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Infections in the post-acute phase of cerebral ischaemia impede optimal recovery

by exacerbating morbidity and mortality. Our review aims to reconcile the increased

infection susceptibility of patients post-stroke by consolidating our understanding of

compartmentalised alterations to systemic immunity. Mounting evidence has catalogued

alterations to numerous immune cell populations but an understanding of the

mechanisms of long-range communication between the immune system, nervous

system and other organs beyond the involvement of autonomic signalling is lacking. By

taking our cues from established and emerging concepts of neuro-immune interactions,

immune-mediated inter-organ cross-talk, innate immune training and the role of

microbiota-derived signals in central nervous system (CNS) function we will explore

mechanisms of how cerebral ischaemia could shape systemic immune function. In this

context, we will also discuss a key question: how are immune requirements critical for

mediating repair of the ischaemic insult balanced by the need for anti-microbial immunity

post-stroke, given that they are mediated by mutually exclusive immune networks? Our

reformed understanding of the immune landscape post-stroke and novel mechanisms

at play could guide targeted therapeutic interventions and initiate a step-change in the

clinical management of these infectious complications post-stroke.

Keywords: cerebral ischaemia, post-stroke infection, systemic immunity, innate immune training,

neuroimmunology

Ischaemic stroke imposes a significant burden on health-care systems and societies across the
globe as a consequence of the morbidity and mortality associated with the condition (1, 2). In
addition to neurological deficits, infectious complications such as pneumonia and urinary tract
infections post-stroke also pose a hurdle to optimal recovery, affecting a significant proportion of
patients and exacerbating mortality risk (3–7). Despite significant leaps in our understanding of
key players in the immune response post-stroke (8–19) and biomarkers of infection (4, 20, 21),
therapy using statins (for immunomodulation), prophylactic beta-blockers (to target sympathetic
activation), and antibiotics (to control infection) have proved ineffective in treating infection
(22–26). Equally, attempts to improve stroke outcome using neuroprotective therapies to harness
the immune system such as dexamethasone, erythropoietin, and many others have been met with
limited success in the clinic; in part, due to undesirable effects on systemic immunity. Yet, the
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question of whether drugs that possess immunomodulatory
properties can be purposed for stroke patients remains to be
resolved (27). What is clear, however, is the onset of a plethora
of immunological alterations involving diverse immune cells and
tissues that is essential for both neurological recovery as well
as the occurrence of systemic infections through impairments
in anti-microbial immunity (13). In this review, we collate
previously described alterations to systemic immunity, and
delineate how long-range communication between the CNS and
the periphery shapes immune control by taking our cues from
data that does not examine stroke. We will finally examine
whether the cost of tissue repair (of the ischaemic damage)
is impairment in anti-microbial immunity and consequently,
increased infection susceptibility.

THE SYSTEMIC IMMUNE LANDSCAPE OF
STROKE

To date, there is a wealth of information surrounding the
spectrum of immune alterations that ensue following a stroke
in both patients as well as models of experimental stroke.
The onset of immunological alterations in the central nervous
system (CNS) is sequential; neutrophils are recruited hours after
stroke by activated microglia and endothelial cells, followed by
monocytes a few days following the insult, whilst T and B cells
infiltrate the ischaemic tissue in the succeeding weeks (28–32).
This contrasts immune alterations in peripheral tissues where
stroke drives alterations to the hepatic cytokine networks as
early as 6 h post-stroke whilst other systemic immune effects
present 24 h post-stroke, affecting both myeloid and lymphoid
populations (12, 14, 17, 33–35). However, the mechanisms
by which these rapidly-elicited immune changes morph into
immune suppression remain poorly defined.

As well as directly altering immune networks, stroke-driven
systemic cytokine signals have also emerged as key players that
have been implicated to have divergent effects on outcome
following stroke (16, 36, 37). Importantly, hepatic interleukin
(IL)-6 and chemokine (C-X-C motif) ligand 1 (CXCL1) drive
a rapid and transient inflammatory response (35, 38) whilst
primed splenocytes secrete tumour necrosis factor (TNF)-α,
interferon (IFN)-γ, chemokine (C-C motif) ligand 2 (CCL2) and
IL-2 (39); and granulocyte colony stimulating factor (G-CSF)
mobilises monocytes and neutrophils from the bone marrow
following experimental stroke (40, 41). Moreover, stroke has
also been shown to compromise humoral responses through the
induction of hypogammaglobulinaemia via the excretional loss
of immunoglobulin (Ig) G and impairments in innate-like B cell
responses facilitating IgM loss (12, 42).

Many groups have implicated the loss of lymphocytes (T and
natural killer (NK) cells), termed lymphopenia, in circulation as a
central feature of stroke-induced immune suppression in patients
(43–45), a hallmark also replicated in experimental stroke (14,
45, 46). It is thought that the remaining T lymphocytes are also
fundamentally altered, being primed to mount a type-1 response
through increased IFN-γ and IL-2 production even years after
the ischaemic insult (47). In fact, experimental models of stroke

have also demonstrated that CD4+ T cells in Peyer’s patches
(lymphoid tissue in the small intestine) of mice are primed to
secrete increased levels of IL-17 and IFN-γ (15). Similarly, there is
also an activation of innate lymphocytes such as invariant natural
killer T cells (iNKT) cells in the liver in tandem with a cessation
of their patrolling behaviour in the sinusoids (48). Additionally,
stroke also leads to the apoptotic loss of splenic marginal zone
B cells (12) whilst their loss in the blood and bone marrow is
predominantly driven by alterations in lymphopoiesis (49).

As such, even innate immune responses are compromised
in stroke patients with impairments in the oxidative burst
of neutrophils (34) as well as shifts in the proportions and
properties of monocyte populations (9, 17, 50, 51). Specifically,
as classical and intermediate monocytes expand within the
circulating monocyte pool (50, 51) they accrue deficiencies in
their anti-microbial immunity as evidenced by their shedding of
CD163, tolerance to endotoxin and their inability to secrete key
cytokines such as TNF-α, IL-6, and CCL2. These monocytes, also
through their increased secretion of IL-10 and downregulation
of human leukocyte antigen-DR isotype (HLA-DR) thus acquire
an immune suppressed state (16, 17, 33, 46, 52–54). That said,
CD74, the invariant polypeptide chain associated with the HLA
complex is upregulated in the peripheral blood mononuclear
cells of patients (55). Despite being capable of processing
and transporting antigens, monocytes, nevertheless, are not
professional antigen-presenting cells (56, 57). Consequently, it
remains to be determined if the loss of HLA-DR functionally
impacts these monocytes in their ability to prime T cell
responses post-stroke. Indeed, murine models of experimental
stroke have also implicated impairments in monocyte function
with an increase in splenic monocytes; both macrophages and
monocytes in the spleen downregulate their expression of major
histocompatibility complex II (MHCII) (58, 59). By contrast, the
role of non-classical monocytes following stroke is less clear in
both patients and experimental models of stroke (60, 61).

THE DYNAMIC INTERACTIONS BETWEEN
THE CNS AND SYSTEMIC IMMUNITY IN
STROKE

Thus far, we have discussed compartmentalised alterations to
systemic immunity post-stroke. In this section, we shall highlight
how recruited immune cells interface with locally resident cells
and the milieu of cytokines following ischaemic injury in stroke.
The identification of meningeal lymphatics in the dural sinuses
of the CNS (62, 63) as well as previously undescribed subsets
of CNS-resident immune cells such as type 2 innate lymphoid
cells (ILC2) (64) has reformed our understanding of immunity
in the CNS and its frontiers. It is particularly salient to probe the
role of these ILC2s post-stroke given their established function
in mediating type 2 immunity (65–69) and the critical role of
type 2 immunity in mediating tissue repair (70–73). Essentially,
type 2 immunity is an ancient arm of the immune system that is
mobilised during infection by multicellular metazoan parasites
such as helminths that can drive tissue injury as they develop
in the host (70, 74, 75). Characterised by the cytokines IL-3,
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IL-4, IL-5, IL-9, IL-10, and IL-13, it can be orchestrated by
a large repertoire of cells including expanded populations of
macrophages, T cell, ILCs, and other sentinels of tissue injury to
mediate tissue repair in parallel with parasite expulsion (73, 76,
77). As a result, it becomes important to appreciate the reciprocal
regulation that exists between the CNS and systemic immunity in
homeostasis (78–80) and how injury to the brain modulates this
cross-talk during stroke.

Local cytokine cues facilitate neutrophil recruitment to
the ischaemic hemisphere as early as 6 h post-stroke in an
intercellular adhesion molecule-1-dependent manner (28, 81).
Neutrophils are thought to exacerbate the initial injury through
the release of proteases and neutrophil extracellular traps
(NETs) that exert neurotoxic effects (82, 83). In particular, the
release of matrix metalloproteinase-9, a gelatinase, is thought
to compromise the integrity of the blood-brain barrier (BBB)
(84, 85) and promote the development of oedema (86). Despite
being short-lived, it is thought that neutrophils can take on
polarisation states through the acquisition of Ym1 and CD206
expression which has been suggested to be important for their
clearance and the resolution of inflammation post-stroke (87).

The role of microglia through their interaction with
peripherally-derived leukocytes adds an extra layer of complexity
as they are double-edged swords with the capacity to propagate
and curtail inflammation, and support neurogenesis (88, 89).
Through the acquisition of a classically activated state as a
result of astrocytic signals and/or microglial CD8 signalling,
they secrete pro-inflammatory cytokines including TNF-α, IL-
1α that induce neurotoxic astrocytes (90) and disrupt the
integrity of the BBB post-stroke (91). By contrast, they are also
capable of limiting neuroinflammation by restraining neutrophil
recruitment through the effects of transforming growth factor
(TGF)-β on astrocyte-derived CXCL1 (92), limiting neuronal
excitotoxicity (93) as well as myelin auto-reactivity (94).

Being one of the first responders to injury or infection
(95–97), it comes as no surprise that monocytes are rapidly
recruited from the periphery to the ischaemic brain post-stroke
(9, 19, 31, 79). Whilst they can infiltrate the brain parenchyma
through a breached BBB (98), studies have also demonstrated
that the choroid plexus is another means of access to the CNS
(95, 99). By employing the CD73 enzyme for extravasation and
transmigration, monocytes are thought to infiltrate the CNS via
the choroid plexus through interactions between the vascular
cell adhesion molecule 1 (VCAM-1) and very late antigen-4
(VLA-4). In the CNS, monocytes are an acute source of pro-
inflammatory cytokines that drive neuroinflammation following
which the milieu of cytokines directs their differentiation into
macrophages with features of alternative activation such as
arginase-1 and Ym1 expression to mediate tissue repair (61,
100–103). Nevertheless, the interactions between microglia and
monocyte-derived macrophages are indispensable for restraining
and resolution of long-term microglial inflammation (61, 104)
and promoting neurological recovery in diverse settings of CNS
injury (95, 99). Despite their ability to engraft in this niche
and mediate repair in contexts of inflammation, studies have
shown that these monocyte-derived macrophages maintain a
distinct transcriptional identity and cannot replenish microglia

(105–107). Although this has been ascribed to the embryonic
origins of microglia that are seeded from the yolk sac (108–110),
the dynamics of this niche remain unclear in stroke.

Amongst leukocytes recruited to the infarcted brain, T cells
are one of the last responders and their dynamics are equally
complex with studies suggesting that their functions in situ are
influenced by not just the subset but also the route of entry
into the CNS (8, 111, 112). It is thought that γδ T cells gain
access to the injured brain through the leptomeninges in a C-
C chemokine receptor (CCR) type 6-dependent manner (8, 113,
114) meanwhile other T cells can access the CNS through the
choroid plexus (112) in addition to migrating across a breached
BBB (111). Consequently, γδT cells exacerbate ischaemic damage
through their production of IL-17 (8, 113, 114) whilst CD4+ T
cells can take on a type 2 activation state andmediate tissue repair
through the production of IL-4 in synergy with macrophages
(72, 73, 111).

In conjunction with the previously described alterations to
systemic immunity it can thus be observed that stroke initiates
a complex cycle of events in the ischaemic brain that shapes
immunity and inflammation at distal sites. The notion that
inflammation at one site can affect other sites is not a new
concept as studies have demonstrated that infection-driven
inflammation or antigenic challenges in the lungs are capable of
promoting the homing of CD4+ T cells to the gastrointestinal
tract where they can drive pathology or protective immunity
(115, 116). In this paradigm, it is worth noting that γδ T
cells are recruited from the intestinal tract (8) where stroke
also modulates inflammation in the Peyer’s patches whilst
driving shifts in microbial communities (15). It can therefore be
observed that by fuelling neuroinflammation, ischaemic damage
concurrently shapes immune networks in peripheral tissues such
as the blood, bone marrow, and spleen that in turn amplify
neuroinflammation and inter-organ cross-talk.

THE REACHES OF STROKE: MEANS OF
IMMUNE CONTROL

Given the diverse range of immune alterations elicited by stroke,
it is conceivable that long-range communication mechanisms
between the CNS and the peripheral immune system is
a prerequisite to mediating these effects. By employing
established and emerging immunological data that does not
investigate stroke, we will outline plausible mechanisms of how
inflammation and injury in the brain in the context of stroke can
shape immune networks at distal sites. Thus, we will highlight
possible mechanisms that cerebral ischaemia could utilise to
effect compartmentalised changes to systemic immunity and add
to the concepts of autonomic dysfunction by suggesting avenues
of research (Figure 1).

Autonomic Signalling
Mounting evidence has ascribed the alterations in systemic
immunity to be consequence of increased autonomic signalling,
particularly an over activation of the sympathetic nervous system
(SNS) through the excessive release of catecholamines, in both
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FIGURE 1 | The spectrum of systemic immune alterations post-stroke and the potential mechanisms exploited by stroke to mediate these long-range effects. Stroke,

through its effects on autonomic and HPA axis activation, innate immune training, and microbial communities in the gut can gain access to various tissues to shape

the systemic immune landscape, affecting cellular, and cytokine networks. Acting in synergy, these means of long-range communication modulate the frequency and

functional responsiveness of a plethora of immune cells, tuning the quality of the immune response elicited in various tissues in response to CNS injury. CCL2,

chemokine (C-C motif) ligand 2; CXCL1, chemokine (C-X-C motif) ligand 1; IFN-γ, interferon- γ; HPA, hypothalamic-pituitary-adrenal; IL, interleukin; iNKT cell, invariant

natural killer T cell; NK cell, natural killer cell; SCFA, short chain fatty acids; SI, small intestine; TNF-α, tumour necrosis factor-α.

patients (43, 117, 118) and experimental stroke (12, 14, 48).
Studies have also implicated aberrant cholinergic input (45,
119, 120) and glucocorticoid signalling via the hypothalamic-
pituitary-adrenal (HPA) axis (14, 49, 121) in mediating systemic
immune dysfunction; again through the excessive release of
stress mediators such as cortisol and glucocorticoids into
the circulation. In addition to being shaped by circulating
catecholamines, many tissues that exhibit altered immune
profiles post-stroke such as the gut, lung, spleen, and bone
marrow are in fact hard-wired to the SNS (39, 122–125).
Mechanistically, it has been posited that neurogenic input from
autonomic signals as well as theHPA axis could calibrate systemic
immunity by the direct effects of stress mediators on immune
cells through adrenergic (126, 127), cholinergic (128, 129) and
glucocorticoid receptor signalling (130, 131). Intriguingly, the
phenomenon of immunosuppression driven by autonomic and

HPA axis-derived signals is not restricted to stroke but is also
observed in the broader context of CNS injury such as traumatic
brain and spinal cord injury (132–134). Hence, a broader
understanding of fundamental neuronal pathways linking the
CNS and immune system could guide therapeutic interventions
to alleviate infectious complications driven by CNS injury.

Innate Immune Training
Emerging evidence has highlighted the training of innate
immune responses by diverse stimuli such as pathogen-
associated molecular patterns or cytokines and consequently, the
development of immunological memory, a concept traditionally
confined to the realms of adaptive immunity (135–144). Given
the transient existence of innate cells such as monocytes and
neutrophils, it is thought that trained innate immunity is a
means to elicit a targeted and enhanced immune reaction
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to suit host requirements. This has been shown to drive
immunometabolic reprogramming via epigenetic rewiring (139,
141) or the replacement of these cells en masse through
the generation of functionally poised ones via alterations in
haematopoietic output (135, 144). To put this in the context of
stroke, recent work has demonstrated that microglial training
resulting from repeated administration of bacterial endotoxin
is capable of curtailing IL-1β secretion as well as microglial
activation (and hence neuroinflammation) following cerebral
ischaemia (136). Equally, it is plausible that stroke itself could
elicit the training of immune cells in the periphery through its
effects on the bone marrow. For example, it has been shown
that stroke increases the generation of classical monocytes as a
consequence of altered myelopoietic output post-stroke (40). As
the bone marrow receives rich sympathetic innervation, it can
be envisaged that stroke-driven autonomic signals could tune
myelopoiesis to facilitate tissue repair by transducing signals
through distinct adrenergic receptor subtypes (125, 145–148).
Therefore, the predisposition to repair and replace the entire
pool of monocytes and the duration of these changes could
impact infection susceptibility as well as the response to a
subsequent stroke.

Microbiota-Derived Signals
The interaction of stroke with the commensal microbiota
in the gastrointestinal tract is extremely nuanced. Not only
does the commensal microbiome play a role in shaping
stroke outcome (despite the precise effect being unclear)
(8, 15, 18, 149–152) but stroke also mediates shifts in key
microbial communities like Firmicutes and Bacteroidetes (153).
In homeostasis, the microbiome itself calibrates immunity within
the gut microenvironment as well as distal sites through the
symbiotic relationship of diverse microbial communities with
immune networks by means of microbial metabolites (154–
157). In light of data suggesting a detrimental effect of the gut
microbiota on stroke outcome (assessed by infarct volume) as
well as their role in seeding bacteria that drive pneumonia (8,
149), it therefore becomes difficult to reconcile how commensal
bacteria mediate such effects given their indispensable roles
in calibrating immunity in homeostasis and injury (158–163).
Nevertheless, it is conceivable that the leakiness of the gut barrier
induced by stroke (15) could promote the systemic dissemination
of pathobionts such as Enterococcus spp., Escherichia coli,
and Morganella morganii (149) or result in shifts in key
microbial communities that could directly impact systemic
immune networks and consequently, stroke outcome (153).
Equally, microbial metabolites such as short-chain fatty acids
for example, butyrate and propionate are capable of modulating
myelopoietic output (increasing the generation of functionally
poised monocytes, macrophages and dendritic cells), indicating
their ability to train innate immune responses as well (156,
157). In light of these data, it is reasonable to hypothesise that
stroke, by shaping gut microbial communities, could also train
myeloid responses through the generation of primed progenitors,
simultaneously influencing immune networks, shaping both
infarct repair and infection susceptibility in distal tissues such as
the lungs and bone marrow. However, the precise contributions

of stroke in driving shifts in microbial communities and innate
immune training remain to be elucidated.

A BALANCING ACT: ISCHAEMIC INJURY
REPAIR VS. ANTI-MICROBIAL IMMUNITY

Thus far, we have summarised the plethora of effects that stroke
has on systemic immunity as well as the means it employs
to shape immune function, taking our cues from established
and emerging immunological evidence. Taken together, the
net effect of the immune alterations elicited by stroke appear
to facilitate the repair of the ischaemic insult given that
both mononuclear phagocytes as well as T cells appear to
adopt an alternatively activated state (14, 31, 61). This is
unsurprising as a large body of evidence has identified critical
roles for type 2 immunity in mediating tissue repair, a response
conserved across vertebrates (74, 75, 164–166). Studies have
shown that type 2 cytokines such as IL-4 and IL-13 promote
the alternative activation of macrophages via the expression of
molecules such as arginase and Ym1 and facilitate collagen fibril
assembly (70, 72, 73, 167). However, mononuclear phagocytes
with the predisposition to take on an alternatively activated
fate remain in circulation and police the immune responses
in various tissues but their plasticity, and hence ability, to
classically activate and then mediate antimicrobial immunity is
questionable. This is due to the fact that the transcriptional
and epigenetic landscapes that drive classical and alternative
activation, at least in macrophages, are mutually opposing (168).
Although tissue-resident macrophages can reversibly polarise
in a GATA6-dependent manner (169), whether these principles
apply to monocytes and in the context of stroke requires
further investigation.

Viewing the paradigm from the vantage point of an
immunologist raises some pertinent questions. Is the cost of
repairing the ischaemic damage an impairment of antimicrobial
defences? Are the various effects on systemic immunity a means
to dampen immune responses to antigens that are now exposed
to the immune system through a breached BBB following a
stroke? Intriguingly, studies have identified that some contexts
of stroke (170–174) and other settings of spinal cord (132)
and traumatic brain injury (175–177) could also initiate auto-
immunity through antibodies to myelin-derived proteins. As a
result, immunosuppression post-stroke could be construed as
a means to dampen debilitating auto-immunity post-stroke by
skewing immunity towards a type 2 phenotype and limiting the
splenic B cell pool to constrain humoral and T cell-mediated
immunity towards exposed brain antigens. The simultaneous
autonomic activation could educate monocytes to take on
features of alternative activation in order to augment repair of
the injured brain tissue prior to entry though alterations in
haematopoiesis in the bonemarrow. An inadvertent consequence
of this cascade could be increased infection susceptibility due
to inadequate plasticity in the polarisation fate acquired during
generation. Thus, the systemic availability of poisedmononuclear
phagocytes could underpin impaired antimicrobial defences in
the lungs but it remains to be determined if this is indeed the case.
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CONCLUDING REMARKS

Data from clinical and pre-clinical paradigms of stroke highlight
a diverse range of effects on systemic immunity that can be
mediated directly and indirectly by the ischaemic damage.
An appreciation of not just the changes themselves but the
means employed to elicit them could inform the choice of
viable therapies to mitigate infections post-stroke by digressing
from traditional choices of antibiotics and beta-blockers. It is
therefore imperative we re-examine data from clinical trials
of immunotherapy in settings of auto-immunity and cancer
to appreciate the remit of immunotherapy. By taking cues
from these studies, the clinical trials of immunomodulatory
therapies in stroke could provide insight into the fundamental
mechanisms at play and more importantly, the suitability
of immunotherapies for bolstering neuroprotection and
antimicrobial immunity in stroke. This in turn could guide

approaches for targeted therapies in the clinical management
of neuroprotection and infection to improve outcome
following stroke.
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