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Sudden unexpected death in epilepsy (SUDEP) is a leading cause of abrupt death

in patient with epilepsy. It represents 5–30% of all rapid deaths in individuals with

epilepsy. Ketogenic diet (KD) has been used in clinic for treatment of epilepsy for

many decades. However, the cellular and molecular mechanisms underlying the SUDEP

and the relationship between KD and SUDEP remain uncertain. Kcna1-null (Kcna1−/−)

mouse, an animal model of SUDEP, is frequently used to study mechanisms underlying

SUDEP. The current mini-review focus on risk factors for SUDEP and their relationship

with KD treatment in Kcna1−/− mice. Emerging data suggest that factors including

seizure frequency, longevity, rest, age, and gender both in Kcna1−/− mice and KD

treated Kcna1−/−mice are involved in SUDEP. This provides valuable prediction for

clinical application of KD for treatment of SUDEP.
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INTRODUCTION

Epilepsy is a common neurological disease defined by recurrent seizures (1). The typical
cause of death associated with epilepsy is sudden unexpected death in epilepsy (SUDEP) (2).
It is characterized as the rapid, unanticipated, witnessed or unwitnessed, a non-traumatic,
non-drowning death that occurs in benign circumstances in an individual with epilepsy in a
reasonable state of health, in whom postmortem examination does not display an alternative
structural or toxicological cause for death (3). The incidence rate of SUDEP is approximating 1
in 1,000 cases every year (4, 5). There are several risk factors associated with SUDEP including
generalized tonic-clonic (GTC) seizure frequency, postictal generalized electroencephlogram
suppression, lower intelligence quotient, cardiac arrhythmias, respiratory dysfunction, gender,
early age at seizure onset, and polytherapy with antiseizure drugs (ASDs) (2, 6–8). Recent studies
also demonstrate that genes are also associated with SUDEP. It includes KCN (A1, Q1, and H2),
SCN (1A, 2A, 5A, and 8A), DEPDC5, HCN2, RYR3, and HTR2C. They are potential risk factors
for SUDEP (8–10).

The high-fat, low-carbohydrate/protein ketogenic diet (KD) is recognized as an effective,
non-surgical treatments for refractory epilepsy (11). KD treatment for epilepsy has been recorded
since the fifth century and reported in scientific literatures since the early 1900s. Patients with
epilepsy are strongly accept the KD therapy (11).
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The Kcna1-null (Kcna1−/−) mouse, deleting the voltage-
gated potassium channel α subunit Kv1.1 (12), exhibits severe
spontaneous recurrent seizures (SRS). The Kcna1−/− mice reveal
early seizure in postnatal development and display premature
unexpected death (13). It serves as a valuable animal model for
SUDEP research.

Although studies have been confirmed the anticonvulsant
efficacy of KD in epilepsy, the underlying mechanisms and risk
factors in Kcna1−/− mice with KD treatment remain unsolved.
Despite lack of direct clinical evidence about the efficacy of
KD in SUDEP in Humans, KD reveals an effective treatment
for refractory epilepsy. It can reduce seizure frequency (14),
decrease seizure severity, and improve cognitive ability (15),
cardiac dysfunction and quality of life (16). Thus, the KD appears
to be highly effective in treating refractory epilepsy. The role of
KD in SUDEP is becoming better understood with Kcna1−/−

mouse as a model of SUDEP (13, 17, 18). The current review will
concentrate on recent studies of KD treatment and mechanisms
in Kcna1−/− mice. The effects of risk factors such as seizure
frequency, longevity, rest, age, and gender in Kcna1−/− mice and
KD treated Kcna1−/− mice are discussed.

Kcna1-Null (Kcna1−/−) Mouse as a Model

of SUDEP
Kcna1-null (Kcna1−/−) mouse is the mouse of disruption of the
voltage-gated potassium channel alpha subunit (KV1.1). It reveals
frequent spontaneous seizures throughout their adult life (18,
19). These null mice are widely used to explore potential genetic
and pathophysiological mechanisms of SUDEP (19). The model
displays many similarities with human SUDEP risk factors. These
similarities include (1) young age; (2) seizure frequency; (3) long
duration of seizure, (4) GTC seizures; (5) early onset seizure;
and (6) seizure-evoked bradycardia and asystole progressing to
cardiac arrest (12, 17, 19–22).

Seizure Frequency in Kcna1−/− Mouse
Higher seizure frequency reveals a negative influence on the
quality of life in patient with epilepsy. Recent studies have
shown that seizure frequency is associated with age in Kcna1−/−

mice. They found that seizure frequency increases with age
until sudden death in Kcna1−/− mice. Before postnatal day
21 (P21), behavioral seizures cannot be detected in Kcna1−/−

mice. The seizure numbers in Kcna1−/− mice increase gradually
after P21 and seizures persist until death with an average age
of P43 (17). However, the severe seizure account for all seizure
number remains similar throughout life and usually occurs when
it approaches death in Kcna1−/− mice (5, 12, 17).

Rest Deficiency in Kcna1−/− Mouse
Rest time in mouse, detected by continuous infrared telemetric
actimetry and switch-closure activity monitoring, stands for sleep
time in mouse, it’s deficiency is a risk factor in seizure and also
associated with Kcna1−/− mice (18). Studies have shown that
compared to wild-type (WT) mouse, the rest time is similar at
P26, but there is a prominent reduction with age in Kcna1−/−

mice, beginning at P30. When compared to their youngest age,
the rest time of Kcna1−/− mice is decreased by 32% at P42 and

by 47% at P50, respectively (18). The data reveal that Kcna1−/−

aged mice display a reduction in rest time.

Possible Mechanisms of SUDEP in

Kcna1−/− Mouse
Kcna1−/− mouse usually has a severe seizure phenotype with
myoclonic and GTC seizures (17). These seizures process can
be divided into three steps. First step, tonic arching and tail
extension. Second step, rearing and forelimb clonus. Third step,
generalized synchronous forelimb and hindlimb clonus (23).
Kcna1−/− mouse also experiences premature death, which may
be due to cardiac and/or respiratory dysfunction associated with
severe generalized seizure activity (17, 18, 23). Hippocampus
might play a crucial role in seizure pathogenesis for Kv1.1 protein,
which has a high expression in hippocampus especially in the
CA3 and dentate regions (24). The amygdale and other limbic
circuits might also be involved in seizure generation or spread in
Kcna1−/− mouse (25).

Pathophysiological Mechanism in

Kcna1−/− Mouse
As an efficient SUDEP model, Kcna1−/− mice has been widely
used for study the pathogenesis of SUDEP in epilepsy (12, 21, 25–
28). In previous studies, cardiac and respiratory dysfunction was
considered to be themain cause of SUDEP in Kcna1−/− mice (12,
26, 28). Cardiac abnormalities such as bradycardia, premature
ventricular contractions, and atrioventricular conduction blocks
were increased dramatically in Kcna1−/− mice as compared
with WT mice (12). Respiratory failure such as hyperventilation,
tachypnea, hypopnea, bradypnea, and apnea were observed
in Kcna1−/− mice during severe seizures that may result in
sudden death (26). The respiratory disorder always preceded
cardiac abnormalities in Kcna1−/− mice during spontaneous
convulsive seizures. Therefore, the respiratory dysfunction has
been considered the main driver of cardiac dysfunction in
Kcna1−/− mice and occurred much more common than cardiac
dysfunction during seizures underlying SUDEP risk (28).

Kv1.1 alpha subunit protein is mainly expressed in the brain,
but it reveals lower levels in heart and almost is not expressed
in lung tissue in mice (14). Due to Kv1.1 alpha subunit protein
highly expressed in neural tissue, its presence and function
are established in the vagal and phrenic nerves. The vagus
nerve, the primary source of parasympathetic input to the heart,
may contribute to Kv1.1-associated cardiac bradyarrhythmias in
Kcna1−/− mice (12). In addition, blood gas instability triggers
a compensatory effects that may increase respiratory drive
(26). So, Kcna1 gene may be a powerful candidate gene for
Human SUDEP.

KD Treatment Extends Longevity and

Decreases Seizure Progression in

Kcna1−/− Mouse
Previous studies have shown that KD treatment exhibits a higher
seizure threshold and a lower mortality rate in multiple models
of inducible seizures as compared to mice fed a standard diet
(SD) (6, 29). KD treatment also reduces seizure numbers and
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hippocampal hyper-excitability in Kcna1−/− mice at ∼P35–45
(20, 24, 30).

Recent studies have also shown that compared to SD-
treated control mice, KD treatment reliably extends longevity of
Kcna1−/− mice. Kcna1−/− mice experience sudden unexpected
death at P47 while KD treated Kcna1−/− mice prolong to
P70 (13). This could be explained by the facts as following:
(1) Kcna1−/− mice exhibit a daily seizure frequency of 12
while KD treated mice experienced daily seizure frequency of
4 at P40–45 (13). KD treatment profoundly reduces seizure
numbers when compared to control Kcna1−/− mice at P30–
39 and P40–49, respectively. (2) KD-treated mice display
fewer severe seizure phenotypes when compared to control
Kcna1−/− mice age-matched at P25–29 and P30–39, respectively.
Nonetheless, the seizure characterization of KD treated mice
feature a similarity to control Kcna1−/− mice at P50–59
(17) and KD treatment fails to block a terminal GTC-driven
sudden death.

KD Treatment Improves Rest Deficiency

Accumulation in Kcna1−/− Mouse
Studies have shown that KD treatment significantly enhances
rest time in Kcna1−/− mice. However, during the first 2 weeks,
there is no difference in rest time in Kcna1−/− mice between
treatment with KD and SD. Compared to WT mice, there is
a significantly reduction in rest time with age in Kcna1−/−

mice after P38. But there is a protection in rest time which
became apparent in KD treated mice from P38. Interestingly,
once KD treated mice reach P50, there is no difference in rest
time between P50 and older age groups. In addition, when
rest time declines ∼30–40% less than WT mice, Kcna1−/−mice
will die within 24 days and KD treated Kcna1−/−mice will
die within 12 days. Taken together, these data suggest that
the rest time in Kcna1−/− mice decrease with age (18). In
contrast, KD treatment offers protective effects on age-related
rest reduction in Kcna1−/− mice. However, rest time does not
play a role in either Kcna1−/− or KD treated mice when it
approaches death.

The rest deficiencies are involved in sudden death in
Kcna1−/− and KD treated Kcna1−/− mice (18). KD treated
Kcna1−/− mice experience more rest deficiency as compared to
Kcna1−/− mice. However, the ratio of rest deficiency before death
is similar between Kcna1−/− and KD treated Kcna1−/− mice
when normalized to their lifespan (18). The results suggest that
both groups experience similar overall amounts of rest deficiency
when normalized to their longevity.

The mortality in both Kcna1−/− and KD treated Kcna1−/−

mice occurs during a predictable window. Acute levels of rest
time before death are not sensitive to the timing of death, but
the chronic accumulation of rest deficiency before death are
sensitive to the timing of death. The chronic accumulation of
rest deficiency over the final 10 and 15 days contributes to 58–
75% of deaths in both Kcna1−/− and KD treated Kcna1−/−

mice, respectively (18). These data indicate that a predictable time
window in animal model might be converted into clinical data for
prevention of SUDEP in individuals.

KD Treatment in Gender and Age of

Kcna1−/− Mouse
Studies have shown that the gender can affect lifespans of
Kcna1−/−mice at KD treatment initiation (13). Male and female
mice with deletion of Kcna1 gene display similar longevity in
their life. However, KD-fed male mice have shorter lifespans
than their female counterparts, and there is a trend toward a
higher seizure frequency in KD-fed male mice than their female
counterparts. Furthermore, the age of KD initiation also can
affect longevity of Kcna1−/− mice. Kcna1−/− mice start on KD
treatment at P35 have shorter lifespans than those start at PD25
(13). Taken together, the findings indicate that the KD treatment
can hinder disease progression and sudden, unexpected death in
Kcna1−/− mice, and the protective effects by KD treatment are
associated with gender and age at KD initiation.

KD Treatment Increases β-hydroxybutyrate

Levels in Kcna1−/− Mouse
β-hydroxybutyrate (BHB) has been considered as the main
indicator of the therapeutic benefits of KD treatment (31). BHB
levels in plasma are generally taken as indicator for ketosis, but it
interacts with classic antiepileptic drugs (AEDs) (32). Compared
to both Kcna1−/− mice and WT controls, KD treatment has
higher blood BHB levels throughout life. In addition, KD
treatment has lower glucose levels in WT control than Kcna1−/−

mice (17). Of interest, while all KD treatment groups show
elevations in blood BHB levels, male Kcna1−/− mice reveal
significantly lower BHB concentrations as compared to female
counterparts (13). It suggests that the differences in longevity
of KD treated mice might be associated with gender correlated
with BHB levels. Based upon these research results, it suggests
that higher levels of BHBmay control seizures more effectively in
female than male mice (4). Further studies are needed to explore
why BHB levels affect longevity in KD treated mice (33).

Mechanisms of KD Treatment in Control

Seizure and SUDEP
There are few studies about the mechanisms of the KD action in
Kcna1−/− mice for improving the seizures in SUDEP. Recently,
researchers examined the relationship between gut microbiota
and anti-seizure effects of the KD in two mice models (one
of them was Kcna1−/− mice) (34). They showed that KD-
mediated seizure protection can alter the composition of gut
microbiota, and they concluded that the protection of the
KD on epileptic seizures is regulated by the gut microbiome
through modulation of hippocampal GABA/glutamate ratios
(34). Another important findings suggested that brain PPARγ 2,
one isoform of peroxisome proliferator activated receptors
(PPAR), had beneficial neuroprotection and anti-seizure effects
in response to epilepsy. These findings indicated that PPARγ 2
play an important role for KD therapy in Kcna1−/− mice (35).
Besides, Ketone bodies, the products of fatty acid oxidation by
the high-fat KD in liver, may be as a fundamental mediator,
exert anti-seizure effects in Kcna1−/− mice through activation of
mitochondrial permeability transition (30).
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The mechanisms of the KD action in Kcna1−/− mice, have
also been performed in other animal models or Human epilepsy.
The metabolic changes in the blood and cerebrospinal fluid were
often considered to be the main factors of reducing seizures for
KD therapy. The decrease in glucose levels and increase in KB
were involved in KD mechanisms. In addition, improvement
of mitochondria function leads to energy reserve, then activates
ATP-sensitive potassium channels, which would stabilize synapse
and attenuate neuronal excitability (36). Moreover, adenosine
may be play a crucial role associated with this procession via
an adenosine-dependent DNA methylation modulation (37).
Furthermore, other researchers have showed that the KD
has a protection against oxidative stress and mitochondrial
dysfunction derived from epilepsy. These effects might be
caused by diminishing reactive oxygen species and raise the
mitochondrial uncoupling protein activity and the biosynthesis
of glutathione (14, 38, 39).

The hippocampus might be one of the critical region of
KD in Kcna1−/− mice. The study suggested that KD treatment
improves CA3-generated pathologic oscillations by decreasing
mossy fiber synapses excitability (24).

Perspective of KD Treatment Associated

With SUDEP
Although studies have demonstrated that KD treatment
improves the quality of life in Kcna1−/− mice from different
aspects, which might be associated with SUDEP, there are still
some questions required to discuss.

The advantage of KD treatment in therapy of epilepsy
has been recognized in pharmacological research and clinical
application. However, KD treatment also reveals negative effects
during treatment periods (40). Common negative effects include
dehydration, hypoglycemia, growth alterations, gastrointestinal
upset, hyperlipidemia, nephrolithiasis, and deficiency in
vitamins, minerals, and electrolytes (41, 42). Therefore, it is
not recommended for KD treatment more than 2 or 3 years.
Interestingly, 60% of the patients with KD treatment display
hyperlipidemia (43). These adverse effects can be controlled with
help by nutritionist or medication.

Kcna1−/− mouse is a clinically relevant animal model of
SUDEP among the few models available. It manifests severe
SRS, which relates to SUDEP (13). However, we should
keep in mind that there is no one animal model mimic
SUDEP in Human. Several cellular mechanisms have been
suggested for KD treatment, including activation of ATP-
sensitive potassium channels, inhibition of glycolysis, and
disturbance of glutamatergic synaptic transmission (44). The
molecular mechanisms of underlying the KD treatment have
been remained unclear. In future, researchers are required to
focus particular on the underlying mechanisms of genetic basis
of SUDEP as well as KD treatment for SUDEP.

Although emerging data acquired from animal experiments,
preclinical and clinic studies regarding the relationship between
KD treatment and SUDEP are less developed. Future studies are
needed to integrate preclinical and clinical studies to explore the
risk factors of SUDEP, and thus hopefully open a new window
for proactive and preventative treatment strategies of SUDEP in
high-risk individuals (18).

Previous studies focused on the association between SUDEP
and Kcna1−/− mice in different aspects. There is still lack
of systematic studies on the mechanisms of SUDEP in
Kcna1−/− mice in detail, and basically few research on Human
SUDEP and KD. Therefore, further studies on the association
among Human SUDEP, Kcna1−/− mice and KD should be
strengthened, so as to serve the clinical Human SUDEP
more efficiently.
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