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In epilepsy patients, language lateralisation is an important part of the presurgical

diagnostic process. Using task-based fMRI, language lateralisation can be determined

by visual inspection of activity patterns or by quantifying the difference in left- and

right-hemisphere activity using variations of a basic formula [(L–R)/(L+R)]. However, the

values of this laterality index (LI) depend on the choice of activity thresholds and regions

of interest. The diagnostic utility of the LI also depends on how its continuous values are

translated into categorical decisions about a patient’s language lateralisation. Here, we

analysed fMRI data from 712 epilepsy patients who performed a verbal fluency task. Each

fMRI data set was evaluated by a trained human rater as depicting left-sided, right-sided,

or bilateral lateralisation or as being inconclusive. We used data-driven methods to

define the activity thresholds and regions of interest used for LI computation and to

define a classification scheme that allowed us to translate the LI values into categorical

decisions. By deconstructing the LI into measures of laterality (L–R) and strength (L+R),

we also modelled the relationship between activation strength and conclusiveness of

a data set. In a held-out data set, predictions reached 91% correct when using only

conclusive data and 82% when inconclusive data were included. Although only trained

on human evaluations of fMRIs, the approach generalised to the prediction of language

Wada test results, allowing for significant above-chance accuracies. Compared against

different existing methods of LI-computation, our approach improved the identification

and exclusion of inconclusive cases and ensured that decisions for the remaining data

could be made with consistently high accuracies. We discuss how this approach can

support clinicians in assessing fMRI data on a single-case level, deciding whether

lateralisation can be determined with sufficient certainty or whether additional information

is needed.
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INTRODUCTION

In patients with refractory focal epilepsies, brain surgery is
recommended as an effective treatment option (1). To plan such
an intervention, presurgical diagnostics aim to identify both the
epileptogenic cortex and eloquent parts of the cortex that need
to be spared in order to avoid cognitive deficits (2, 3). Language
is of vital importance for everyday functioning and is usually
strongly lateralised to one hemisphere of the brain (4). In such
a case, unilateral resection of eloquent cortex cannot be well-
compensated by the contralateral homologue, making language
lateralisation one key objective of presurgical diagnostics (5, 6).
While most people in the general population show left-lateralised
language functions (7), the ratio of atypically lateralised cases is
higher in epilepsy patients. It is estimated that around 20% of the
patients show bilateral or right-sided lateralisation of language
functions (7). For brain surgery to be safe and beneficial, the
certainty regarding the patient’s language lateralisation needs to
be maximised.

To determine language lateralisation, both invasive and non-

invasive methods can be used (5, 8, 9). Among the non-invasive

methods, functionalMRI is recommended as a reliable diagnostic
tool for the lateralisation of language functions (10, 11). A

frequently used paradigm to estimate language lateralisation with
fMRI is verbal fluency, a task in which the patient silently
generates as many words as possible belonging to a certain
category (12). The words to be generated need to belong to
either a semantic category (for example, fruits, or animals) or
a phonological category (for example, words beginning with S).
A verbal fluency task mainly measures language production,
activating regions in the inferior frontal gyrus (IFG), including
Broca’s area (13, 14). Depending on the broadness of the
comparison condition, other areas such as the supplementary
motor area (SMA), visual word form area (VWFA) in the
fusiform gyrus, andWernicke’s area will also show activity, giving
rise to a distributed but lateralised language network (15, 16).

One way to determine the language lateralisation of a patient
based on fMRI results is to compute a single laterality index
(LI) from the emerging voxel-wise activity patterns. This index
indicates the difference in language-related activity in the left vs.
the right hemisphere (17, 18). Such an index is usually computed
by counting the voxels in each hemisphere’s language-related
areas falling above a predefined activity threshold. This approach
requires the evaluator to decide which activity threshold and
regions of interest (ROIs) to evaluate (19, 20). Once the number
of above-threshold voxels in a certain brain area has been
computed, the difference between the left and right side is
expressed in a single value. The most common formula used
is (L–R)/(L+R), which gives the difference between the above-
threshold voxels in a region of interest in the left and right
hemispheres divided by the sum of the above-threshold voxels
in both hemispheres (21).

Finally, the resulting score must be translated into a
categorical decision by using a cut-off so that, for example, cases
with LI values above +0.2 will be categorised as left-lateralised,
cases below −0.2 as right-lateralised, and cases in between as
bilateral (22). Defining these cutoffs is difficult, partly because

the sample sizes of validation studies tend to be small (23).
For example, if a sample includes only one atypical case with
an LI value close to −1, a wide range of cutoffs can produce
perfect accuracies.

Nevertheless, many approaches based on variants of laterality
indices have demonstrated high concordance with invasive
measures (24, 25) or language-related clinical variables such as
handedness or age at onset (26). Still, the common LI has been
criticised because it is threshold-dependent and ignores the high
inter-individual variability of fMRI activity strength (27, 28).

For instance, in a patient with very poor activity, nine
above-threshold voxels in the right hemisphere and one above-
threshold voxel in the left hemisphere might remain after
applying a moderate threshold. The resulting LI would be
(1–9)/(1+9) = −0.8, indicating atypical, right-sided language
dominance. In contrast, the underlying fMRI activity pattern
would most likely be considered inconclusive by a human expert,
as the overall signal would be insufficient to draw conclusions
about the functional organisation of language. Hence, a fixed
threshold LI will assign the most extreme scores to the patients
with the fewest above-threshold voxels (i.e., with the poorest
data quality). To address this problem, more sophisticated
methods use variations of adaptive thresholds (29). There, weaker
activations are thresholded at lower levels, ensuring that the LI
computation is always based on an adequate amount of data
in the individual case (30). However, if an adaptive threshold
allows more random noise to pass the lower threshold, the
difference between left and right hemisphere will diminish,
and poor-quality data will be reflected in LI values closer
to zero, indicating bilaterality (30). Because of these issues,
methods for LI computation critically rely on data pre-selection
(29) usually based on a subjective criterion. In summary, the
reliability of analysing a language-fMRI arguably depends upon
(i) deciding how to compute the LI, (ii) from which regions of
the brain to extract data, (iii) how to translate the continuous
LI values into categories of lateralisation, and (iv) how to
decide which data sets do not allow for making a decision with
sufficient confidence.

In the present study, we aimed to evaluate how the fMRI
activity patterns from a verbal fluency task can be best used for
assessing the type of language lateralisation of a patient with
epilepsy. We used the common LI [(L–R)/(L+R)] applied to
different activity thresholds and ROIs. We trained a classifier to
determine the cutoffs that best allow for grouping the continuous
LI values into categories of lateralisation. These categories were
based on a trained specialist’s free inspection of the fMRI data
(9). Each data set was categorised as indicating left, bilateral,
or right language lateralisation or as being inconclusive (i.e.,
refraining frommaking a decision). To improve the identification
of inconclusive data, we deconstructed the LI formula into
a measure of lateralisation (L–R, its numerator) and activity
strength (L+R, its denominator). This was aimed at addressing
the ambiguity of the single-value LI discussed above, especially in
the case of low-quality data.

To compare the performance of our approach against
a benchmark, we used already established methods of LI
computation (29, 31) as a frame of reference. Finally, we validated
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our approach using language Wada test results as the gold
standard for language lateralisation.

MATERIALS AND METHODS

Participants
The study included fMRI data from 712 patients with epilepsy
who were undergoing a presurgical evaluation. All patients
performed an fMRI verbal-fluency task at the Epilepsy Centre
Bethel between September 2011 and March 2018. The start of
the inclusion period was determined by the installation of a
3T scanner at the study site. All data were acquired as part of
the centre’s presurgical evaluation programme, and data were
analysed retrospectively. The study was approved by the ethics
board of Bielefeld University (2017–184). The full data set for
the present study comprised 783 fMRI sessions, as some patients
were scanned on multiple occasions. Of the included patients,
46% were female, the median age was 28 years (range: 4–74), and
81% were right-handed.

MRI Data Acquisition
Data were collected on a 3T Siemens Verio MR scanner. High-
resolution T1-weighted structural data were collected for each
patient using a 32-channel head coil with 192 sagittal slices, slice
thickness of 0.8mm, and 0.75 × 0.75mm in-plane resolution.
For fMRI data, a 12-channel head coil was used, and data
were collected using the following parameters: 21 axial slices
per volume, 3×3mm in-plane resolution for each slice, and a
thickness of 5mm. A repetition time (TR) of 3 s was used with
an effective acquisition time of 1.8 s per volume; there was a 1.2-s
pause between TRs to allow for the audible presentation of verbal
instructions. Over a period of 10min, 200 volumes (excluding
two dummy scans) were collected.

fMRI Task
The verbal fluency task consisted of covert word production of
either semantic or phonemic categories such as “animals” or
words beginning with the letter “S.” A block of verbal fluency
lasted 30 s, and the blocks were alternated with a 30-s resting
condition when the patients were asked to stop generating words
and relax. There were 10 blocks for each condition, each triggered
by a verbal instruction given via the MRI intercom, resulting
in a task length of 10min. If necessary, patients were trained
to perform the task beforehand by a neuropsychologist, with
some patients receiving specifically tailored lists of categories in
accordance to their abilities and interests.

Visual Evaluation
To provide a reference for the evaluation of the LIs, the
assessment by a trained specialist (FGW) for each case was
derived from clinical records. This assessment was based on
an unrestrained visual inspection of the whole-brain activity
patterns, which included varying the threshold at which the
activity distribution was deemed meaningful. Visual inspection
included an assessment of data quality; stimulus-associated
movements (often present along tissue borders) or the absence of
a default mode network activation pattern during rest were used

to identify low-quality data. Also, the specificity of the activity
patterns was considered so that more weight was given to a
pattern that encompassed the IFG, SMA, and VWFA as opposed
to a pattern of activity that was restricted to the precentral
gyrus, which might be due merely to the patient co-moving
their lips. Each fMRI was coded as either left-hemispheric, right-
hemispheric, bilateral, or inconclusive language lateralisation.
Accordingly, the sample consisted of 527 left-lateralised (67%),
75 bilateral (10%), 47 right-lateralised (6%), and 134 inconclusive
(17%) cases. Excluding the inconclusive cases, the distribution of
lateralisation was 81% left, 12% bilateral, and 7% right.

Data Pre-processing
For statistical analyses, data were preprocessed using SPM12 with
the following steps: First, the fMRI time series was movement
corrected using the realignment function. Then, the images
were directly normalised to the echo-planar imaging (EPI)
template, up-sampled to 2mm isotropic voxels, and smoothed
with a Gaussian kernel of 6mm full-width at half-maximum
(FWHM) to improve the signal-to-noise ratio. This approach was
chosen over deriving the normalisation parameters from the co-
registered structural scans, as the direct transformation of EPI
images proved more robust for many patients, especially when
lesions or signal dropouts were present (32).

Generation of Statistical Maps
Voxel-wise whole-brain analyses were performed for each patient
using SPM12. The block-wise activity was modelled with a
canonical hemodynamic response function (HRF). Movement
parameters were included as regressors of no interest. A map
of t-values was then computed for the comparison of “verbal
fluency> rest,” and these maps were used in the subsequent steps
to compute laterality indices.

Study Design
To arrive at unbiased estimates of accuracy, we split the sample
into a training and a testing set, with two thirds of the data
used for training and one third held out for testing. No patient
in the training set contributed data to the test set, ensuring
their independence. As the distribution of classes was uneven
(i.e., there were many more left-lateralised patients than atypical
patients), we used stratified splitting, so that the base rate for
each class was preserved in both splits. Different parameters
of t-value thresholds and ROI sizes were used on the training
data. Only after training, the best parameter combinations were
used to predict the held-out testing data set of 262 fMRI
sessions. We used a linear support vector classifier (SVC),
which allowed for making probabilistic predictions. This means
that the probability of a data set belonging to each class
of lateralisation can be expressed as a value between 0 and
1, which allows the degree of certainty to be assessed for
each decision (33). The splitting and classification of data was
implemented using the free software library scikit-learn 0.18
(34) in Python 2.7. Code underlying all analyses is available
at github.com/mwegrzyn/laterality-index-deconstruction.
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Group Analysis and Definition of Regions
of Interest
The training data were used to compute maps of average activity
for each class of language lateralisation as defined by the human
evaluator (left, bilateral, right, or inconclusive). Whole-brain
one-sample t-tests for each of the four groups were performed
using nilearn 0.3 (35) in Python 2.7. Furthermore, the group
results for the left- and right-lateralised cases, as defined by
the human evaluator, were used to create ROIs. To arrive
at a representative map of differences between the dominant
and non-dominant hemispheres, the data were transformed as
follows. First, the right-lateralised cases were flipped from left
to right so that the dominant hemisphere was on the left for
all patients. Then, for all of these images, another flipped image
was created and subtracted from the original, resulting in images
with a left-right difference value for each voxel. Subsequently,
the left-right difference images of all patients were used to
compute a whole-brain one-sample t-test, resulting in a map
where each voxel’s positive t-value on the left side indicated
stronger lateralisation to the left. This map of the left hemisphere
was then turned into binary masks at different levels of activity.
We generated 20 binary maps, starting with all voxels of the map
and subsequently dropping 5% of the lowest scoring voxels until
only the top 5% of the original map (i.e., the most significant
values) remained. To generate ROIs for the right hemisphere, the
map was flipped along the x-axis, providing a mirror-image of all
regions on their contralateral homologue of the brain.

Computation and Deconstruction of the LI
From each patient’s t-map, the values of all voxels inside the
left and right language ROIs were extracted. From the lowest
to the highest t-values present in the brain map, the percentage
of above-threshold voxels was determined—that is, starting at
the point when all voxels crossed the respective threshold up to
the point where no voxels crossed the threshold. Next, the LI,
defined as (L–R)/(L+R), was computed. Each LI can be broken

down into its numerator (L-R), which reaches its maximumwhen
the absolute difference in the above-threshold voxel is highest,
and the denominator (L+R), which decreases as the threshold
increases. To take full advantage of the information contained
within the LI, we explored a two-dimensional approach that uses
L-R (the numerator) as a measure of laterality and L+R (the
denominator) as a measure of activation strength (Figure 1).

LI-Toolbox As Benchmark
To compare our approach against a benchmark, we computed
laterality indices using the LI-Toolbox (29) as implemented in
SPM12. To be comprehensive, we used all of the following
methods for LI computation: (i) a fixed-threshold method at
the default value of t = 3 where the LI is based on the voxel
count; (ii) an adaptive method in which the threshold is set at
the mean intensity of the voxels; and (iii) a bootstrap method
with its overall LI. For all variations of the LI, we used the
recommended standard settings (29, 31). A frontal lobe mask
with midline exclusion served as the ROI. Corresponding to the
approach outlined in section Study Design, the different toolbox-
based LI values of all patients from the training set were used to
construct linear SVCs, which were then used to predict the labels
of the test data.

Validation With Wada Test Results
Wada Test Procedure
Wada tests were performed if a proposed resection site was close
to or within potential language areas. Testing was performed
by internal carotid artery injection of 200mg amobarbital
via a transfemoral catheter separately for each hemisphere.
For children, size adapted doses were administered (100–
150mg). Before the intracarotid amobarbital procedure (IAP),
cerebral angiography was performed. The IAP language test
protocol assessed seven language functions: (1) series repetition
(counting); (2) following verbal commands by pointing to
an image (four tasks); (3) following body commands (two
tasks); (4) visual confrontation naming (four tasks); (5)

FIGURE 1 | Example of laterality scores depending on the proportion of above-threshold voxels. L-R: the behaviour of the numerator of the laterality index (LI),

depending on the proportion of above-threshold voxels in the left and right hemisphere. L+R: the behaviour of the denominator of the LI. (L-R)/(L+R): the LI itself, i.e.,

the ratio of numerator and denominator. Three hypothetical cases are presented as dots: The grey case has a low voxel count in both hemispheres (L = 0.01,

R = 0.09), the green case has a moderate voxel count in both hemispheres (L = 0.46, R = 0.54) and the blue case has a high voxel count in the right hemisphere only

(L = 0.10, R = 0.90). While the grey and green case are identical in their left-right difference (L–R), the grey case differs from the others in its low overall activity (L+R).

This in turn makes its LI score identical to the blue case. Depending on the approach used, one could decide to label the activity of the grey case as being suggestive

of bilaterality (L–R is low) or of strong right-lateralisation (LI is high). The former approach would be taken by adaptive thresholding methods while the latter approach

would be employed by fixed-threshold methods. However, another possibility could be to use the information about the strength of overall activity (L+R is low) to

classify this case as inconclusive.
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repetition of sentences or proverbs (two tasks); (6) reading
sentences aloud (two tasks); and (7) spontaneous speech.

For each of the seven functions, a score of 2 points could
be reached.

FIGURE 2 | Distribution of Wada test scores. Results for the bilateral and unilateral Wada tests. Histograms indicate the number of cases with a Wada test score

falling into the respective bin. Lines at the bottom of the plots indicate individual values (overlapping values indicated by stronger hue). Red, green and blue colours

indicate the classification of the scores into left, bilateral and right, using the procedures described in Kurthen et al. (36) and Wellmer et al. (37). In the final sample, 39

patients were left-lateralised (63%), 10 were bilateral (16%), and 13 were right-lateralised (21%). This classification was also confirmed using an unsupervised

clustering method (K-means clustering, searching for a three-cluster solution), which grouped all data in the same way.

FIGURE 3 | t-value maps from the group level whole-brain analyses. Higher activity for the task is plotted in red and higher activity during rest is plotted in blue. As

groups are of different sizes, the threshold for each map has been adjusted for the respective sample size. The required alpha level for a medium effect (d = 0.5) and

80% power was computed using GPower 2.1. For the left-sided group (n = 351) the critical t is equal to 8.47. For the bilateral group (n = 50), t = 2.68. For the

right-lateralised group (n = 31), t = 1.93. For the inconclusive group (n = 89), t = 3.85. Bars on the right-hand side show colour-coding of t-values. Full unthresholded

maps are available online: https://neurovault.org/collections/3887.
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Categorisation of Wada Test Results
For bilateral Wada tests (n = 44), lateralisation indices were
calculated as LI = [(L–R)/(L+R)]∗(n/m) [n: score of best
hemisphere; m: highest possible score (36)]. For unilateral Wada
tests (n = 21), the hemispheric language capacity was calculated
as HLCh = h/m [h: score of tested hemisphere, m: highest
possible score (37)]. The distribution of the LIs and HLCs is
illustrated in Figure 2. The LI scores were categorised as follows:
LI > 0.5: left-sided dominant; LI<0.5 right-sided dominant;
−0.5 ≥ LI ≥ 0.5: bilateral. This follows the categorisation of
Kurthen and colleagues (36), treating cases showing “incomplete”
lateralisation as lateralised instead of bilateral. The HLCh scores
were categorised as follows: HLCh = 0: the tested hemisphere h
is dominant; HLCh ≥ 0.8: the tested hemisphere is not dominant;
0 < HLCh < 0.2: patients in this range (n = 3) were excluded
from further analyses because of the possibility of negative
bilaterality (37).

Prediction of Wada Test Results
The same classifiers that were used to predict the human
evaluations were used to predict the result of the Wada test
(left, bilateral, right) from the fMRI data. This means that all
Wada test results were only used for testing, but not to train
the classifier. Also, the fMRI data of all patients with Wada
test results were only part of the test set (see section Study
Design), and no data from patients with Wada test results
were used during training. The predictions of the LI-Toolbox,
computed as described in section LI-Toolbox as Benchmark,
were also validated with the Wada test results using the
same procedures.

RESULTS

Analyses at the Group Level
The whole-brain activity patterns for the training data are shown
in Figure 3. At the group level, a clear activation pattern emerged
including IFG, fusiform gyrus, and SMA. There was also activity
in the thalamus on the dominant side and the contralateral
hemisphere of the cerebellum. This pattern held true for both left-
and right-lateralised cases. The same set of regions was activated
for the bilateral cases, although without signs of hemispheric
differences, as would be expected. The inconclusive cases showed
only a small above-threshold cluster in the SMA and some
indication of frontal activity. In addition, all groups showedmore
activity in the precuneus and orbitofrontal areas during rest
and in the superior temporal and angular gyri. This indicates
engagement of the default mode network during periods of rest.
Of note, supra-threshold activity inWernicke’s area during verbal
fluency was lacking in all groups.

When computing a pattern of differences between each voxel
in the dominant vs. non-dominant hemisphere and when setting
a threshold to include all voxels with t-values greater than zero,
the result was an ROI that included all grey matter regions except
those associated with the default mode network. When only the
top 5% of voxels with highest t-values were included (i.e., the
95th percentile), only frontal areas and part of the fusiform gyrus
constituted the ROI (Figure 4).

Finding Optimal Parameters
For each combination of activity threshold and ROI size, the
training data set was used to compute the accuracy with which the
different lateralisation categories could be predicted. To this end,
the training data (n = 521) were split randomly into two halves
with one half used to train the SVC and the other half to compute
its accuracy. This nested cross-validation was performed for 100
random splits of data, and the average accuracy was computed
for each combination of parameters. This gave rise to a heatmap
of accuracies (Figure 5) across different thresholds of t-values
(x-axis) and ROI sizes (y-axis).

To evaluate whether the accuracies were larger than expected
by chance, a binomial test was carried out to test the accuracy
of each parameter combination against guessing (α = 0.001).
The guessing rate (defined as the base rate of the largest group)
for the three-class case was 81%, so that above-chance accuracies

FIGURE 4 | Generation of ROIs. The top brain map shows the results of the

one-sample t-test of all voxels in the dominant (left) vs. non-dominant (right)

hemisphere against zero (for all patients with left- and (mirrored) right-sided

lateralisation). The lower maps show example ROIs when including all voxels in

the dominant hemisphere larger than zero or when including only the top 5%

(95th percentile). The difference map is available online: https://neurovault.org/

images/113673.
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FIGURE 5 | Accuracy maps for different classification rationales. The maps show colour-coded accuracies for different t-thresholds (x-axis) and ROI sizes (y-axis).

Predictions were based on random splits of the training data set into two halves. The lowest accuracies are plotted in dark blue and the highest in dark red. The red

colour indicates that an accuracy score is significantly better than guessing at p < 0.001.

must reach at least 87% to be considered meaningful. On the
other hand, when all four classes were included, the guessing
rate dropped to 67%, and the above-chance accuracies must
reach at least 74% to be meaningful. As shown in Figure 5,
both the common LI and the two-dimensional approach with
laterality and strength allowed for above-chance predictions.
This held true when only conclusive cases were included in
the analyses or if all data were used. The LI and the two-
dimensional approach reached accuracies of 92% and 91%,
respectively for the three-class case and accuracies of 81% and
84%, respectively for the four-class case. However, the two
approaches differed in the parameter space that allowed for
robust above-chance classification. When only conclusive data
were used, both approaches needed t-value thresholds around
three to allow for successful classification. However, the common
LI worked well for a wide range of ROI sizes, while the two-
dimensional approach requiredmore circumscribed ROIs.When
inconclusive data were included, the t-value thresholds required
by the two approaches differed more prominently. The common

LI needed higher thresholds with t-values in the range of three
to nine, while the two-dimensional approach did not require a
raise in the threshold and still reached its highest accuracies for t-
values around two or three. To better understand the differential
behaviour of the approaches, we first evaluated the confusion
matrices for the top parameter combinations for each approach
and then plotted the underlying raw data.

Prediction Using the Test Data
To evaluate how well new data could be predicted and what kinds
of mistakes were made in doing so, all above-chance parameters
from the computed threshold x ROI maps were used on the
held-out testing data set of 262 fMRI sessions. This means that
for each held-out patient’s data, the predictions from all above-
chance parameter combinations (red in Figure 5) were averaged
together. Then, each data set was assigned to the group for
which the predictions indicated the highest probability (winner-
take-all). This allowed us to determine the number of correct
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classifications and the number of specific confusions between
classes (Figure 6).

The resulting overall accuracies for the test data were almost
identical to the top accuracies from the training data set. For
the common LI, the held-out data were classified correctly in
91% of the cases when only conclusive data were used and in
82% of cases when inconclusive data were included. Accuracies
for when the LI was deconstructed into laterality and strength
reached 89% and 82%, respectively. Figure 6 further illustrates
the results with the diagonal showing correct predictions and
the off-diagonal cells showing confusions. When only conclusive
cases were included, both approaches showed similar patterns of
hits and confusions with high accuracies for the left- and right-
lateralised cases and frequent confusions of bilateral cases with
left-lateralised cases. When inconclusive cases were added, the
two approaches seemed to diverge more; the LI still confused
bilateral cases with left-lateralised cases. On the other hand,
the two-dimensional approach tended to mistake bilateral and
right-lateralised cases for inconclusive cases more often.

Visualisation of All Laterality Scores
To better understand the way the different approaches reached
their maximum accuracies, we plotted the distribution of data

FIGURE 6 | Confusion matrices for the four types of prediction. Results for

predicting the test data set using held-out 262 fMRIs data sets are shown.

Either the LI or its deconstruction into laterality and strength was used, and

inconclusive cases were either excluded or included in the sample. Each row

of the matrix sums up to 100% (save rounding errors), as it represents the true

cases. The columns represent the predictions made. Correct predictions are

plotted along the diagonal in blue. Confusions are plotted off-diagonal in red.

L, left; B, bilateral; R, right; I, inconclusive.

for the best parameter combination of each approach. Here,
each patient’s laterality score is the average of all scores from
the above-chance parameters. Figure 7 shows that when only
conclusive cases were included, there was a clear separation of
classes using the LI. When inconclusive cases were included, the
use of higher thresholds led tomore extreme values (i.e., laterality
scores approaching+1 and−1), especially for the left-lateralised
cases, which showed overall more extreme scores. As the high
thresholds (and the low denominators of the LI) led to more
scores at the extremes and fewer around zero, the bilateral cases
were pushed away from the middle of the scale. Finally, some
cases were missing from the plot because at the high thresholds,
the denominator of the LI was equal to zero, and no score could
be computed.

For the two-dimensional approach, the data were plotted with
the numerator (L–R) on one axis and the denominator (L+R) on
the other. Accordingly, in Figure 8, each case has one mean score
for each dimension. With conclusive data only, we see that the
bilateral class spread out as strength increased. Thus, a case was
more likely to be classified as bilateral when activation strength
was high and more likely to be left- or right-lateralised when
activation strength was low. This mimicked the one-dimensional
LI, where a difference score based on low activation strength
led to a strong laterality score (e.g., nine voxels in the right-
hemisphere and one voxel in the left hemisphere is equal to−0.8),
while the same absolute difference at a high level (e.g., 54 voxels
in the right-hemisphere and 46 voxels in the left hemisphere is
equal to−0.08) would be more indicative of bilaterality.

However, when inconclusive cases were included, the two-
dimensional approach differed more prominently from the
LI. For the common LI, the inconclusive cases did not have
predictable values, but in the two-dimensional approach, they
occupy a specific part of the prediction space—namely, a case
was classified as inconclusive if it had both low strength and
low laterality values. In contrast, a case that also had low
laterality values but showed high activity strength was classified
as bilateral.

To illustrate how these analyses might be used on the level of
individual patients, Figure 9 illustrates the results of two cases.

Comparison With Benchmark
To move beyond a comparison against guessing, we re-ran the
above analyses using three variations of LI computations as
implemented in the LI-Toolbox (29) to train SVCs and then
predict the language lateralisation determined by the human
evaluator. To illustrate the behaviour of the bootstrap-LI (31),
Figure 10 shows the distribution of the LI values of all cases
and the prediction space based on the training data. This follows
the same rationale as described in section Visualisation of all
Laterality Scores. The bootstrap-LI allowed to reach 92% correct
predictions when only conclusive cases were included and 76%
when inconclusive cases were also present. In the four-class
case, there were more inconclusive cases with LIs around zero
than there were bilateral cases, prohibiting the identification of
bilaterality altogether.

Overall, the accuracies of all three approaches of the LI-
Toolbox were comparable to our analyses (Figure 11).Within the
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FIGURE 7 | Distribution of data and predictions for top parameter combinations for the LI. The upper part of each plot shows the data as a distribution along the

x-axis, with the background colour indicating the probabilistic prediction of the classifier. The human evaluation of each fMRI is indicated by the colour of the dots. The

mean LI of each case on the axis was computed as the mean score from all above-chance parameter combinations (see Figure 5). As positive LI scores are indicative

of left-side dominance, the x-axis is inverted and goes from +1 to −1, so that the left side of the plot shows the left-lateralised cases. The lower panel of each plot

shows the probabilities of belonging to each class along the range of LI values.
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FIGURE 8 | Distribution of data and predictions for top parameter combinations for the two-dimensional space. The x-axis of each plot shows laterality of the data

(L–R), and the y-axis shows the overall activation (L+R). As positive LI scores are indicative of left-side dominance, the x-axis is inverted and goes from +1 to −1, so

that the left side of the plot show the left-lateralised cases. The mean LI of each case on the axis was computed as the mean score from all above-chance parameter

combinations in Figure 5. The background colour shows the average behaviour of the classifier combinations, as a colour-coded probability value. The boundary of

the classifier which separates the inconclusive class from the rest is drawn as a white contour. The human evaluation of each fMRI is indicated by the colour of the dots.

LI-Toolbox, there was no significant difference between adaptive,
bootstrap, and fixed-threshold methods.

Validation With Wada Test Results
To validate all of the above analyses, we selected 80 fMRI data
sets from 62 patients for which Wada test results were available.
Instead of predicting the human evaluations (left, bilateral, right,
inconclusive), we now tried to predict the Wada test result
(left, bilateral, right). The same classifiers as above were used
(i.e., derived from the training set with human evaluations as
labels). No new or additional training on the Wada scores
was performed.

The results for the different approaches are depicted in
Figure 12. When using the LI-Toolbox immediately, without
preselecting the fMRI data regarding their conclusiveness,
accuracies between 71% and 75% were reached. When using
our two-dimensional approach to first exclude cases deemed
inconclusive (34 fMRI data sets according to our approach)
and then try to predict the Wada result of the remaining
cases, a higher accuracy of 83% for the remaining 46 cases
was reached. When combining the different approaches (i.e.,
ours to exclude inconclusive cases and the LI-Toolbox to
classify the remaining ones), accuracies of 85% correct were
reached. Accuracies for our 2D approach and 2D-LI hybrids
were all significantly above 63% chance. That the pre-selection
of inconclusive data contributed to increasing the accuracy is
illustrated at the bottom of Figure 12. There, only the Wada
test results of cases deemed inconclusive by the human evaluator
were predicted. Our approach excluded 20 of the 21 inconclusive
cases and made a correct prediction for the one remaining
case, while the adaptive LI was significantly below guessing
(always guessing left, indicated by the dashed line, being the
superior strategy).

DISCUSSION

In the present study, we used data from a large sample of epilepsy
patients performing an fMRI verbal fluency task. We aimed to
evaluate how well an experienced human evaluator’s assessment
of language lateralisation, based on free visual inspection of
whole-brain fMRI patterns, can be predicted from an LI value.

When using high-quality data (i.e., excluding inconclusive
cases based on low fMRI activity), above-chance accuracies
of up to 92% correct classifications were reached. This is in
accordance with previous studies on language lateralisation based
on conclusive fMRIs, indicating that estimating laterality from
high-quality fMRI activity data is robust (9, 24, 25). Given the
large amount of data reduction that goes into computing an LI,
this level of accuracy is noteworthy.When including inconclusive
data, and thereby more closely simulating the clinical context (in
which noisy data are not unusual), the common LI also produced
high accuracies and was as good as a two-dimensional approach
that allows grouping the data both by laterality (L-R) and by
strength (L+R). That increasing the dimensionality of the data
does not allow for better classification indicates that the common
LI is a useful method of data reduction despite its flaws [see
(18, 21)]. While both approaches perform equally well at the
group level, the two-dimensional approach has the advantage
that it can always be evaluated, as we never have to divide by
zero. This might be a more desirable approach in the clinical
context compared to using the heuristic that whenever the LI
yields an error, we assume that laterality cannot be determined.
While inconclusive cases scatter along the whole continuum of
the common LI (from−1 to+1), they occupy a predictable range
of values in the two-dimensional space. There, inconclusive cases
scatter around zero on the L-R scale, given that they contain
little information about laterality; and because they show little
language-related activity on either side, they scatter around zero
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FIGURE 9 | Examples of classifying individual fMRI data sets. For each fMRI, three sample slices of whole-brain activity are shown on the left hand (threshold at t = 3);

the middle plot shows the prediction space for the two-dimensional approach; the probabilities of belonging to each class are plotted as percentages on the right-hand

plot. The four classes are represented by the colours red (left), green (bilateral), blue (right), and grey (inconclusive), as in the other figures. Patient A underwent fMRI

language lateralisation twice, with the two measurements more than one year apart. Both times, the human evaluator assessed the activity pattern as bilateral, which

was later confirmed by Wada-testing (bilateral Wada LI was −0.24). The 2D-method was too conservative the for the first measurement, but correctly classified the

second fMRI (which showed stronger activity but no change in laterality) as bilateral. Patient B underwent fMRI language lateralisation twice on the same day, as the

human evaluator assessed the first fMRI to be inconclusive. The second fMRI (which showed stronger activity and pronounced right-lateralisation) was assessed as

being indicative of right-lateralised language. This is also captured by the predictions of the 2D-method. The patient later underwent Wada testing which confirmed the

right-lateralised language (bilateral Wada LI was −1). Code used to generate the results is available at github.com/mwegrzyn/laterality-index-deconstruction.
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FIGURE 10 | Distribution of data and predictions for the bootstrap-LI. The upper part of each plot shows the data as a distribution along the x-axis, with the

background colour indicating the probabilistic prediction of the classifier. The human evaluation of each fMRI is indicated by the colour of the dots. The LI of each case

on the axis was computed using the bootstrap-LI (31). As positive LI scores are indicative of left-side dominance, the x-axis is inverted and goes from +1 to −1, so that

the left side of the plot shows the left-lateralised cases. The lower panel of each plot shows the probabilities of belonging to each class along the range of LI values.

on the L+R scale (see the grey dots in Figures 1, 8). Of note,
our two-dimensional approach is merely a deconstruction of
the common LI formula into its numerator and denominator.
Therefore, it does not require abandoning the LI for a new
approach or combining multiple methods but merely taking
advantage of the information already contained in the LI. That
it provides a predictable range into which inconclusive cases will
fall also sets this approach apart from the established adaptive

and bootstrap methods for LI computation (29, 31). While

fixed threshold methods have the problem that low activity data
produce LIs close to the extremes (+1 and −1), our results show

that for adaptive methods, low activity data produce LIs close to

zero. This can make it especially challenging to correctly identify
bilateral cases. However, these results must be interpreted with

caution, as it is also possible that all of the inconclusive cases

with bootstrap-LI values around zero were truly bilateral patients.
In this case, this LI method would be unfairly penalised for

outperforming the human evaluations, which assigned these data
sets to the inconclusive class. By using the Wada test results
as the gold standard of language lateralisation, we were able to

show that no method performed above chance for the group of

inconclusive cases. This strengthens the notion that modelling an

inconclusive class for which no reliable prediction can be made

is a useful strategy to reduce misclassifications. While it is costly
to discard data, recognising that a case cannot be evaluated with
sufficient certainty might still pay off, for example by allowing a
more targeted repetition of measurements. This would also take
advantage of the non-invasiveness of fMRI, which sets it apart
from the Wada test.

The validation of our approach using information from the
Wada test is also important because we trained our predictions
using only human evaluations of the fMRI data. Using human
evaluations is problematic because they are based on the fMRI

FIGURE 11 | Accuracies for prediction of the test data. Mean accuracy (dot),

the 84% confidence interval (thick line) and the 95% confidence interval (light

line) are depicted; chance performance (always guessing left) is indicated by

the dashed line. 2D: our approach with separate measures of laterality (L–R)

and strength (L+R), highlighted in red; fixed-count: counting voxel at fixed

threshold of t = 3; adaptive: LI computation with thresholding at the mean

intensity of the image; bootstrap: main output of the bootstrap-LI (31).

data themselves and not a truly independent criterion. Also, they
cannot replace the Wada test as the gold standard for validation.
However, we know that the agreement of human evaluation
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FIGURE 12 | Accuracies for the prediction of Wada test results. Mean

accuracy (dot), the 84% confidence interval (thick line) and the 95%

confidence interval (light line) are depicted; chance performance (always

guessing left) is indicated by the dashed line. 2D: our approach with separate

measures of laterality (L–R) and strength (L+R), highlighted in red; fixed-count:

counting voxel at fixed threshold of t = 3; adaptive: LI computation with

thresholding at the mean intensity of the image; bootstrap: main output of the

bootstrap-LI (31). “+” sign indicates whenever the 2D approach was used to

exclude inconclusive cases and another LI-measure when then used to

classify the remaining cases (highlighted in red).

of fMRI and Wada test results is very high (9). Therefore,
using human evaluations as the criterion allowed us to assemble
very large samples (compared to the Wada test, which is much
less frequently performed), making data-driven methods more
feasible. Hence, the approach of the present study would not
have been possible if only one or a handful of atypical cases were
available, as is frequently the case in the literature (23). Despite
never using Wada test data during training, we were still able
to predict the Wada results with accuracies significantly above
chance. This lends support to the chosen approach and confirms

the high concordance of fMRI and Wada test results (10, 11).
Given that the sample of Wada test patients contained a large
proportion of atypical patients (37%) and that Wada tests are
usually administered in difficult cases, accuracies around 80%
are noteworthy.

When comparing the accuracies between our approach and
the different variations implemented in the LI-Toolbox (29), we
saw that the LI is very robust across its different implementations.
Although we had a large sample of validation data, we were
not able to find systematic differences between fixed-threshold
and adaptive or bootstrap methods. Meanwhile, it is possible
that combining a fixed-threshold LI with an adaptive LI might
be superior to using one or the other by itself. To recognise
inconclusive cases, a fixed threshold seems ideal. Only when
the threshold is kept fixed across patients, differences in the
denominator of the LI formula (L+R) can be used to compare
activity strength. If an adaptive method keeps the denominator’s
value constant [e.g., L+R must always equal 50% of the ROI
size (29)], this differential information will be lost. Afterwards,
if a data set is deemed fit for further analysis, an adaptive
threshold might be optimal because it maximises the variance
in the numerator of the LI formula (L-R) by keeping the
denominator constant.

While assigning a measure of uncertainty to each individual
prediction is useful to reduce mistakes, future studies should
explore whether data from an inconclusive fMRI can somehow
be salvaged to correctly predict the patient’s Wada test result.
While the current study’s incorporation of inconclusive class
allowed testing predictions in a realistic context, classifying a
case as inconclusive cannot be the ultimate goal of diagnostics.
Alternative data analysis techniques such as pattern analysis
methods (38) might be used to take full advantage of the data and
successfully predict the true type of lateralisation of each patient.
Also, while a generic measure of conclusiveness can be useful,
the quality of the fMRI data should always be evaluated using
all available information. These might include information about
the patient’s compliance with the task, movement-associated
signal changes (24) and whether a sufficient amount of data was
collected (39). Of note, subjective ratings of data quality have
been shown to vary strongly between different evaluators (40).
Therefore, it seems imperative to advance the development of
automated data quality assessments and the understanding of
how data quality and measures of lateralisation interact.

Furthermore, none of the approaches presented here showed
a satisfying sensitivity regarding the detection of bilateral
cases (see Figure 6). This might reflect that many instances
of bilaterality cannot be well-expressed with a simple LI. For
example, crossed lateralisations with left-sided activity in Broca’s
area and right-sided activity in Wernicke’s area (41) might by
definition be unsuitable to be represented by a simple score
based on one ROI. Multiple ROIs might have to be considered
simultaneously (42) to improve the characterisation of each
patient’s unique type of language lateralisation. A more varied set
of language task would also be necessary, to better characterise
the whole network of language processing. Also, some studies
have indicated that additional classes of language lateralisation
might be needed to better understand the different subtypes of
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atypicality (26). Overall, the study could also be improved by
using a fully symmetrical brain template for normalisation, so
that all remaining differences in lateralisation could be attributed
to functional differences and not to a residual of unaccounted
anatomical differences between the hemispheres.

While the usefulness of fMRI for language lateralisation in
epilepsy has substantially improved since the inception of the
method (11), it still needs more validation work to make it
feasible for reliably predicting language lateralisation (i) in single
cases and (ii) in a clinical setting. Although much research has
focused on how to compute the LI, it is less well-understood how
an LI value should be best translated into a categorical decision.
Apart from the LI threshold, brain regions for data extraction
and cutoffs for grouping the LI values into clinical categories
must be chosen. Also, it must be considered that some data
sets simply do not contain enough diagnostic information to
allow for a confident decision. In our study, we tried to justify
every step of such a decision-making process, using data-driven
methods throughout. The validation of our approach shows
that the LI is very robust across its different implementations.
It can predict human evaluations of language lateralisation
as well as Wada test results with substantial above-chance
accuracies. Our results indicate that by taking advantage of all
information contained within the LI, its clinical utility could be
further improved.
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