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Numerous studies suggest that the increased activity of p38MAPK plays an important

role in the abnormal immune and inflammatory response observed in the course of

neurodegenerative diseases such as Alzheimer’s disease. On the other hand, high

levels of p38MAPK are present in the brain during normal aging, suggesting the

existence of mechanisms that keep the p38MAPK-regulated pro-inflammatory activity

within physiological limits. In this study, we show that high p38MAPK activity in the

hippocampus of old mice is in part due to the reduction in membrane cholesterol

that constitutively occurs in the aging brain. Mechanistically, membrane cholesterol

reduction increases p38MAPK activity through the stimulation of a subset of tyrosine

kinase receptors (RTKs). In turn, activated p38MAPK increases the expression and

activity of the phosphatase DUSP2, which is known to reduce the activity of different

MAPKs, including p38MAPK. These results suggest that the loss of membrane

cholesterol that constitutively occurs with age takes part in a negative-feedback loop

that keeps p38MAPK activity levels within physiological range. Thus, conditions that

increase p38MAPK activity such as cellular stressors or that inhibit DUSP2 will amplify

inflammatory activity with its consequent deleterious functional changes.

Keywords: cholesterol, RTKs, p38MAPK, aging, DUSP2

INTRODUCTION

Brain inflammation is frequently related to several diseases and it has been described to be
a conspicuous component of Alzheimer’s disease (AD), Parkinson’s Disease (PD) and multiple
sclerosis (MS) (1) and also of acute situations such as stroke and head trauma (2, 3). In all these
conditions the final outcome is usually the loss of neuronal cells. However, different physiological
events lead along lifespan to the development of inflammatory processes (4). In this regard, brain
inflammation is also evident in the brain during non-pathological aging (5–8), where the loss of
neurons is not usual (9, 10). These last observations are consistent with the view that during aging
precise mechanisms must be developed to keep the level of activity of the different mediators of the
inflammatory process within physiological range.

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2019.00675
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2019.00675&domain=pdf&date_stamp=2019-06-25
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cdotti@cbm.csic.es
https://doi.org/10.3389/fneur.2019.00675
https://www.frontiersin.org/articles/10.3389/fneur.2019.00675/full
http://loop.frontiersin.org/people/720646/overview
http://loop.frontiersin.org/people/739470/overview
http://loop.frontiersin.org/people/345556/overview
http://loop.frontiersin.org/people/175832/overview


Martín-Segura et al. Aging Increases Brain DUSP2 Expression

The inflammation onset is characterized by the increment
of inflammatory cytokines (11) together with the activation of
several key elements, such as MAPKs (mitogen-activated protein
kinases) and other signaling proteins, that allow the progression
of the inflammation generating a positive feedback between those
two elements. Although there are several signaling proteins that
regulate inflammation, one of the main players is the p38MAPK
pathway (12). This pathway is a crucial regulator of inflammatory
events through several mechanisms including changes in gene
expression (12). Furthermore, p38MAPK activation has been
related to several neurodegenerative diseases (13, 14). As an
important signal integrator pathway, p38MAPK has also been
linked to other processes different from inflammation such
as development, cell cycle or even memory processes (15).
Considering its importance in gene expression modulation, the
increased p38MAPK activity observed in physiological brain
aging (16) suggests that this pathway could be part of the
age-associated mechanisms responsible for maintaining brain
inflammation within a physiological range.

In previous studies, we demonstrated that the gradual loss
of cholesterol from the neuronal plasma membrane during
aging contributes to neuronal survival thanks to the increased
activity of pro-survival kinase AKT1 due, among other causes,
to the increase in basal activity of tyrosine kinase receptors
(RTKs) (17, 18). In addition, our previous works suggested
that the constitutive reduction in neuronal plasma membrane
cholesterol during aging may be, at least in part, a consequence
of increased activation and plasma membrane translocation of
the cholesterol catabolic enzyme Cyp46A1 (17, 19). Hence, the
recent demonstration that RTK activation favors survival in the
developing brain via the p38MAPK pathway (20), moved us
to test the hypothesis that reduced membrane cholesterol, via
RTKs’ stimulation, could contribute to the increase in p38MAPK
activation in the old brain.

RESULTS

Age Increases p38MAPK Activity Levels in
the Hippocampus, in Part Due to
Cholesterol Loss
Previous work has shown that p38MAPK activity increases with
age in the mouse hippocampus (8). Analysis of hippocampal
extracts from mice of different ages confirmed that there was
a significant increase in active p38MAPK levels between 2–3
and 7–9 months of age, and these remain elevated in 22–24
months-old mice (Figure 1A).

There are also several examples where brain inflammation, in
which p38MAPK has a preponderant role, has been associated
to the loss of neuronal cholesterol that occurs both in conditions
of acute (e.g., stroke) and chronic (aging) inflammation (21, 22).
Therefore, we decided to investigate the relationship between
p38MAPK increase and neuronal cholesterol loss. As a first
approximation, we reduced cholesterol levels in hippocampal
slices from young mice by cholesterol oxidase (Choox) treatment
(see Materials and Methods). We used Choox at a concentration
10 IU/ml, which based on our previous works is a dose

that induces a mild (∼20%) reduction of plasma membrane
cholesterol, without affecting cell viability (Palomer et al.,
2016) (23). Figure 1B shows that a cholesterol decrease of this
magnitude increases the levels of the phosphorylated (active)
form of p38MAPK in hippocampal slices from young mice. A
similar treatment in cultured hippocampal neurons also resulted
in a significant increase in p38MAPK activity (Figure 1C),
altogether indicating that cholesterol loss can be sufficient for
p38MAPK activation.

In order to determine if cholesterol loss is necessary for
p38MAPK increase with age (see Figure 1A), we raised the levels
of this lipid to hippocampal slices of oldmice by adding a solution
of cholesterol-methyl-beta-cyclodextrin (MβCD-Ch, referred in
figures as Ch). It has been previously shown that the high
affinity of methyl-beta-cyclodextrin (MβCD) for cholesterol can
be used to generate inclusion complexes that increase membrane
cholesterol levels (24, 25). Hippocampal slices from old mice
were incubated with MβCD-Ch following protocols used in
previous studies in which we evaluated that this treatment
restores cholesterol content to levels similar to those of young
mice (25, 26). Figure 1D shows that MβCD-Ch significantly
reduces the levels of phosphorylated p38MAPK in the old
hippocampal slices. Further supporting that cholesterol loss can
account for the increased p38MAPK activity in the old slices,
the increase due to Choox was restored when the Choox-treated
slices from young mice were re-incubated with the MβCD-Ch
complex (Figure 1E). Altogether, the results are consistent with
the possibility that conditions that lead to a reduction of neuronal
cholesterol, acute or chronic, increase p38MAPK activity. The
next question we asked was: how does cholesterol loss lead to the
activation of p38MAPK?

RTK Activation Plays a Role in Cholesterol
Loss-Mediated p38MAPK Activity Increase
Considering that an acute loss of cholesterol could generate
cellular stress, a well-known p38MAPK activator, we checked
if the activation of p38MAPK upon cholesterol removal was
due to an increase in oxidative stress. To investigate this
possibility, hippocampal neurons in culture were incubated
with an antioxidant cocktail at the time of the Choox-
induced cholesterol reduction (see Materials and Methods). The
antioxidant treatment partially prevented the Choox-induced
increase in p38MAPK activity (Figure S1A), indicating that still a
significant fraction of the p38MAPK activated by cholesterol loss
occurs independently from oxidative stress, although this is also
induced by cholesterol loss (27).

The loss of cholesterol from the plasma membrane, even if
<20% as in our conditions, will necessarily lead to substantial
structural changes in the plasma membrane causing a panoply
of functional alterations. Therefore, we investigated whether
activation of p38MAPK in the neurons with reduced cholesterol
was the consequence of a particular type of membrane signaling
alteration or, on the contrary, the consequence of multiple
altered pathways. In particular, we checked the possibility that
different known p38MAPK activators could become active upon
cholesterol loss. Incubation of cortical neurons with a cell
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FIGURE 1 | Age increases p38MAPK activity in mice hippocampus in a cholesterol-dependent manner. (A) Age-associated increase in the phosphorylation of

p38MAPK (p38) activating residues (T180/Y182) in mice hippocampus (HC): young (2–4 months; YM), adult (7–12 months, AM), old (20–24 months OM). (B)

Increased p38MAPK activating marks (phosphorylation on T180/Y182) in hippocampal slices from 2 month-old mice with reduced cholesterol (treated with cholesterol

oxidase, Choox, for 30min). (C) Increased p38MAPK activating marks in hippocampal neurons in culture treated as hippocampal slices in (B). (D) Reduced p38MAPK

activity in old mice hippocampal slices incubated with a cholesterol replenishment solution (cholesterol-methyl-beta-cyclodextrin complex, referred as Ch). (E)

Increased p38MAPK activity induced by the cholesterol extracting enzyme Choox become reduced when the same slices are subsequently incubated with the

cholesterol (referred as Ch) rich solution. Numbers in bars reflect number of independent experiments. Data are represented as mean ± SEM. The asterisks indicate

the p-values (*p < 0.05; **p < 0.01; ***p < 0.001. ns, not significant).

permeable calcium chelator (BAPTA-AM) did not significantly
reduce the p38MAPK increase induced by cholesterol loss
(Figure S1B), ruling out Ca2+ levels alterations as promoter of
p38MAPK activation in this experimental situation. Similarly,
incubation of the neurons with H-89, a protein kinase inhibitor
with preference for protein kinase A (PKA) (28, 29), or with
Chelerythrine-chloride, an inhibitor of PKC isoforms A and B
(30), also failed to interfere with the cholesterol loss-induced
p38MAPK activation (Figure S1C). These results show that the
loss of cholesterol induced by Choox treatment does not have, in
itself, such a pleiotropic effect. Given that in previous studies we
showed that the loss of cholesterol increases the activity of the
RTKs TrkB and insulin receptor (IR) (17, 31), we analyzed next
if RTKs were involved in cholesterol loss-mediated p38MAPK
activation. As a first approach, we incubated cell lysates of

Choox-treated and un-treated cultured hippocampal neurons,
with a membrane-based antibody array to determine the relative
phosphorylation levels of several mouse RTKs (see Materials
and Methods). This study revealed that cholesterol loss was
able to increase the phosphorylation levels of different RTKs,
most notably SCFR (Stem Cell Factor Receptor) also known and
referred here as c-Kit, VEGFR2 (Vascular Endotelial Growth
Factor receptor 2), and IGF-1 (Insulin Growth Factor receptor
1) (Figure S2). On the other hand, the phosphorylation levels of
several other RTK receptors were not affected by the cholesterol
loss (Figure S2), again implying that membrane cholesterol
reduction has a limited series of targets, at least at the low levels
of reduction induced in our experimental model.

In order to validate the antibody array results, we performed
western blotting with extracts from cultured hippocampal
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neurons that had been exposed to the Choox treatment.
This experiment confirmed that cholesterol reduction increased
VEGFR2 and c-Kit activity (Figures 2A,B). To directly assess
the existence of a functional link between cholesterol loss,
RTK activation and activation of p38MAPK, we incubated
Choox-treated cultured neurons with the broad-spectrum RTK
inhibitor K252a (32–34). This treatment significantly prevented
p38MAPK activation induced by cholesterol loss (Figure 2C). A
similar inhibition of p38MAPK activity was observed using the
RTK activity inhibitor Cabozantinib (XL184), a small-molecule
kinase inhibitor with potent activity toward c-Kit and VEGFR2
(35, 36), (Figure 2D).

The demonstration of a mechanistic link between cholesterol
loss, activation of particular RTKs and activation of p38MAPK
in cultured neurons, moved us to ask whether the RTK activity
increase was also observed in vivo, in the old adult brain, as
for p38MAPK activity (see Figure 1). To test this possibility,
we analyzed the activity levels of the two RTKs activated by
cholesterol loss whose inhibition reduced p38MAPK activation
(Figure 2D), namely VEGFR2 and c-Kit. Figures 2E,F show that
while the VEGFR2 activity increased significantly from the young
age (2–3 months) to adulthood (7–9 months of age), remaining
high in the old mice (22–24 months old), the c-Kit increased
gradually with age, with the change being most significant
between young and old mice. As a whole, these experiments
show that the activation of p38MAPK in the hippocampus of
old mice could be due to a cholesterol loss-mediated activation
of particular RTKs. Hence, we next aimed to identify the
downstream targets of p38MAPK.

Cholesterol Loss-Mediated p38MAPK
Activation Increases Dusp2 Gene
Expression
p38MAPK is a well-known modulator of gene expression (37,
38), and its activation in the old mouse brain could be leading to
the expression of different genes involved in aging progression.
To determine which genes are regulated by the activity of
p38MAPK induced by cholesterol loss, we performed a RNA
sequencing (RNAseq) study using cultured hippocampal neurons
either untreated or treated with Choox to reduce cholesterol,
and incubated with or without the p38MAPK inhibitor SB203580
(Choox+SB20) (39). We reasoned that the expression of the
downstream targets of p38MAPK induced by cholesterol loss
should be altered by Choox but unchanged in Choox+SB20
conditions. Non-Choox treated neurons were used as controls.
The statistical comparison of the mRNA expression levels
reported 38 differentially expressed genes, 36 upregulated and 2
downregulated in response to Choox treatment (q-value <0.05)
(Figure 3). On the other hand, 58 genes were differentially
expressed when comparing Choox+SB20 with control neurons,
23 upregulated and 35 downregulated in Choox+SB20 treated
neurons (see Figure 3A). It is not surprising that more
genes are affected in this second analysis, as the p38MAPK
inhibitor can have effects independently from cholesterol loss-
induced p38MAPK activation. Irrespectively, the analysis of
these two lists of genes unveiled a set of 25 genes whose

expression was modified by the loss of cholesterol through a
p38MAPK dependent mechanism, i.e., changing with Choox
treatment and the change being suppressed in the Choox+SB20
treatment (Figure 3B).

Next, the above RNAseq data was subjected to a bio-
informatic Artificial Neural Network (ANN) score analysis,
a strategy that estimates the functional relationship of a
gene/protein with a biological process by analyzing mathematical
models aimed to simulate the molecular activity of such process
(see Materials and Methods). This approach allowed us to
identify genes with a potential role in apoptosis and survival.
Figure 3B shows that a well-known target of p38MAPK activity,
Interleukin 1 (see Introduction), has the highest predicted value
(functional clustering), confirming the accuracy of this bio-
informatics tool. In addition, dual specificity protein phosphatase
2 gene (Dusp2) also presented high-predicted value. This result
was of interest to us as DUSP phosphatases dephosphorylate
MAPKs, and therefore have a potential role limiting the extent
of the p38MAPK activation that occurs in the old brain
(see Figure 1A). Interestingly, the gene expression of another
phosphatase of the same family, Dusp1, appeared to be altered
by cholesterol removal but in a MAPK-independent manner (see
Table S1) thus revealing a specific pattern of gene expression in
the context of age-related cholesterol loss.

To validate the RNAseq data, we carried out a qPCR
study using as template mRNA from 15 days in vitro (DIV)
hippocampal neurons subjected to Choox treatment in the
presence or absence of the p38MAPK inhibitor SB203580. We
focused on Dusp2, as this gene showed increased levels by
cholesterol reduction in a p38MAPK activity-dependent manner
and has a high ANN predicted value as survival-apoptosis related
genes (see above). These experiments confirmed that cholesterol
loss induced the up-regulation of Dusp2 mRNA in a p38MAPK-
dependent manner (Figure 4A).

To investigate if the increase of these mRNAs was the result of
the acute loss of cholesterol induced by Choox or can also occur
in conditions of gradual cholesterol loss, as during physiological
aging, we repeated the qPCR analysis using as template mRNA
from the hippocampus of young (2–3 months-old), adult (7–9
months-old) and old (22–24 months-old) mice. Figure 4B shows
that Dusp2 mRNA levels gradually increase with age, reaching
significance between young and old mice. This indicates that
Dusp2 upregulation may be the consequence of the gradual
changes produced in the plasma membrane during aging. Then,
we investigated if the increase with age of Dusp2 was dependent
on the activity of p38MAPK. For this, we incubated hippocampal
slices of old mice with the more potent and specific p38MAPK
inhibitor PH797804 (40). This experiment resulted in a reduction
in the levels of Dusp2mRNA (Figure 4C).

To confirm the increased expression of DUSP2 in the
old brain and in cholesterol loss conditions at the protein
level, we immunoblotted cell lysates of Choox-treated neurons
that had been pre-incubated with the p38MAPK inhibitor
PH797804. This experiment confirmed the cholesterol loss
and p38MAPK activity-dependent activation of DUSP2 protein
(Figure 5A). To test if the increase in DUSP2 observed
following cholesterol extraction of cultured neurons was also
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FIGURE 2 | Age-dependent cholesterol loss leads to increased p38MAPK activity through RTKs signaling. (A) Increased VEGFR2 activating phosphorylation Y1175 in

cultured hippocampal neurons after treatment with cholesterol oxidase (Choox). (B) Increased c-Kit receptor activating phosphorylation Y718 in neurons in culture

treated with Choox for cholesterol removal. (C) Incubation of hippocampal neurons in culture with K252a, a broad RTK inhibitor, significantly prevents Choox-induced

p38MAPK (p38) activation. (D) Incubation of hippocampal neurons in culture with XL-184, an inhibitor of VEGFR2 and c-Kit receptors, prevents Choox-induced

p38MAPK phosphorylation. (E,F) Western blots showing activating phosphorylations of RTK receptors, VEGFR2 Y1175 (E) and c-Kit Y718 (F), in hippocampus of

young (YM), adult (AM), and old mice (OM). The values inside the bars indicate the number of independent experiments. Data are represented as mean ± SEM. The

asterisks indicate the p-values (ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001).

present in vivo, we performed a western blotting analysis
using hippocampal extracts from mice of different ages,
young, adult and old. In agreement with the mRNA results
(see Figure 3B), DUSP2 protein was also found elevated
in the hippocampus of old mice compared to young mice
(Figure 5B). Immunofluorescence microscopy experiment in
hippocampal sections of mice of different ages confirmed this
result (Figures 5C,D).

DISCUSSION

The results presented here have several biological implications.
On one hand, they extend previous reports showing that age
increases brain p38MAPK activity (8). Mechanistically, our data
suggest that during aging the gradual loss of cholesterol leads
to the activation of RTKs, which in turn activate p38MAPK
signaling. On the other hand, we showed that the cholesterol
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FIGURE 3 | Gene expression changes induced by cholesterol loss in neurons. (A) Venn diagram showing the number of genes whose differential expression is

statistically significant (p < 0.05) upon cholesterol loss (Choox vs. Control) or upon cholesterol loss in the absence of p38MAPK activity (Choox+SB20 vs. Control).

Green arrows stand for upregulation (higher expression of the genes in the Choox or Choox +SB20 neurons) and red arrows for downregulation. (B) Shows the list of

25 genes whose expression is modified by the loss of cholesterol through a p38MAPK dependent mechanism. It is also indicated if these genes are differentially

expressed when statistically comparing the Choox vs. Choox+SB20 cohorts. In the columns referring to the three comparisons, it is indicated if the genes were

statistically upregulated (1), downregulated (−1) or if there was no statistically significant change on their expression (0). The column in the right displays the Artificial

Neural Network (ANNs) score obtained by each gene when calculating their functional relationship with apoptosis and survival through the analysis of

mathematical models.

loss-mediated p38MAPK activation results in the up-regulation
of pro-inflammatory genes and also of phosphatases such as
Dusp2 that can potentially limit p38MAPK activity.

DUSP2, originally named phosphatase of activated cells
1 (PAC-1), is one of the members of the dual-specificity
phosphatases (DUSPs) that act as negative regulators of
MAPKs by dephosphorylating both phosphotyrosine and
phosphoserine/threonine residues (41). Since DUSP2 was
originally identified in stimulated human peripheral T cells,
most of our current knowledge on this phosphatase is on its
role in the immune response and inflammation (41, 42). In
addition, it has also been proposed that DUSP2 plays a role
in apoptosis and cancer (43–45). There are also a few studies
on DUSP2 in the central nervous system, for example it has
been reported that Dusp2 mRNA expression is increased in
forebrain neurons resistant to ischemia, but not in the vulnerable
neurons, suggesting that DUSP2 may be protecting against this
type of stress (46). A similar neuroprotective role for DUSP2
has been reported in granule neurons treated with apoptotic
stimuli such as cisplatin (47). Thus, the increased expression
of DUSP2 in response to cholesterol loss/redistribution, as

it occurs in the old brain, could have a dual role in brain
physiology: it would maintain p38MAPK activity at physiological
levels, so that this pathway can perform its usual functions
in synaptic plasticity and cytoskeletal stability, while at the
same time it would ensure that the extent of p38MAPK
activation is not too exaggerated, which could lead to neuronal
damage, such as in stress conditions. The different roles of
p38MAPK in physiological vs. pathological situations, might be
the consequence of a qualitative process, due to the existence
of “pools” of p38MAPK receiving input from different signaling
pathways. Alternatively, physiological or pathological responses
could be the consequence of a quantitative process and rely on
the intensity of the pathway activity induced by different stimuli.
Thus, the activity of p38MAPK that leads to the transcription of
Dusp2 could be due to a low intensity stimulus, such as the one
elicited by the physiological loss of membrane cholesterol, while
in response to stronger stress stimuli the negative regulation
by DUSP2 phosphatase could be overcome by higher levels of
upstream p38MAPK activators or by other mechanisms leading
to enhanced p38MAPK activity and neuronal death. As a matter
of fact, although the activity of p38MAPK is significantly higher
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FIGURE 4 | Cholesterol loss-dependent p38MAPK activation increases Dusp2 mRNA levels in old mouse hippocampus. (A) Graphic shows Dusp2 mRNA levels after

cholesterol loss. Hippocampal neurons in culture where treated or not with p38MAPK inhibitor, SB203580 (20µM), 1 h previous to treatment with Choox for

cholesterol removal to address p38MAPK involvement in gene transcription. (B) Plot reflects Dusp2 mRNA levels in the hippocampus of young (YM), adult (AM) and

old mice (OM). (C) Graphic shows Dusp2 mRNA levels in hippocampal slices of old mice treated for 1 h with a potent p38MAPK inhibitor, PH787904 (referred as PH;

2µM). Bar graphs: Numbers inside indicate the number of independent experiments. Data are represented as mean ± SEM. The asterisks indicate de p-values (ns,

not significant; *p < 0.05; **p < 0.01).

in the old brain, it is not enough to induce neuronal death
nor are there signs of pathological inflammation, suggesting that
p38MAPK activity levels may have not reached the disease-
producing threshold during normal aging. In addition to the
negative regulation of p38MAPK activity, the cholesterol loss-
induced upregulation of DUSP2 may also protect old neurons
by dephosphorylating ERK1/2, a pathway known to be less
active during aging (48, 49). Although a number of studies
have shown the ERK1/2 pathway to have an anti-apoptotic
role in neurons, pro-apoptosis induced by ERK1/2 signaling
has also been observed. Thus, aberrant activation of MEK/ERK
signaling induced by β-amyloid peptide promotes the apoptosis
of rat embryonic cortical neurons by regulating the entry of
neurons into the cell cycle (50). Furthermore, neuronal apoptosis
mediated by the Ras/Raf-1/MEK/ERK signaling pathway was also
reported in conditions of mitochondrial dysfunction (51) and
zinc depletion (52), or when ERK signaling is activated together
with JNK (53), when glutamate receptors (NMDA) are activated
by tumor necrosis factor (54), and in conditions of sustained ERK
activity (55).

In conclusion, we propose that cholesterol loss-mediated
DUSP2 expression during physiological aging may be part
of a protective signaling mechanism to regulate p38MAPK
over-activation in neurons. In this hypothetical scenario,
impaired expression of DUSP2 could facilitate the exacerbation
of p38MAPK-mediated responses, thus contributing to the
development of pathologies like AD, PD or MS. Future studies
will be required to explore this working hypothesis.

MATERIALS AND METHODS

Animal Handling
Male C57BL/6J mice were used in this study: young 2–3 month-
old, adult 7–12 month-old and old 20–24 month-old. All the
animals were kept in the Centro de Biología Molecular Severo
Ochoa’s (CBMSO) animal facility. The mice and manipulations
presented in this work count with the approval of the Dirección
General de Medio Ambiente de la Comunidad Autónoma
de Madrid (Ref. PROEX 066/15) and the CBMSO’s Ethical
Committee. All the experiments were performed in accordance
with European Union guidelines (2010/63/UE) regarding the use
of laboratory animals.

Cell Cultures
Primary hippocampal neurons were extracted from Wistar rat
embryos at embryonic day 18 (E18), seeded in culture conditions
as previously described (56) and kept in culture for 15 days
in vitro (DIV). All cells were incubated at 37◦C, humidity
conditions and 5% CO2.

Hippocampal Slices
Hippocampal slices were obtained from C57BL/6J mice.
Hippocampi were extracted and placed in dissection solution
(10mM D-glucose, 4mM KCl, 26mM NaHCO3, 233.7mM
sucrose, 5mMMgCl2, 1:1000 Phenol red) oxygen saturated with
carbogen (95% O2/5% CO2), and sliced using an automatic
tissue chopper (McIlwain Tissue Chopper, Standard Table, 220V,
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FIGURE 5 | DUSP2 protein levels are upregulated in the hippocampus of old mice. (A) DUSP2 levels increase in a cholesterol loss and p38MAPK activity dependent

manner. Hippocampal neurons in culture were or were not treated with the p38MAPK inhibitor PH797804 (2µM, also referred as PH) prior to cholesterol oxidase

(Choox). (B) DUSP2 protein levels increase with aging in the mouse hippocampus. (C) Representative pictures show the increased expression of DUSP2 in the cortex

and in the hippocampus with age. Top pictures (i-iii) show expression of DUSP2 in adult mice (7 months); lower pictures (iv-vi) show DUSP2 expression in old mice (22

months). DUSP2 is expressed in CA1 layer (iii; vi). Panels (iii) and (vi) show higher magnifications of the regions boxed in (ii) and (v) respectively. Vcx, Visual cortex; CA1,

Cornu Ammonis of the hippocampus layer 1; CA3, Cornu Ammonis layer 3. Scale Bar in i, ii, iv, v, 500µm; Scale bar in iii, vi, 20µm. Colored bars on the right show the

Look-Up-Table used to color-code the intensity of DUSP2 labeling. (D) Pictures show a magnification of CA3 layer. Scale bar represents 20µm. Bar graphs: Values

inside indicate the number of independent experiments. Data are represented as mean ± SEM. The asterisks indicate the p-values (ns, not significant; *p < 0.05).

Ted Pella Inc.) to obtain 400µm hippocampal slices. Then
slices were kept in artificial cerebrospinal fluid (ACSF: 119mM
NaCl, 2.5mM KCl, 1mM NaH2PO4, 11mM glucose, 1.2mM
MgCl2, 2.5mM CaCl2, osmolarity adjusted to 290 Osm) oxygen
saturated with carbogen for 1 hour. Experiments were performed
in ACSF oxygen saturated.

Cell and Slices Treatments
The following compounds were added to cell medium of
hippocampal neurons: Cholesterol oxidase (Choox; Calbiochem
ref.: 228250; 10 IU/ml); K252a (Tocris ref.: 1683; 1µM);
SB203580 (Shelleckchem ref.: S1076; 20µM); PH797804
(Axon Medchem ref.: 1837; 2µM); H89 (Tocris ref.: 2910;
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50µM); Chelerythrine (Tocris ref.: 1330; 10µM); XL-184
(Tocris ref.: 5422; 1µM); BAPTA-AM (Invitrogen ref.: B-6769,
10µM). Experiments with the antioxidants cocktail in cultured
hippocampal neurons used: N-Acetyl-L-Cysteine (NAC, Sigma-
Aldrich ref.: A7250, 5mM) and L-Glutathione reduced (GSH,
Sigma-Aldrich ref.: G4251, 5mM). Hippocampal slices were
treated with Cholesterol oxidase (Choox; Calbiochem ref.:
228250; 10 IU/ml) for cholesterol removal. Experiments for
cholesterol addition conducted in hippocampal slices were
performed at 25◦C. Methyl-β-cyclodextrin-cholesterol (MβCD-
Ch) solution was prepared freshly at use concentration in ACSF,
containing 30µM Cholesterol Water-soluble (Sigma-Aldrich
ref.: C4951) and 5µMCholesterol (Sigma-Aldrich ref.: C3045).

Antibodies
The following antibodies were used for western blot (WB)
and immunofluorescence (IF): anti-α-Tubulin (WB 1:10000,
Abcam ref.: ab7291), anti-β-Actin (WB 1:20000, Sigma-Aldrich
ref.: A5441), anti-Phospho p38MAPK (T180/Y182) (WB
1:1000, Cell Signaling ref.: #4511), anti-p38MAPK (WB 1:1000,
Abcam ref.: ab170099), anti-Phospho VEGFR2 (Y1175) (WB
1:1000, Cell Signaling ref.: #2478), anti-VEGFR2 (WB 1:1000,
Cell Signaling ref.: #3770), anti-Phospho c-Kit (Y719) (WB
1:1000, Cell Signaling ref.: #3391), anti-c-Kit (WB 1:1000,
Cell Signaling ref.: #3074 and WB 1:1000, Santa Cruz ref.:
sc-13508), anti-DUSP2 (WB 1:1000, IF 1:100, Sigma-Aldrich ref.:
SAB4300841), PathScan R© RTK Signaling Antibody Array Kit
(Chemiluminescent Readout, Cell Signaling ref.: #7982).

Relative RT-PCR
Cultured hippocampal neurons or mice hippocampi were
homogenized in Trizol Reagent (Life Technologies ref.:
15596018) and the RNA was extracted using Direct-zolTM RNA
minipreps (Zimo research ref.: R2052). RNA was quantified at
260 nm absorbance using a Nanodrop ND-100 (Themo Fisher
Scientific). First strand cDNA was obtained using RevertAid H
Minus First Strand cDNA Synthesis kit (Themo Fisher Scientific
ref.: K1631). 5 ng of synthesized cDNA were used to perform
the qPCR using GoTaq R© qPCR Master Mix (Promega ref.:
A6002) in ABI PRISM 7900HT SDS (Applied Biosystems; Life
Technologies). Primers obtained from Sigma-Aldrich were
used at 0.5µM final concentration (see list below). Three
housekeeping genes Gapdh, Gus-B and Pgk-1 were used as
endogenous controls.

Primers
Rat primers used for qPCR in neurons in culture:

Gapdh forward: 5′- ATGACTCTACCCACGGCAAG -3′

Gapdh reverse: 5′- GATCTCGCTCCTGGAAGATG -3′

Gus-B forward: 5′- GCCAATGAGCCTGTCTCTTC -3
Gus-B reverse: 5′- TCCAGTTCTTGGGGAATCTG -3′

Pgk-1 forward: 5′- AATGATGCTTTTGGGACTGC -3′

Pgk-1 reverse: 5′- TCAAAAATCCACCAGCCTTC -3′

Dusp2 forward: 5′- CCCGAGGGTTCCTATCTATG -3′

Dusp2 reverse: 5′- AGGGCAAGATTTCCACAGG -3′

Mouse primers used for qPCR in hippocampal samples:
Gapdh forward: 5′- CTCCCACTCTTCCACCTTCG -3′

Gapdh reverse: 5′- CATACCAGGAAATGAGCTTGACAA -3′

Gus-B forward: 5′- AGCCGCTACGGGCGTCG -3′

Gus-B reverse: 5′- GCTGCTTCTTGGGTGATGTCA -3′

Pgk-1 forward: 5′- TACCTGCTGGCTGGATGG -3′

Pgk-1 reverse: 5′- CACAGCCTCGGCATATTTCT -3′

Dusp2 forward: 5′- CCGAGGGTTCCGATCTATGA -3′

Dusp2 reverse: 5′- TAGGGCAAGATTTCCACAGG -3′

mRNA Sequencing Data
Hippocampal neurons where treated or not 30min with
Cholesterol oxidase (10 IU/ml) after 1 h treatment either with
DMSO or the broad p38MAPK inhibitor SB203580 (20µM).
Total RNA was extracted as described for Relative RT-PCR. A
differential gene expression analysis of the RNA extracted was
performed by GATC Biotech (InView Transcriptome Advance;
GATC Biotech) on a Genome Sequencer Illumina HiSeq2500
(HiSeq Rapid Run, 50 bp paired end). Gene expression was
analyzed using the Bowtie, TopHat, Cufflinks, Cuffmerge,
Cuffdiff software suite.

For the subsequent biocomputational analyses, the
differentially expressed rat genes were converted into the
corresponding human equivalent UniProt reviewed protein
according to the following steps: (i) UniProt ID automatic
crossing of the rat proteins with human proteome with
corresponding databases (57), (ii) gene name automatic
crossing of the rat genes with human genes (Gene Name in
UniprotKB database) and (iii) Manual Blast (58), selecting the
best reviewed match presenting at least an identity value ≥70%
and E-value 10−6.

Artificial Neural Network (ANN) Score
Analysis
The possible molecular relationship between the differentially
expressed genes and apoptosis and survival was evaluated
by means of artificial neuronal networks (ANNs), following
TPMS technology protocols (59, 60). This approach involves
the generation of mathematical models of the biological
processes through the use of artificial intelligence techniques,
a methodology involving three steps: (i) the molecular
characterization of apoptosis and survival according to
bibliography to identify key effector proteins currently associated
with these processes (databases: PubMed, ScienceDirect and
Scopus), (ii) the generation of a protein-protein map (physical
interactions or functional relationships) around these key
effectors using information stored in public databases (e.g.,
Reactome, MINT, BioGrid) and (iii) the transformation of the
protein map into mathematical models by training it with a
collection of known input-output physiological signals was
used obtained from literature mining and a compendium
of databases that accumulates biological and clinical
data (61).

Then, mathematical models of apoptosis and survival were
solved by ANNs, which are supervised algorithms that identify
relationships between the different nodes in the network. ANN
analysis yields a score for each differential gene based on the
validations of the prediction capacity of the mathematical models
toward known drugs and diseases, as described in databases.
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The higher the score, the stronger is the predicted mechanistic
relationship between the evaluated protein and the biological
process. Each score is associated with a p-value that describes the
probability of the result being a true positive one.

Immunofluorescences
Immunofluorescences were performed according to standard
procedure. Briefly, brains were perfused with PBS and postfixed
in 4%PFA-PBS, cryoprotected and cut sagittal at 40µm at
the cryostat. Sections were incubated with rabbit anti-DUSP2
antibody (SAB4300841, Sigma-Aldrich) diluted 1/100 in 2%BSA-
0.1%TritonX100-PBS at 4 degrees for 48 h; next, with a donkey
anti-rabbit antibody conjugated with Alexa555 (ThermoFisher,
A-31572) diluted 1/500 and DAPI 1/2000 (Merck, 268298) in
2%BSA-0.1%TritonX100-PBS. Pictures were taken in identical
conditions for the various samples on a microscope Zeiss
Cell Observer, with a camera ORCA-Flash4.0 LT sCMOS
(C11440-42U) (Hamamatsu). For low magnification we used
a 5X/0.15 Plan-Neofluar dry; for high magnification, 25X/0.8
Plan-Neofluar Oil. Images were processed with ImageJ software
to adjust luminosity with identical parameters for control and
experimental conditions. The look-up-table “Fire” of ImageJ was
used for color coding.

Statistical Analyses
Statistical analyses were performed with Graphpad Prism 5
(Graphpad Software Inc.). All values of the independent
experiments are presented as mean ± S.E.M. (standard error of
the mean). The numbers of biological replicates are indicated
in each figure. Data normality and variances were tested by
Shapiro-Wilk test. Student’s t-test was used for statistical analysis
of parametric data. Mann-Whitney U-test was used for non-
parametric data. Asterisks in the figures indicate p-values as
follows: ∗ <0.05; ∗∗ <0.01; ∗∗∗ <0.001.
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Figure S1 | Regulation of cholesterol loss-dependent p38MAPK activation in

hippocampal neurons. (A) Western blots showing p38MAPK (p38) activation

(phosphorylation of residues T180/Y182) in hippocampal neurons in culture after

cholesterol removal in presence or absence of antioxidants (referred as Antiox.;

N-Acetyl-L-Cysteine 5mM and Glutathione reduced 5mM) incubated 15min

previous to Choox treatment. (B) Western blots of hippocampal neurons in culture

show p38MAPK phosphorylation in residues T180/Y182 upon cholesterol

depletion in presence or absence of calcium chelator BAPTA-AM (10µM) 1 h

incubation before Choox treatment. (C) Blot analysis, in cultured hippocampal

neurons, of p38MAPK activating marks (phosphorylated T180/Y182) using PKC

(H89 50µM, left images) or PKA (Chelerythrine 10µM, referred as Chelery., right

images) inhibitors 1 h previous to cholesterol removal treatment. Numbers in bars

reflect number of independent experiments. Data are represented as mean ±

SEM. The asterisks indicate the p-values (∗p < 0.05; ∗∗ p < 0.01;

ns, not significant).

Figure S2 | Identification of RTKs activated by cholesterol loss in hippocampal

neurons. Detail of the RTKs protein array (Cells signaling ref.: #7982) top part left,

showing an example of RTKs whose activity state is being modified by cholesterol

loss (after incubation with Choox) in hippocampal neurons in culture. Magnification

of some representative examples are shown on the top-right part of the figure. The

graphics at the bottom of the figure show how the activity state of the

representative RTKs change upon cholesterol depletion in hippocampal neurons

in culture.

Table S1 | The list of the genes differentially expressed in the comparisons Ctrl vs.

Choox, Ctrl vs. Choox+SB203580 and Choox vs. Choox+SB203580, according

to the analysis of the RNA sequencing experiment in hippocampal neurons in

culture. Gene ID, fold change, p-value and q-value of the comparisons are

included in the tables. The RNA sequencing experiment was performed in cells

treated for 30min with Choox for cholesterol removal, as previously described.

Cells were treated or not 1 h before with a known p38MAPK inhibitor (SB203580,

20µM) in order to determine the effect of p38MAPK cholesterol loss-dependent

upregulated activity on the changes observed in genes expression.
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