatory cytokine activation modulates the homocysteine cycle in T2D patients.

Elevated plasma homocysteine level is a risk factor for AD pathology and is also closely

associated with metabolic syndrome. We previously demonstrated a strong association

between homocysteine metabolism and insulin via cystathionine beta synthase (CBS)

activity, the enzyme implicated in the first step of the trans-sulfuration pathway, in

Goto-Kakizaki (GK) rats, a spontaneous model of T2D, with close similarities with human

T2D. CBS activity is also correlated with DYRK1A, a serine/threonine kinase regulating

brain-derived neurotrophic factor (BDNF) levels, and Tau phosphorylation, which are

implicated in a wide range of disease such as T2D and AD. We hypothesized that

DYRK1A, BDNF, and Tau, could be among molecular factors linking T2D to AD. In this

focused review, we briefly examine the main mechanisms linking AD to T2D and provide

the first evidence that certain circulating AD biomarkers are found in diabetic GK rats.

We propose that the spontaneous model of T2D in GK rat could be a suitable model to

investigate molecular mechanisms linking T2D to AD.
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INTRODUCTION

Type 2 diabetes (T2D) and Alzheimer disease (AD) are both
age-related, degenerative diseases, with increasing prevalence.
Epidemiological data show strong association between AD and
T2D (1). Although AD patients are not routinely evaluated
for T2D or hyperinsulinemia (2), it is estimated that T2D
nearly doubles the risk of dementia (3), cognitive dysfunction
and AD (4). Despite the large body of epidemiological
evidence linking AD to T2D, the precise molecular mechanisms
underlying this association are yet unknown. Clinically, AD
is a progressive neurodegenerative disease that begins with a
subtle decline in the ability to encode new memories, and
follows by more profound cognitive and behavioral/personality
deterioration (5, 6). AD is anatomically associated with an early
progressive accumulation of β-amyloid peptides (Aβ), leading
to a gradual Tau hyperphosphorylation, which constitute the
main characteristics of damaged brain in AD (7, 8). Apart
from these processes, mounting evidence suggests that specific
features of diabetes, namely impaired glucose metabolism and
insulin signaling, play a key role in the brain during AD. This
concept is supported by human postmortem studies showing that
brain insulin resistance is consistently present in AD brains and
worsens with disease progression (1, 9). The discovery of brain-
specific insulin signaling deficiencies in the early stages of AD
pathogenesis has led to the designation of AD as “type 3 diabetes”
(10). Thus, AD lies on an intricate crosstalk between age-related
metabolic, vascular, and hormonal changes that goes beyond its
traditional central nervous system boundaries (6, 11).

THE CONNECTION BETWEEN T2D AND AD

There are several hypotheses in support of mechanistic links
between AD and T2D. Numerous reviews have detailed the
main and consolidated mechanisms linking these two conditions
[review in (12–16)]. Some of the most documented mechanisms
include defective insulin signaling and inflammation.

Importantly, T2D and AD might have a bi-directional
relationship, showing both causative and consequential
implications in their mutual development (Figure 1). Indeed,
studies have shown that AD patients have an increased risk
of developing T2D (17, 18). Studies in animal models of AD
revealed increased susceptibility to develop metabolic disorders
(19, 20). Several biological pathways associated with diabetes
overlap with AD (21, 22). Similar to AD, pathological changes
in insulin production and action occur years before patients
receive a diagnosis of T2D (5, 6, 23). T2D is characterized by
the association of peripheral insulin resistance and pancreatic β

cell failure (24). The main organs involved in T2D development
include the endocrine pancreas, liver, skeletal muscle, and
adipose tissue, but also brain and small intestine. Emerging
data suggest that insulin resistance (diabetic milieu) can either
contribute to or serve as co-factor in its pathogenesis (1, 10). In
the brain, insulin regulates peripheral Aβ and tau metabolism
which influences the Aβ release in the brain by regulating
amyloid precursor protein (APP) metabolism to modulate the
balance between Aβ anabolism and catabolism (10). Lack of

insulin or its action may link T2D to AD by modification of Aβ

production and degradation.
Beyond its role in glucose metabolism in the body, insulin

plays an important neurotrophic role in the nervous system
[review in (12, 13)]. Numerous studies have demonstrated the
implication of insulin and its signaling in neuronal survival and
synaptic function and plasticity (25, 26). In vitro, insulin has been
shown to promote neurite outgrowth in a population of dorsal
root ganglions neurons (27).

Areas of the central nervous system such as the hippocampus,
which are important for memory, have high expression of
insulin receptor (28, 29). Therefore, impaired insulin levels
or signaling in the brain can lead to neuronal and synaptic
loss, and thus contribute to the development of AD and other
neurodegenerative diseases.

Insulin can also have indirect effects, by inducing the
expression of other neurotrophic factors. It has been shown that
insulin treatment increases the expression of the brain-derived
neurotrophic factor (BDNF) and tropomyosin receptor kinase B
(TrkB) receptors in the hippocampus of young rats (30).

Some of the effects of insulin might also be mediated through
its binding to insulin-like growth factor (IGF) receptors. IGF1 is
a growth factor exerting trophic effects on neuronal regeneration.
It stimulates protein synthesis in neurons, glia, oligodendrocytes,
and Schwann cells, and favor neuronal survival while inhibiting
apoptosis (31). Finally, insulin can promote neuronal survival by
protecting the brain against neuroinflammation (32).

Inflammation plays a critical role in the pathogenesis of
AD and T2D. AD pathology could be influenced by tissues
involved in T2D (Liver, adipose tissue, pancreas), through
the excessive trafficking of neurotoxic molecules such as pro-
inflammatory mediators, generated by the diabetic condition,
across the blood-brain barrier. Thus, periphery-derived pro-
inflammatory molecules could aggravate AD pathogenesis in the
central nervous system (Figure 1) (15, 16, 33).

However, despite intense research efforts, our knowledge
of the cellular and molecular pathways linking AD and
metabolic disorders remains incomplete. The understanding of
the common molecular mechanisms associated with both AD
and diabetes, are crucial because it could ultimately lead to
the identification of common therapeutic targets for these two
interconnected conditions.

SHARED MOLECULAR PATHWAYS
LINKING T2D TO AD

Abnormalities in insulin/IGF signaling pathways have been
shown in brains with AD (34, 35). These abnormalities were
associated with reduced levels of insulin receptor substrate
(IRS) mRNA, tau mRNA, IRS-associated phosphotidylinositol
3-kinase, and phospho-Akt. They also increased glycogen
synthase kinase-3β (GSK3β) activity, an enzyme involved in Tau
phosphorylation, and APP mRNA expression (36). Hence, the
disruption of insulin functions in diabetic condition interrupts
insulin signaling involved in the clearance of Aβ plaques and
in neurofibrillary tangles (NFTs) pathology. This participates
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FIGURE 1 | The vicious circle between type 2 diabetes and Alzheimer’s disease. Type 2 diabetes is associated with relative insulin deficiency and insulin resistance.

Peripheral tissues generate proinflammatory and oxidative stress mediators which can reach the central nervous system. Impaired insulin action and the excess of

neurotoxic agents may lead to neuronal loss and impaired synaptic plasticity, thus participating to the cognitive and memory loss characteristics of AD. In turn,

deterioration of brain areas important for glucose and energy metabolism such as the hypothalamus and hippocampus may contribute to peripheral metabolic

dysfunction, thus aggravating the diabetic condition.

to the accelerated formation of neurotoxic Aβ and NFTs via
various mechanisms including GSK3β and the dual-specificity
tyrosine-(Y)-phosphorylation regulated kinase DYRK1A (37).
Thus, insulin resistance and T2D can interact with key pathways
involved in AD pathology.

Hyperphosphorylated Tau protein is the main constituent
of NFTs, which alongside amyloid β plaques, have long
been considered as key histopathological hallmarks of AD.
Interestingly, amyloid deposition (amylin) and abnormal Tau
processing may provide yet another link between diabetes and
AD. Indeed, studies report a potential role of Aβ and Tau in
peripheral tissues. In humans, pancreatic amyloid deposition,
similar to its damaging effect in brain during AD, is associated
with β cell loss and global dysmetabolism (38). High levels of
phosphorylated Tau were found in pancreas from T2D patients
(39). GSK3β is involved in the formation of both Aβ deposits and
NFTs. GSK3β induces Tau hyperphoshorylation to form NFTs
through PI3K/Akt/GSK3β signaling pathway (40). Importantly,
GSK3β is also involved in many aspects of T2D pathogenesis.
As a negative effector of the insulin signaling pathway, GSK3β is
involved in insulin resistance (41). GSK3β expression and activity
were shown to be increased in muscle of diabetic patients and
was implicated in muscle insulin resistance (42). Furthermore,
we and others have reported that beyond its implication in
insulin resistance in target tissues, GSK3β acts as a negative
regulator of β-cell growth and function, thus further implicating

this enzyme in the relative insulin deficiency associated with
T2D (43–46).

Peripheral insulin resistance, a hallmark of T2D, can cause
brain insulin resistance via a liver/pancreas/brain axis. Elevated
plasma homocysteine (Hcy) level is a risk factor for AD
pathology and is also closely associated with metabolic syndrome
(47–49). Elevated Hcy levels have been linked with gray and
white matter volume reduction among individuals with mild
cognitive impairment and AD (50). Plasma Hcy is highly
dependent on intracellular Hcy metabolism in the liver and
kidney, but it may also reflect one-carbon metabolism in a
number of other cell types, notably in pancreas and brain.
Hepatic insulin resistance during T2D leads to inflammation
which could in turn results in excessive Hcy production.
Cytotoxic Hcy generated in liver, traffics through the circulation
following injury or cell death, and can cross the blood-
brain barrier and exert neurotoxic effects by impairing central
insulin signaling and activating pro-inflammatory cytokines.
These abnormalities establish or help propagate a cascade
of neurodegeneration associated with oxidative stress, which
exacerbate brain insulin resistance, cell death, and neuro-
inflammation (51) (Figure 1).

Another potentially important player in AD pathogenesis
is DYRK1A (52). DYRK1A interacts with APP and APP
processing by direct phosphorylation of APP at Thr-668
and indirect phosphorylation of the presenilin 1 (PS1) at
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Thr-354, promoting the pathological Aβ pathway (53, 54).
Increased expression of DYRK1A seems to promote brain
β-amyloidosis by enhancing the phosphorylation and the
amyloidogenic cleavage of APP, increasing the amyloidogenic
levels of Aβ40 and Aβ42 (54). It also promotes neurofibrillary
degeneration directly through hyperphosphorylation of tau and
indirectly through phosphorylation of alternative splicing factor,
therefore participating to neurodegeneration and neuronal
loss appearing in AD (54–56). Moreover, we have shown
that AD patients exhibited a positive correlation between
plasma DYRK1A levels and CSF tau and phosphorylated-tau
proteins (57).

In recent years, increasing interest has been drawn to the
role of DYRK1A in β cell biology, making it another possible
molecular link between AD and T2D. Several studies show that
inhibition of DYRK1A alone (58, 59) or associated with the
inhibition of GSK3β (60), or with SMAD and Trithorax pathways
(61) induces human β cell proliferation.

However, other data in mice model of DYRK1A
overexpression showed expansion of β cell mass through
increased proliferation and cell size (62), suggesting a positive
effect of DYRK1A on β cell growth in this model, which contrasts
with the data on human β cells cited above.

DYRK1A has been demonstrated to be involved in the
cycle of Hcy (63, 64), and its overexpression was linked with
BDNF reduction (65). BDNF, the most widely distributed
neurotrophin in the central nervous system, has a pivotal
role in maturation, synaptic connection, neuronal repair,
and plasticity of the central nervous system (66). Loss of
BDNF in neurodegenerative disorders is a key mediator
of synaptic dysfunction, neurodegeneration and subsequent
cognitive decline (67). AD subjects show reduced BDNF levels in
the serum and brain as compared with healthy elderly controls
(68–70). Interestingly, there was a notable increase in plasma
Hcy level and significant decrease in serum BDNF level in
amnesticmild cognitive impairment patients that converts to AD,
especially in those with the APOE ε4 allele (71).

Higher expression of BDNF slows down cognitive decline
in the elderly, especially in the setting of advancing AD
neuropathology, indicating that the brain BDNF level could
be used as a novel marker for evaluating AD progression
(68, 72). Combined assessment of DYRK1A and the related
markers BDNF and Hcy has been validated by our team,
by logistic regression analysis as diagnostic marker for AD
in two unrelated AD patient cohorts with age-matched
controls (73).

FIGURE 2 | Age-dependent changes in plasma Dyrk1A levels. Blood was collected at the tail vein of Wistar and GK rats of 3 and 6 months of age, at 9:00 a.m.

Analyses were performed in plasma. (A) Schematic representation of Dyrk1A with distinct epitopes recognized by different antibodies. Plasma levels of full-length

Dyrk1A form (B) and full-length and truncated forms of Dyrk1A (C). The DYRK1A levels were assessed by a solid phase immobilized epitope- immunoassay set up for

antibody 7D10 (Abnova; immunogen: 674 aa ∼763 aa) and antibody D1694 (Sigma; immunogen: 32 aa ∼51 aa) (73). After removal of unbound conjugates, bound

enzyme activity was assessed by use of a chromogenic substrate for measurement at 450 nm by a microplate reader (Flex Station 3, Molecular Device, San Diego,

CA, USA). All the assays were performed in duplicate. For multiple pairwise comparisons between genotypes and ages, statistical analysis was done with two-way

ANOVA followed by Fisher’s post-hoc test using Statview software. The results are expressed as means ± SEM (standard error of the mean). n = number of rats. Data

were considered significant when p < 0.05.
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Interestingly, several reports also documented an
association between plasma BDNF and systemic or peripheral
inflammatory conditions, notably T2D (74). Plasma BDNF
levels were found to be decreased in T2D patients (75–78).
Interestingly, the relationship between T2D, BDNF and
dementia was reported in one study which demonstrated
lower plasma BDNF levels in patient group with both
T2D and dementia than in non-diabetic patients with
dementia (79).

Treatments to alleviate brain insulin resistance, such as
intranasal insulin administration, have been evaluated in mice
models and AD patients (80–84). Insulinotropic hormones
such as glucagon-like peptide-1 (GLP-1), have also been
proposed as a treatment for neurodegenerative disorders. Indeed,
exenatide, a glucagon-like peptide-1 (GLP-1) agonist used
for the treatment of T2D led to improvements in motor
assessments in patients with Parkinson’s disease (85). The
potential relevance of this drug for other neurodegenerative
disorders (e.g., AD) has being assessed in pre-clinical studies.
Exenatide was tested in different mice models of AD, in
3xTg-AD mice on a high-fat diet, in APP/PS1 mice, and
in adult wild-type mice as a model of mid-life brain aging.
Results demonstrate a beneficial effect of drug treatment
not only on cognition but also on BDNF neurotrophic
axis (86–88).

FIGURE 3 | Age-dependent changes in plasma BDNF. Blood was collected at

the tail vein of Wistar and GK rats of 3 and 6 months of age, at 9:00 a.m.

Analyses were performed in plasma. BDNF was assessed using sandwich

ELISA (ELISA E-Max, Promega, Madison, WI, USA). After removal of unbound

conjugates, bound enzyme activity was assessed by use of a chromogenic

substrate for measurement at 450 nm by a microplate reader (Flex Station 3,

Molecular Device, San Diego, CA, USA). All the assays were performed in

duplicate. For multiple pairwise comparisons between genotypes and ages,

statistical analysis was done with two-way ANOVA followed by Fisher’s

post-hoc test using Statview software. The results are expressed as means ±

SEM (standard error of the mean). n = number of rats. Data were considered

significant when p < 0.05.

ANIMAL MODELS OF COMBINED AD
AND T2D

Several animal models, mostly in rodents, have been designed
to study the interconnection between AD and T2D. These
models include high fat died-induced insulin resistance,
streptozotocin-induced diabetes or monosodium glutamate
(MSG)-treated rodents (89, 90). A variety of cognitive/behavioral
impairments and/or histopathological defects have been reported
in these studies, thus providing the experimental basis for the
epidemiological data that link T2D to AD. However, most of
available models have back draws since they do not replicate
the progressive characteristics of T2D with a silent phase
followed by the development of insulin resistance and relative
insulin deficiency.

The Goto–Kakizaki (GK) rats is a spontaneous model of T2D
with close similarities with human T2D (91). The chronology
of the infra-clinical and clinical phases in the GK rat, ranging
from primary defects in the endocrine pancreas, as early as
the fetal stage, followed by a neonatal phase of pre-diabetes,
and finally the occurrence of overt hyperglycemia in adult
individuals has been extensively described by our team (91, 92).
The relevance of the GK rat as a T2D model lies in the fact
that it is a spontaneous model without genetic manipulation,
in which diabetes develops through a gradual process following
a well-characterized phase of pre-diabetes (93), similar to the
human T2D pathology. We have previously demonstrated in
GK rats, a strong association between Hcy metabolism and
insulin via cystathionine beta synthase (CBS) activity, the enzyme
implicated in the first step of the trans-sulfuration pathway
(94). In addition to several metabolic defects, GK rats also
display impairment in their learning abilities and memory
capabilities. Interestingly, cognitive dysfunction in GK rats was
correlated with their insulin resistance index (95). Another
study have reported significant decrease in phosphorylation of
Akt, as well as reduced expression of CREB, an important
regulator in the expression of functional proteins associated with
learning and memory in this model of T2D (96). Studies using
transgenic models of AD have generated mounting evidence
supporting alteration in neurogenesis (97). Previous studies
by our group and other’s showed that chronic hyperglycemia
impairs hippocampus neurogenesis in adult diabetic GK rats
(98, 99), showing similarity with defects reported transgenic mice
models of AD.

TABLE 1 | Correlations between plasma levels of Dyrk1A, BDNF, and Tau

determined by Spearman’s rank correlation.

Full-length Dyrk1A Full-length and

truncated forms

of Dyrk1A

BDNF

BDNF r = −0.58

p < 0.017

Tau r = 0.758 r = −0.646

p < 0.0007 p < 0.005

Tau46 r = 0.571 r = 0.646 r = −0.646

p < 0.01 p < 0.002 p < 0.005
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FIGURE 4 | Age-dependent changes in plasma Tau. Blood was collected at the tail vein of Wistar and GK rats of 3 and 6 months of age, at 9:00 a.m. Analyses were

performed in plasma. (A) Schematic representation of Tau with distinct epitopes recognized by different antibodies (Tau5 and Tau46) used for the truncation detection

at D421. Plasma relative intensities of (B) Tau5 (1/1000, ThermoFisher/ AHB0042; immunogen 210 aa ∼230 aa) and (C) Tau46 (1/1000, ThermoFisher/13-6400;

immunogen 404 aa ∼441 aa). (D) The relative intensities of Tau46 were normalized to those of Tau5. Data were normalized to the mean of wild-type rats at 3 months.

For multiple pairwise comparisons between genotypes and ages, statistical analysis was done with two-way ANOVA followed by Fisher’s post-hoc test using Statview

software. The results are expressed as means ± SEM (standard error of the mean). n = number of rats. Data were considered significant when p < 0.05.

Based on the literature described above, the spontaneous
GK model of T2D appears as a valuable tool to investigate the
relationship between T2D and AD.

STATEMENT OF HYPOTHESIS: PLASMA
LEVELS OF DYRK1A, BDNF, AND TAU ARE
MODIFIED IN GOTO-KAKIZAKI RATS

Taking advantage of the characteristics of this model, we sought
to analyze the circulating levels of some of the biomarkers of
AD, which could potentially be related to T2D, namely DYRK1A,
BDNF and Tau, in 3 and 6 months old diabetic GK rats.

Jin et al. have reported that DYRK1A was truncated in the
brains of AD patients resulting in formation of truncated forms
due to increased calpain activity (100), associated with a decrease
of the full-length form (Figure 2A). DYRK1A contains a PEST

sequence, a signal peptide for protein degradation via calpain
(101, 102). Recently, Souchet et al. found that this DYRK1A
cleavage is a consequence of the amyloid pathology (103).
Resulting truncated forms accumulate in astrocytes and exhibit
increased affinity toward a regulator of inflammatory process
(103). Here, we analyzed these different forms by the use of two
different antibodies, one recognizing the full-length form, and the
other the full-length and truncated forms of Dyrk1A (Figure 2A)
in plasma of control Wistar (WT) and GK rats. No difference
was found betweenWT and GK rats at 3 months (Figures 2B,C),
while an increase of full-length and the truncated forms was
found in GK rats at 6 months (Figure 2C). The full-length form
was also increased at 6 months inWT rats compared to 3 months
old WT rats (Figure 2B), suggesting an age-related effect.

BDNF levels were decreased in plasma of GK rats at 3
and 6 months, compared to age-matched WT rats (Figure 3).
This was in keeping with studies showing decreased plasma
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levels of BDNF in diabetic patients (75–78). There is also
solid evidence demonstrating a reduction in BDNF mRNA and
protein levels in AD cortex and hippocampus (104, 105), and
decreased BDNF levels contribute to cognitive dysfunction in
AD (66). A significant decrease in BDNF serum concentration
has been found in AD patients compared with healthy controls
(106). Correlations were determined by using Spearman’s rank
correlation, as data were not normally distributed according to
Shapiro-Wilk test. A negative correlation was found between
plasma BDNF and full-length and truncated forms of Dyrk1A
levels (Table 1). As Dyrk1A is involved in controlling numerous
pathways, this result emphasizes the role of this kinase on
BDNF signaling pathways, as previously suggested by our
team (65, 73).

Tau protein truncated at amino acid D421 has been detected
in AD (Figure 4A). This C-terminal truncation introduces a
conformational change contributing to aggregation (107, 108).
We therefore measured the levels of centrally-situated Tau
epitope (Figure 4B) and levels of Tau 46 (Figure 4C), to evaluate
the index of truncation. The index of C-terminal truncation was
provided by the ratio of Tau46/Tau5 (Figure 4D). Tau levels
(Tau5 immunoreactivity) increased in plasma of GK rats at 3
and 6 months, compared to age-matched WT rats. There was
no difference of Tau levels between WT rats at 3 and 6 months
(Figure 4A). Tau levels are correlated positively with full-length
and truncated forms of Dyrk1A levels (Table 1) and negatively
with BDNF levels (Table 1). Interestingly, we previously found a
positive correlation between plasma Dyrk1A levels and CSF Tau
proteins in AD patients (57).

An increased Tau46 immunoreactivity and Tau46/Tau 5
was found in plasma of GK rats as early as 3 months and
persisted at 6 months of age compared to age-matched WT
rats (Figures 4C,D). Interestingly, Tau46 immunoreactivity and
Tau46/Tau5 ratio increased in an age-dependent manner within
the WT group (Figures 4C,D). The Tau46 immunoreactivity
also correlated positively with full-length form of Dyrk1A levels
(Table 1), full-length and truncated forms of Dyrk1A levels
(Table 1), and negatively with BDNF levels (Table 1). These
results indicate that Tau undergoes increased C-terminal cleavage
as early as 3 months in the GK rats, while this effect appears in
non-diabetic Wistar rats only at 6 months.

CONCLUSION

In this paper we used the type 2 diabetic GK rat as a tool
to assess circulating biomarkers for AD. We show that plasma

BDNF and the index of C-terminal truncation of Tau could
be considered as early biomarkers, while plasma Dyrk1A could
represent a late biomarker. As a spontaneous model of T2D with
gradual progression, the GK rat is acknowledged as a valuable
tool to study the pathogenesis of diabetes. Here we propose
that the GK rat could be a new model to investigate the link
between T2D and AD. It could therefore be a useful tool for
pre-clinical studies to assess drug efficacy in the onset of the
disease. Currently, we are addressing the question of possible
abnormalities in the expression/activity of the above markers
in the brain and the pancreas of the GK rat, to validate the
relevance of this model as a model of T2D-associated AD. These
results need to be compared with those described in validated
rodent models of AD with different grade pathology. Further
longitudinal studies of metabolic and cognitive parameters with
pharmacological intervention are warranted to comprehend the
causal relationship underlining the progression of AD and T2D.
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