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Background: Like the brain, the human inner ear was long thought to be devoid of

immune activity. Only the endolymphatic sac (ES) was known to be endowed with white

blood cells that could process antigens and serve as an immunologic defense organ

for the entire inner ear. Unexpectedly, the cochlear and vestibular organs, including the

eighth cranial nerve, were recently shown to contain macrophages whose functions and

implication in ear disease are somewhat undefined. Here, we review recent inner ear

findings in man and extend the analyses to the vestibular nerve using super-resolution

structured illumination microscopy (SR-SIM).

Materials and Methods: Human ESs and cochleae were collected during surgery to

treat patients with vestibular schwannoma and life-threatening petro-clival meningioma

compressing the brainstem. The ESs and cochleae were placed in fixative, decalcified,

and rapidly frozen and cryostat sectioned. Antibodies against ionized calcium-binding

adaptor molecule 1-expressing cells (IBA1 cells), laminin β2 and type IV collagen TUJ1,

cytokine fractalkine (CX3CL1), toll-like receptor 4 (TLR4), CD68, CD11b, CD4, CD8, the

major histocompatibility complex type II (MHCII), and the microglial marker TEME119

were used.

Results: IBA1-positive cells were present in the ESs, the cochlea, central and peripheral

axons of the cochlear nerve, and the vestibular nerve trunk. IBA1 cells were found in

the cochlear lateral wall, spiral limbus, and spiral ganglion. Notable variants of IBA1

cells adhered to neurons with “synapse-like” specializations and cytoplasmic projections.

Slender IBA1 cells occasionally protracted into the basal lamina of the Schwann cells and

had intimate contact with surrounding axons.

Discussion: The human eighth nerve may be under the control of a well-developed

macrophage cell system. A small number of CD4+ and CD8+ cells were found in the

ES and occasionally in the cochlea, mostly located in the peripheral region of Rosenthal’s

canal. A neuro-immunologic axis may exist in the human inner ear that could play a role

in the protection of the auditory nerve. The implication of the macrophage system during

disease, surgical interventions, and cell-based transplantation should be further explored.
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INTRODUCTION

The human inner ear and its immune activity are difficult
to study because it is surrounded by the hardest bone in
the body. In fact, the inner ear was long thought to lack
immune activity. Immune cells were restricted to the so-called
endolymphatic sac (ES), a membranous appendage situated on
the posterior slope of the petrous pyramid at some distance
from the sensory regions (Figure 1A). The ES contains white
blood cells that populate the sub-epithelium and its lumen,
and this was exquisitely described by Stacey Guild already in
1927 (1). He managed to maintain the integrity of the ES
borders with luminal contents. Various types of leucocytes were
observed and later analyses using ultrastructure showed signs
of lymphocyte–macrophage interaction and mature plasma cells,
suggesting an ongoing immune activity (2, 3). Hypothetically,
antigens could reach this area from the respiratory mucosa of
the middle ear, cochlear aqueduct, (4) or the vascular system
(Figure 1B). A possible entry could be the round window that
is enclosed by a thin membrane (<0.1mm). The human inner
ear tissue is extremely vulnerable and needs protection from
pervasive infectious intrusions. Experimental results suggest that
the ES may collect and neutralize noxious substances but can
also exert secondary immune activity (5). Ablation of the ES
has been shown to diminish this safeguard and to result in an
increased vulnerability (6). Nevertheless, experiments suggested
that immune responses are not entirely dependent on the ES.
Specific immunity, after antigenic challenge, can be detected in
the cochlea even after its ablation, but to a reduced extent (6).
This indicates that antigen-presenting cells can also be present
in the cochlea (7). Morphologic evidence of immune activity
in the human ES was presented by Bui et al. (8). Recently, the
immunological capacity of the ES was described through gene
arrays (9).

New microscopic techniques have increased our concept
of the molecular organization of the human inner ear.
Immunohistochemistry was performed using super-resolution
structured illumination microscopy (SR-SIM) of well-fixed
specimens after mild decalcification (10–12). The ion channel
machinery of the lateral wall (“cochlear battery”) was recently
analyzed (10, 13). Immune localization of IBA1-positive
macrophages was made in the cochlea and ES (12, 14). This
verified the existence of a multitude of macrophages in the
human inner ear as previously demonstrated by light microscopy
and immunostaining of celloidin sections of temporal bones (15).
Here, we extended the analysis of the human ES, cochlea, and
cochlear and vestibular nerves and ganglia (12, 14). We further
analyzed CD4 and CD8 lymphocytes in the cochlea (16) and the
ES. This study was a collaboration between neuro-otologists and
cell biologists at the University Hospital of Uppsala, Sweden.

Abbreviations: CI, cochlear implant; E, endolymph; EDTA, ethylene-diamine-

tetra-acetic acid; IBA1, ionized calcium-binding adaptor molecule 1; MHCII,

major histocompatibility complex type II; SR-SIM, super-resolution structured

illumination fluorescence microscopy; ST, scala tympani; StV, stria vascularis;

SV, scala vestibuli; TEM, transmission electron microscopy; ES, endolymphatic

sac; PBS, phosphate-buffered saline; BSA, bovine serum albumin; TLRA, toll-like

receptor; TCL, tympanic covering layer; OC, organ of Corti; VGCs, vestibular

MATERIALS AND METHODS

Ethics Statement
Human cochleae were collected during trans-cochlear surgery
to remove life-threatening petro-clival meningioma compressing
the brainstem. To completely remove the tumors, a petrosectomy
was performed that included a postero-inferior re-routing of
the facial nerve. Instead of drilling the cochlea away, it was
dissected out after approval from the ethical committee and
the patient after written consent. The cochlea was immediately
fixed according to the techniques described earlier (10, 17, 18).
The study of human cochleae was approved by the local ethics
committee (Etikprövningsnämnden Uppsala, no. 99398, 22/9
1999, cont. 2003, no. C254/4; no. C45/7 2007, Dnr. 2013/190)
and the patients. Written information was given to patients
operated for petro-clival meningioma. The patients ranged from
40 to 70 years of age. Their hearing thresholds (pure tone
audiometry) were normal, except in a few cases where frequencies
showed slightly increased thresholds. At vestibular schwannoma
surgery, the ES is routinely drilled away and wasted. The ethical
committee approved that such tissue could be collected and
directly analyzed histologically without storing personal data.

Preparation of Human Tissue
Studies of the human cochlea are particularly challenging
due to its vulnerability and fixation difficulties because of its
encapsulation by hard bone. Five cochleae were dissected out
using diamond drills of various sizes in standardized surgical
procedures. An experienced surgeon with the assistance of
instrumental nurses was allowed to handle the specimens and
delivered them to the fixative. Unless stored according to the
Swedish biobank law, no data on the age, gender, or audiometry
of the patients can be retrieved. After the cochleae were
dissected from the surrounding bones, they were diluted in 4%
paraformaldehyde with 0.1M phosphate-buffered saline (PBS)
(pH 7.4). The cochleae, transferred from the operating room
to the laboratory, were kept in ample fixative fluid for 24 h
at 4◦C. Next, the specimens were washed in 0.1M PBS and
then placed in 10% Na-ethylene-diamine-tetra-acetic acid (Na-
EDTA) solution at pH 7.2 for decalcification. The Na-EDTA
solution was renewed every 2 days until the decalcification
process was complete, which took ∼3 weeks. The decalcified
cochleae were rinsed with PBS and placed in 25% sucrose in
PBS overnight (4◦C). The cochleae were embedded in Tissue-
Tek O.C.T. (Polysciences, Inc.), rapidly frozen in dry ice, and
sectioned at 8–10µm using a cryostat microtome (Leica, Tokyo,
Japan). The cryo-sections were collected onto gelatin/chrome-
alum-coated slides and stored in a freezer at −70◦C before
immunohistochemistry was conducted. The ESs were removed
with a small rim of bone around the soft tissue. This tissue
is normally drilled away during the routine trans-labyrinthine
procedure to remove vestibular schwannomas.

ganglion cells; CI, cochlear implant; MVBs, multi-vesicular bodies; FN, facial

nerve; IAM, internal acoustic meatus; Na-EDTA, sodium-ethylene-diamine-tetra-

acetic acid; DAPI, 4′,6-diamidino-2-phenylindole dihydro-chloride; SG, spiral

ganglion. SGCs, spiral ganglion cells; RC, Rosenthal’s canal. CX3CL1, CX3C

chemokine ligand 1; Sch, Schwann cells. Col. IV, collagen IV.
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FIGURE 1 | (A) Micro-CT, 3D reconstruction of a left human inner ear silicone mold. The ES (red) is located on the posterior slope of the petrous pyramid. It is

connected to the rest of the inner ear through the endolymphatic duct. Inset shows the intra-cranial view of the ES. (B) Hypothetical representation of scavenger and

foreign substance uptake in the human ES. CA, cochlear aqueduct; IAM, internal acoustic meatus; FN, facial nerve; TC, tympanic chorda; MHCII,

major histocompatibility complex class type II. APC, antigen-presenting cell.

Antibodies and Immunohistochemistry
Table 1 shows the antibodies used in the present study. The
immunohistochemistry procedures performed on the sections
have been described in previous publications (19–21). Briefly,
the slide-mounted sections were incubated with an antibody
solution under a humidified atmosphere at 4◦C for 20 h. After
rinsing with PBS three times for 5min each, the sections
were incubated with secondary antibodies conjugated to Alexa
Fluor 488, 555, and 647 (Molecular Probes, Carlsbad, CA,
USA), counter-stained with the nuclear stain 4′,6-diamidino-2-
phenylindole dihydro-chloride (DAPI; Thermo Fisher Scientific,
Waltham, MA, USA) for 5–7min, rinsed with PBS (3 × 5min),
mounted with ProLong R© Gold Antifade Mountant (Thermo

Fisher Scientific), and covered with the specified cover glass
required for optically matching the SIM objectives. Primary
and secondary antibody controls and labeling controls were
performed to exclude endogenous fluorescence or unspecific
reaction products. As a routine control, sections were incubated
with 2% bovine serum albumin (BSA), omitting the primary
antibodies. The control experiment revealed no visible staining
in any structure of the cochleae.

Imaging and Photography
To analyze sections, we used the methods earlier described by
Liu et al. (14) The stained sections were first investigated with
an inverted fluorescence microscope (Nikon TE2000; Nikon,
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TABLE 1 | Antibodies used in this study.

Primary

antibody

Type Dilution Host Catalog number Producer

IBA1 Polyclonal 1:100 Rabbit PA5-27436 Thermo Fisher, Waltham, MA,

USA

MHCII Monoclonal 1:100 Mouse MA5-11966 Thermo Fisher

Collagen IV Polyclonal 1:10 Goat AB769 Millipore, Burlington, VT, USA

CX3CL1 Monoclonal 1:50 Mouse MAB3651-100 R&D Systems, Minneapolis, MN,

USA

CD11b Monoclonal 1:50 Rabbit AB52478 Abcam, Cambridge, UK

CD4 Polyclonal 1:150 Goat AF-379-NA R&D Systems

CD8α Monoclonal 1:100 Mouse MAB1509 R&D Systems

CD68 Monoclonal 1:50 Mouse NB100-683 Novus, Littleton, CO, USA

TLR 4 Oligoclonal 1:10 Rabbit 710185 Thermo Fisher

Tuj 1 Polyclonal 1:200 Rabbit #04-1049 Millipore

Tuj 1 Monoclonal 1:200 Mouse MAB1637 Millipore

TMEM119 Polyclonal 1:50 Rabbit ab185337 Abcam

Secondary antibodies used were the following:

Anti-mouse IgG (H+L), Alexa Fluor 555 Polyclonal 1:400 Goat A21422, Invitrogen.

Anti-rabbit IgG (H+L), Alexa Fluor488 Polyclonal 1:400 Goat A11008, Invitrogen.

Anti-goat IgG (H+L), Alexa Fluor 488 Polyclonal 1:400 Donkey A21432, Invitrogen.

Anti-mouse IgG (H+L), Alexa Fluor 488 Polyclonal 1:400 Donkey A21202, Invitrogen.

Anti-rabbit IgG (H+L), Alexa Fluor 555 Polyclonal 1:400 Donkey A31572, Invitrogen.

Anti-goat IgG (H+L), Alexa Fluor 647 Polyclonal 1:400 Donkey A-21447, Thermo Fisher.

Tokyo, Japan) equipped with a spot digital camera with three
filters (for emission spectra maxima at 358, 461, and 555 nm).
Image-processing software (NIS Element BR-3.2; Nikon, Tokyo,
Japan), including image merging and a fluorescence intensity
analyzer, was installed on a computer system connected to
the microscope. For laser confocal microscopy, we used the
same microscope equipped with a three-channel laser emission
system. The optical scanning and image-processing tasks were
performed using Nikon EZ-C1 ver. 3.80 software (Nikon,
Tokyo, Japan) and included the reconstruction of Z-stack
images into projections and three-dimensional (3D) images.
SR-SIM, using an Elyra S.1 SIM system with a 63×/1.4 Oil
Plan-Apochromat objective (Zeiss, Oberkochen, Germany), a
sCMOS camera (PCO Edge), and ZEN 2012 software (Zeiss), was
performed to investigate the structures of interest. Multichannel
SR-SIM imaging was achieved with the following laser and
filter setup: 405 nm laser of excitation coupled with BP 420–
480 + LP 750 filter, 488 nm laser of excitation with BP
495–550 + LP750 filter, 561 nm laser of excitation with BP
570–620 + LP 750 filter, and 647 nm laser of excitation
with LP 655 filter. To maximize image quality, five grid
rotations and five phases were used for each image plane and
channel. The grid size was automatically adjusted by the ZEN
software for each wavelength of excitation. SR-SIM images were
processed with the ZEN software with theoretical point spread
function (PSF).

From the SR-SIM dataset, 3D reconstruction was performed
with an Imaris 8.2 (Bitplane, Zürich, Switzerland). A bright-
field channel was merged with fluorescence to visualize the cell
borders. The microscope is capable of achieving a lateral (X–Y)

resolution of ≈100 nm and an axial (Z) resolution of ≈300 nm
(11). The resolution of the SIM system in BioVis (Uppsala
University) was measured with sub-resolution fluorescent beads
(40 nm) (Zeiss) in the green channel (BP 495–550 + LP750).
An average PSF value was obtained from multiple beads with
the built-in experimental PSF algorithm of the ZEN software.
The typical resolution of the system was 107 nm in the X–Y
plane and 394 nm in the Z plane. Next, 3D reconstructions of
TUJ1 and IBA1 protein expression were conducted. Both signals
were reconstructed by a surface rendering mode using Imaris 8.2
software. SIM is a wide-field technique that is based on the Moire
effect of interfering fine striped patterns of excitation with sub-
diffraction features in the sample emission. This can be compared
with the confocal technique where the fluorescence light is
detected only at the focal plane. This results in doubling the
resolution and offers better possibilities to demonstrate proteins
at a subcellular level. Combined with confocal microscopy, these
techniques allow overviews of protein distribution in the tissue,
as well as a more detailed cellular localization.

RESULTS

SR-SIM of the Human ES (Figure 2)
Ionized calcium-binding adaptor molecule 1-expressing cells
(IBA1 cells) resided in the surrounding connective tissue
and epithelium of the human ES. Macrophages interacted
with other cells, showed migrant behavior, and expressed
markers that suggest their active role in the innate and
adaptive inner ear defense and tolerance (12). Macrophages,
as well as some epithelial cells in the human ES, expressed
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FIGURE 2 | (A) SR-SIM of CD4- and CD8-positive cells present in the perisaccular tissue. (B) Some cells express the toll-like receptor 4 (TLR4). (C) Sub-epithelial cell

interaction near the external aperture of the vestibular aqueduct. IBA1 cells interact (framed area) with cells strongly expressing MHCII. Cell nuclei show different

protein expression [from Kampfe-Nordstrom et al. (12) with permission]. (D) A sub-epithelial IBA1 cell contains a multi-vesicular body expressing MHCII.

major histocompatibility complex class type II (MHCII) mostly
in the apical membrane. SR-SIM also revealed expression
of toll-like receptor 4 (TLR4) in the cell membrane and
in the cytoplasm among the sub-epithelial cells in the
intermediate ES (Figure 2B). TLR4 was chosen since Møller
et al. recently showed TLR4 and TLR7 expressed on the
luminal side of the ES epithelium suggesting the ability to
identify and trap bacterial antigens and virus RNA within the
endolymphatic space (9). A few sub-epithelial cells expressed

CD68, which was occasionally co-expressed with IBA1. The
epithelium stained positive for the chemokine fractalkine.
The expression was diffuse and intracellular, and occasionally,
sub-epithelial fibrocytes also expressed fractalkine. Several
migrating cells expressed CD68 and CD11b together with
MHCII. Round cells expressing CD4 and CD8 were found
in the ES, with more CD4+ than CD8+ cells (Figure 2A).
Physical interaction between a CD4+ and an IBA1 cell
was observed.
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FIGURE 3 | (A) Immunofluorescence of IBA1 and collagen IV in the lateral wall of the apical turn of the human cochlea. Many perivascular IBA1 cells are seen in the

StV and few in the spiral ligament. (B) Confocal microscopy of the human StV. Framed area is magnified in (C). (C) SR-SIM of framed area in B. Cell co-express IBA1

and MHCII. The cell membrane expresses MHCII as well as cytoplasmic vesicles [(B,C) from Kampfe-Nordstrom et al. (12)]. (D) Confocal microscopy of spiral

ganglion with several surrounding IBA1 cells. SGC, satellite glial cell; Nu, type I cell nucleus; Col. IV, collagen IV; cap, capillary; E, endolymph.

IBA1 Cells in the Human Cochlea
SR-SIM demonstrated IBA1-positive cells in the lateral cochlear
wall, including the spiral ligament, scala vestibuli (SV) and
tympani (ST), spiral limbus, endosteum, tympanic covering
layer (TCL), and spiral lamina. Even the organ of Corti (OC)
occasionally contained active macrophages (14). In the lateral
wall, most IBA1 cells were found in the epithelium of the stria
vascularis (StV) near and around the blood vessels (Figure 3A).

The cells expressed MHCII (Figures 3B,C, insets). IBA1 cells
were present in the modiolus and cochlear nerve. A substantial
number of mesenchymal cells surrounding spiral ganglion (SG)
cells were in fact macrophages (Figure 3D) (14). The cells
did not express TMEM119. Many IBA1-positive macrophages
expressed MHCII in the StV and SG. The cells contained
cytoplasmic aggregates of MHCII, and their slender processes
often embraced the vessels. Fewer but similarly stained cells were
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FIGURE 4 | (A) SR-SIM of guinea pig brain showing IBA1-positive cells within the parenchyma and in a surrounding tissue sheet. (B) SR-SIM of human SGC and a

surrounding contacting IBA1 cell (arrow). (C,D) show IBA1-positive cells, of which some are closely associated with the axon initial segment. (E) SGCs and IBA1 cells

(shown in Video S1). (F) Nanoscopy of a peri-ganglionic IBA1 cell. Its surface coat contains “antenna”-like processes [from Liu et al. (14)].

detected in the spiral ligament. TLR4 was expressed in the StV
(not shown).

IBA1 Cells in the Human SG
The specificity of staining was compared to the guinea pig brain
(Figure 4A). Several IBA1 cells were found in the human SG
associated with the satellite cells (Figures 4B–E). IBA1 protein
was expressed within the cytoplasm and in the cell nuclei
(Figure 4D). The macrophages adhered to the basal lamina
of the satellite cells located at the axonal and dendrite entry
zones (Figures 4C–E; Video S1). At some places, the IBA1 cells
seemed to perforate the basal lamina and reached the nerve

cell membrane. “Synapse-like” endings faced the TUJ1-positive
nerve soma (Figure 4B). Notable variants of IBA1 cells were
found in Rosenthal’s canal (RC). Free migrating cells were seen
around and near the SGCs cells. They contained vesicles and thin
(0.2µm) remarkable processes projecting into the extracellular
tissue (Figure 4F).

Macrophages in Central and Peripheral
Axons
Macrophages were also physically related to axons and
dendrites within RC and peripheral and central axons. IBA1
cells along the central axons were long and slender and
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FIGURE 5 | (A) SR-SIM of a cross-sectioned human cochlear nerve. Transected IBA1-positive cell processes are seen (arrows). Framed area is shown with higher

magnification in inset. Its cell nucleus expresses IBA1. (B,C) Sectioned vestibular nerve at the level of the vestibular ganglion cells (VGCs) demonstrates several

IBA1-positive cells (arrows). TUJ1: nerve marker tubulin-1.

measured up to 50µm with a diameter of ∼0.5µm (Figure 5).
Their nuclei expressed IBA1 (Figure 5A, left inset). The
processes adhered to surrounding nerve fibers, and many
had a terminal enlargement. Collagen IV and IBA1 co-
staining showed that macrophage pseudopodia extended across
the basal lamina of the Schwann cells in the osseous
spiral lamina (Figure 6). The association with the myelin
was uncertain. The IBA1 cells physically contacted Schwann

cells’ outer cell membrane (Figures 6C,D) (14). Whether or
not the IBA1 branches directly adhered to the axonal cell
membrane at the Ranvier nodes or intercellular clefts could
not be determined with certainty. In several cells, IBA1
protein was associated with the nuclei pores (Figures 6A,E).
At higher magnification, irregular stained areas (100–150 nm),
representing cross-sectioned IBA1 branches, were noticed
(Figure 6B). IBA1 cells ensued around the nerve fibers at the
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FIGURE 6 | (A) SR-SIM (maximal intensity projection) of the osseous spiral lamina (framed area in inset). Collagen IV stains the basal lamina of the Schwann cells

(Sch) surrounding the axons. Several IBA1-immunoreactive cells intermingle with the axons. (B) Thin processes (∼150 nm in diameter) run along the Schwann cells.

(C,D) The processes sometimes penetrate the basal lamina of the Schwann cells. (E) IBA1 protein expressed in the cell nucleus and at the nuclear envelope (arrows).

habenula perforata where nerves fibers lacked myelin. These
cells did not enter the nerve perforation or reached the OC.
Some cells extended along the TCL. The vestibular ganglion cells
(VGCs) and axons were also surrounded by many IBA1-positive
cells (Figures 5B,C).

Expression of CX3C Chemokine Ligand 1
in the Cochlea
Cells within the OC showed moderate expression of fractalkine.
There was no difference in staining between hair cells and
supporting cells. Cells of the TCL showed some staining, but
the inferior surface of the basilar membrane lacked expression.
SG cells strongly expressed fractalkine with some irregular
membrane densities (Figure 7A).

CD4+ and CD8+ Cells in the Human SG
A few CD4+ and CD8+ cells and their interactions
with macrophages in the human cochleae were observed
(Figures 7B–E). Some cells, together with occasional CD19-
positive cell (Figure 7F), were located around modiolar blood
vessels and along the border of RC (Figure 7E). The T cells were
also seen in the medial wall between Rosenthal’s canal and the
ST. CD4+ and CD8+ cells were not found in the StV, or among
the neurons in the Rosenthal’s canal and the OC. A few isolated
CD4+ and CD8+ cells were seen in the spiral ligament.

DISCUSSION

Our study confirms that the human inner ear and the eight
cranial nerve contain a multitude of interacting IBA1-positive
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FIGURE 7 | SR-SIM (maximal intensity projection) of the human spiral ganglion. (A) Several IBA1-positive cells surround the SGCs that express CX3CL1. (B–D) CD4-

and CD8-positive lymphocytes are seen in Rosenthal’s canal and around a modiolar blood vessel (E) [after permission from Liu and Rask-Andersen (16)]. (F) A cell in

the modiolus expresses CD19.

macrophages. O’Malley et al. (15) described cells expressing the
macrophage markers CD163, IBA1, and CD68 in the connective
tissue of the entire inner ear in normal human temporal bones.
Some cells were even associated with neurons and the sensory
epithelium. The location in the cochlear lateral wall suggests
a function related to the “blood–labyrinth barrier” according
to Zhang et al. (23) and Shi (24). Perivascular macrophages
may control the exchange of agents across the vascular wall,
but they have also been suggested to act as progenitors for
postnatal vessels (24). In the brain and mouse spinal cord, these

cells were shown to produce neurotrophic substances important
for neuron survival (25, 26). Their highly variable morphology
may reflect different functions and activation. We found no
melanin in the cells, suggesting that they do not represent
melanocytes or intermediate cells. According to Okano et al. (27),
the cochlear macrophages appear to be monocyte-derived and do
not represent microglia. We found no expression of TMEM119,
a microglia marker in mouse and man (28), indicating that they
were not microglia. The results support the findings by Hirose
et al. (29, 30) and Sato et al. (31).
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FIGURE 8 | Illustration of nerve/macrophage interaction in the human cochlea [modified after (14)]. Macrophages that are positive for ionized calcium-binding adaptor

molecule 1 (IBA1) cells are located in the human cochlea in the spiral ganglion and less often in the OC. They may interact and form a protective link between hair cells

and neurons via a CX3CL1/CX3CR1 signaling, as demonstrated experimentally by Kaur et al. (22). Macrophages are believed to derive from blood-borne monocytes

(illustration by Karin Lodin).

Is There a Neuro-Immune Axis in the
Human Cochlea?
Many elongated IBA1 cells had terminal podosomes that attached
to adjacent neurons in the modiolar auditory nerve. Torres-
Platas et al. (32) analyzed human microglia in gray and white
matter of the dorsal anterior cingulate cortex, a region associated
with neuro-inflammation. They found a similar pattern of cells
running along myelinated nerve fibers. Kaur et al. (22) and
Hirose et al. (30) showed that inner ear lesions elevate the
number of macrophages in the auditory nerve, spiral ligament,
and spiral limbus. Chemokine signaling (fractalkine/CX3CL1)
increased macrophage invasion and survival of auditory neurons
after induced hair cell damage (22). A link may therefore exist
between hair cells and neurons with a macrophage/neuron
interaction that protects the cochlear nerve under various
conditions (Figure 8). Also, adverse signalingmay cause cochlear
disease. In the human brain, microglial chemokine receptors may
possibly promote adult neurogenesis by inhibiting Sirt 1/p65
signaling (33) or increasing secretion of neuroprotective BDNF
(34). As a result, macrophages may act both as saviors and
foes inducing damaging inflammatory reactions (M1-like) or
immunosuppression (M2-like) (35), thus restoring tissue (35–
37) and stimulating cell regeneration (38). Our results show
that IBA1 cells may establish direct physical contacts with both
vestibular and cochlear axons and ganglion cell bodies. Several
studies of the human SG conducted in our laboratory over

the years have suggested that these cells represent un-specified
mesenchymal cells. The present results may help to explain
human auditory nerve response following hair cell degeneration
caused either by noise or ototoxic drugs (39) or as a result of
aging. Macrophages may physically interact with the nerve cell
body since they lack a surrounding compact layer of myelin.
This may explain why, in contrast to most animals, the acoustic
nerve is preserved after loss of hair cells and peripheral axons,
a requisite for cochlear implantation (CI), which is one of the
greatest achievements in modern medicine.

Notably, IBA1 cells in the human cochlea and auditory
nerve expressed MHCII that was not found in experimental
studies, unless tissues were induced by inflammation or γ-
interferon (40, 41). Okano et al. (42) found bone-marrow-
derived cells in the vestibular end organs and ES expressing
MHCII. This suggests that CD4+ and CD8+ T cells may initiate
adaptive immune responses from interaction with antigen-
presenting cochlear macrophages. Conversely, a T-cell-induced
inflammation may lead to hair cell damage and neuronal death,
via pro-inflammatory cytokines and chemokines (25). Such
responses need to be avoided. Both innate and adaptive neuro-
inflammation with invasion of B- and T-lymphocytes may be
responsible for the neurodegenerative process in Alzheimer’s
disease and MS (43). Moreover, microglia may attract peripheral
immune cells and provoke adverse immune processes (44).
Conversely, microglia may be neuroprotective through the
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production of neurotrophins (45, 46), and T cell autoimmunity
has been found to even protect damaged neurons under certain
conditions (47).

The ES—An Immunologic Key Player?
A way to avoid mounting destructive inflammation around
the sensory cells could be to let the ES monitor primary
and secondary immune responses (3, 40). Altermatt found
a few lymphoid cells expressing MHCII in the human ES
epithelium collected post-mortem (48). The co-expression of
IBA1 and MHCII in cells and their migratory behavior across
the epithelium suggest that antigens may be taken up from the
ES lumen (12) and processed. The apical cell membranes of the
ES epithelial cells and cytoplasmic vesicles strongly expressed
MHCII molecules. This is notable in the intestine where MHCII
plays a role in mucosal immunology, modulation, and disease
(49–51). Spectacular associations of MHCII molecular aggregates
were seen in the ES among organelles, plasma membrane
endocytosis, and multi-vesicular bodies (MVBs). Studies show
that MVBs are involved in antigen proteolysis and peptide
coupling to the MHCII complex (52). Antigen-presenting cells
express MHCII on their surface and give proper information
to CD4+ T helper cells and B cells (52, 53) to initiate adaptive
immune responses. Gloddek et al. (41) showed the role of
the peripheral circulation in response to inner ear antigen
stimulation. Our finding of occasional lymphocytes in the cochlea
raises the possibility of a “homing” of lymphocytes processed
in the ES as suggested by Gloddek et al. (41). Antigens could
reach the ES as a first defense line, followed by programmed
memory cells entering the cochlea and auditory nerve. Thus, the
inner ear could be protected without initiating a full-scales and
harmful immune cascade around the receptors. In earlier studies,
lymphocytes were observed in the ST and around the spiral
modiolar vein after immune challenges to the cochlea (41). This
suggests that the vein is the initial site for lymphocytes entering
the inner ear (54).

Cochlear Macrophages and Cell Renewal
In a recent study, we found migratory macrophages in the
human cochlea near injured hair cells (14). These scavenger
cells were thought to stimulate repair via supporting cells.
Furthermore, active macrophages could be observed within the
sensory epithelium after noise damage, suggesting that they
are involved in tissue reconstruction (29, 55, 56). In the eye,
macrophages, microglia, and T cells have been shown to enhance
the survival of retinal ganglion cells and even regenerate damaged
axons through the inflammatory response (57). Moreover, bone-
marrow-derived cells, chiefly hematopoietic stem cells, were
found to continuously populate the lateral wall in the adult
cochlea (58). The authors believed that these cells can regenerate
damaged fibrocytes and differentiate into macrophages in the
adult auditory nerve. They even suggested that the cells may
constitute a source for regeneration of the human acoustic nerve
in the adult inner ear (59).

Stem-cell-based regeneration of sensorineural elements in the
ear may be hindered by immune responses. The blood–labyrinth

barrier may restrict cell migration and consists partly of
endothelial tight junctions in the StV. The SG and ES contain
fenestrated capillaries and lack a corresponding constricted
barrier. In the central nervous system, monocyte-derived IBA1
cells expressing MHCII seem to respond to mesenchymal stem-
cell grafting, even though resident microglia may also be involved
(60). If similar restrictions prevail after inner ear nerve grafting
remains to be elucidated.

In summary, our freshly fixed human specimens showed
unique preservation and immunogenicity. The benign tumors
could potentially influence the conditions. Tumor infiltration
into the cochlea was not noticed, and we believe that the
samples are physiologically representative. The results also affirm
the findings by O’Malley et al. (15). However, a weakness of
the study may be the age of the patients (∼40–60 years), as
microglia of the aged brain can show an increased immune
state (61).
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