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Objective: Glioblastoma (GBM) is the most common and fatal primary brain tumor in

adults. It is necessary to identify novel and effective biomarkers or risk signatures for

GBM patients.

Methods: Differentially expressed genes (DEGs) between GBM and low-grade glioma

(LGG) in TCGA samples were screened out and weight correlation network analysis

(WGCNA) was performed to confirm WHO grade-related genes. Five genes were

selected via multivariate Cox proportional hazards regression analysis and were used

to construct a risk signature. A nomogram composed of the risk signature and clinical

characters (age, radiotherapy, and chemotherapy experience) was established to predict

1, 3, 5-year survival rate for GBM patients.

Results: One hundred ninety-four DEGs in blue gene module were found to be positively

related to WHO grade via WGCNA. Five genes (DES, RANBP17, CLEC5A, HOXC11,

POSTN) were selected to construct a risk signature for GBM via R language. This risk

signature was identified to independently predict the outcome of GBM patients, as

well as stratified by IDH1 status, MGMT promoter status, and radio-chemotherapy. The

nomogram was established which combined the risk signature with clinical factors. The

results of c-index, ROC curve and calibration plot revealed the nomogram showing a

good accuracy for predicting 1, 3, or 5-year survival of GBM patients.

Conclusion: The risk signature with five genes could serve as an independent factor

for predicting the prognosis of patients with GBM. Moreover, the nomogram with the

risk signature and clinical traits proved to perform better for predicting 1, 3, 5-year

survival rate.
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INTRODUCTION

Glioblastoma (GBM) is the most common and aggressive type of primary brain tumor in adult.
Despite comprehensive regimens including maximum surgical resection, radiation therapy and
chemotherapy, the prognosis of GBM is notoriously poor, with a median survival of 14 months
and the 5-year survival rate remaining at ∼5% (1). While intervention of these multimodal
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treatments cannot eradicate this devastating disease, therapeutic
resistance and GBM recurrence were inevitable. Although
temozolomide (TMZ) has been proven to prolong the survival
of GBM patients as a first-line chemotherapeutic agent, recent
studies show that an amount of patients with GBM develop
resistance to TMZ during treatment (2), and the recurrence
rate of GBM was up to 90% (3). These awful therapeutic
outcomes were mainly attributed to glioma stem cells (GSCs) and
heterogeneity in GBM (4, 5). Likewise, several new drugs, such as
monoclonal antibody targeting epidermal growth factor receptor
variant III (EGFRvIII), have been proven to show therapeutic
efficiency in some cancers, but not in glioma (6). Since only
30% of GBM cases contain EGFRvIII, this means a majority of
GBM patients fail to benefit from EGFRvIII-targeted therapy
(7, 8). Therefore, it becomes particularly important to search for
novel molecular biomarkers that precisely predict the prognosis
and to choose appropriate individualized treatment strategies for
patients with GBM.

With the progress of genetics and molecular biology, an
increasing number of molecular biomarkers were discovered in
glioma, for instance, IDH mutation, MGMT methylation, TERT
promoter mutation, EGFR and P53 (9). As is known to all,
IDH1/2 mutation and MGMT promoter methylation are two
important biomarkers in glioma. IDH mutation mainly exists
in low grade glioma and secondary GBM, and associates with
prognosis and GBM subtype (10). Moreover, IDH phenotype
was also reported to be potent to form a glioma CpG island
methylator phenotype (G-CIMP) and to be related to genomic
methylation and gene mutation, such as P53 and TERTmutation
(10). MGMT promoter methylation accounts for ∼40% of GBM
samples and associates with favorable prognosis of patients
receiving radiotherapy and chemotherapy (11). Interestingly, it
has been observed that IDH-mutated gliomas frequently carry
MGMT promoter methylation and are sensitive to temozolomide
(12). These findings indicate that there are cross talks among
these key molecular biomarkers and a single gene cannot
completely represent the characters of the glioma, as well as
GBM. This may partially explain that GBM patients fail to take
more advantages from some targeted small molecule inhibitors
application (13). Therefore, risk signatures with correlative
biomarkers have been developed, which have shown better
performance in GBM treatment and survival prediction (14, 15).
In this study, we developed a risk signature with five genes
associated with survival of GBM patients. On this basis, a
nomogram including the risk signature and clinical factors was
established and it proved to be effective in predicting the clinical
outcome of patients with GBM.

MATERIALS AND METHODS

Data of Glioma Patients in the Study
Gene expression and survival data of glioma in TCGA were
downloaded from GlioVis (http://gliovis.bioinfo.cnio.es/) (16).
six hundred twenty samples from TCGA GBMLGG (RNA-seq)
were selected for screening differentially expressed genes between
GBM and low-grade glioma (LGG). Five hundred twenty-five

samples fromTCGAGBM (HG-UG133A)were used to construct
a clinical survival prediction model and internal validation.

Identification of Differentially Expressed
Genes Between GBM and LGG
Based on 470 lower grade glioma (LGG, World Health
Organization [WHO] grade II and III) (17, 18) and 150 GBM
samples in TCGAGBMLGG dataset, R language (edgeR package,
R version 3.51) was performed to identify differentially expressed
genes (DEGs). Genes with |log2(fold-change)|> 1 and false
discovery rate (FDR) < 0.05 were considered as DEGs for
further analysis.

Weighted Correlation Network Analysis for
Discovering Grade-Related Gene Modules
To select glioma grade-related genes from DEGs, we
performed weight correlation network analysis (WGCNA)
(19). The expression data of DEGs and clinical data (WHO
grade, age, gender, IDH status, survival time, and status)
were imported and analyzed by R package WGCNA. The
genes were classified into several gene modules using an
appropriate soft-thresholding power which was calculated by
the pickSoftThreshold function (20). The minimum gene size
in each module was set as 10. The module eigengenes were
calculated and similar modules were clustered and merged
according to the module dissection threshold. The correlations
between gene modules and clinical traits were calculated and
visualized through a heatmap. In this research, we chose
the module which is positively related to WHO grade for
further study.

Construction and Evaluation of Risk
Signature With Selected Genes
Univariate Cox proportional hazards regression analysis was
applied to assess the relationship between the expression of DEGs
and the overall survival (OS) of patients with GBM in TCGA
GBMLGG (RNA-seq) and HG-UG133A platform, respectively.
Common genes with P < 0.05 were sorted out and presented
as a Venn diagram by R. We then performed multivariate Cox
proportional hazards models and filtered the common genes
by step function in R. A risk score formula was designed
according to the multivariate Cox regression analysis results (18),
as follows:

Risk score = (exprgene1 × Coefgene1)+ (exprgene2 × Coefgene2)

+ . . . + (exprgenen × Coefgenen)

The patients were divided into low-risk and high-risk
groups according to the median risk score value. KM
survival analysis and time-dependent receiver operating
characteristic (ROC) curve analysis were used to evaluate the
prognostic value.

Bioinformatics Analysis
DEGs between low-risk and high-risk groups with FDR
< 0.05 were filtered by R language (edgeR package) and
used for Gene ontology (GO) and KEGG pathway analysis
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via DAVID website (https://david.ncifcrf.gov/) (21). GO
terms (FDR <0.05) and KEGG pathways (P-value <0.05)
were screened out and visualized via R package ggplot2.
Gene set enrichment analysis (GSEA, http://software.
broadinstitute.org/gsea/index.jsp) were used to confirm the
GO terms and KEGG pathways in the low-risk and high-
risk groups (22). Normalized enrichment score (NES) and
FDR were calculated to verify the statistical difference for
GSEA analysis.

Construction and Evaluation of Clinical
Survival Prediction Model
By combining with clinical data, a nomogram of clinical survival
prediction model was established by using the package of “rms”
in R. Samples from TCGA HG-UG133A platform were divided
into training cohort (accounting for 70%) and validation cohort
(accounting for 30%) by randomly using R package “caret.” The
inclusion criteria for data extraction in the predictive model
were patients diagnosed with WHO grade IV glioma (GBM).

FIGURE 1 | Identification of WHO grade-related genes in glioma. (A) Volcano plot showed the distribution of DEGs. (B) Sample clusters showed basic clinical

information of glioma patients. (C) The soft threshold power was calculated and 10 was selected as the power value. (D) Similar modules were merged and four

modules were generated. (E) Heatmap exhibited the relationships between gene modules and clinical traits by Pearson correlation.
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FIGURE 2 | Characteristics of the risk signature with five genes. (A) Venn diagram showed 17 common genes correlated with overall survival (P < 0.05) between

TCGA GBMLGG (RNA-seq) and HG-UG133A platforms. (B) Multivariable Cox regression analysis was performed and five genes (DES, RANBP17, CLEC5A,

HOXC11, POSTN) were selected to construct the risk signature. (C) Difference of overall survival between low-risk and high-risk groups (P < 0.0001). (D) ROC

analysis of 1, 3, 5-year survival according to the five-gene risk signature. (E) The expression levels of the five genes (DES, RANBP17, CLEC5A, HOXC11, POSTN) in

the signature. (F) The distribution of the five-gene signature risk score for each patient. (G) The survival time of each patient with GBM and their survival status.
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FIGURE 3 | Expression and prognostic significance of the risk signature in different cohorts. Association between the risk signature and different cohorts stratified by

molecular subtype (A), IDH1 (B), and MGMT status (C) (*P < 0.05, **P < 0.01, ****P < 0.0001). Prognostic significance of the risk signature in different cohorts

stratified by IDH1 status (D,E), MGMT status (F,G), radiotherapy (H), and chemotherapy (I).
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FIGURE 4 | Biological functions and KEGG pathways related to the risk signature with five genes. (A) Heatmap showed the DEGs between the high-risk group and

the low-risk group (FDR < 0.05). GO analysis (B) and KEGG pathway analysis (C) via DAVID based on the DEGs. (D,E) GSEA was performed to confirm the GO term

(extracellular structure organization) and KEGG pathways (ECM receptor interaction and focal adhesion).

The exclusion criteria included patients with incomplete data
such as survival status and time, radiotherapy, and chemotherapy
records. The training cohort was used to construct the nomogram
of clinical survival prediction model, and the validation cohort
was applied for internal validation. Concordance index (C-
index), ROC curve analysis and calibration curve were used
to measure the performance of the nomogram, which were
conducted by R.

Statistical Analysis
Risk scores of the samples in GBM subtype, IDH1 status,
and MGMT promoter were presented as mean ± standard
deviation and calculated by Graphpad Prism 8.0. Statistical
differences between and among groups were examined by

two tailed t-test and one-way analysis of variance (ANOVA)
followed by Dunnett’s post-test, respectively. Kaplan-Meier
survival analysis and Cox proportion hazards regression model
were conducted with R and R package. P < 0.05 was regarded as
statistically significant.

RESULTS

Identification of Differentially Expressed
Genes Between GBM and LGG
GBM is one of the devastating malignancies with poor prognosis.
To better construct a survival prediction signature for patients
with GBM, we searched for differentially expressed genes
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TABLE 1 | Demographics and clinicopathologic characteristics of patients in

training cohort and validation cohort.

Characteristic Training cohort (n = 364) Validation cohort (n = 155)

No. of patients % No. of patients %

RISK SCORE

Median 1.5332 1.5356

Range 0.1301 to 2.2929 −0.0730 to 3.2246

AGE, YEARS

Median 59 57

Range 15–89 11–89

RADIOTHERAPY

Yes 260 71.4286 118 76.1290

No 104 28.5714 37 23.8710

CHEMOTHERAPY

Yes 246 67.5824 115 74.1935

No 118 32.4176 40 25.8065

between GBM and LGG in TCGA GBMLGG (RNA-seq) dataset.
Genes with |log2FC|> 1 and FDR < 0.05 were chosen as
DEGs. Four hundred eight genes (including 211 up-regulated
genes and 197 down-regulated genes) were identified (Figure 1A;
Supplementary Table 1).

WGCNA Analysis Revealed Blue Gene
Module Was Related to Glioma Grade
To identify genes associated with clinical traits, we collected the
RNA-seq data of DEGs and clinical information (WHO grade,
age, gender, IDH status, survival time and status), and performed
WGCNA analysis. Firstly, the samples were clustered and basic
clinical traits were displayed (Figure 1B). A soft threshold power
was then calculated and 10 was selected as the power value to
produce a hierarchical clustering tree (Figure 1C). The module
dissection threshold was set at 0.15 to merge similar modules
and 4 modules were generated (Figure 1D). The relationships
between gene modules and clinical traits were confirmed by
Pearson correlation and exhibited in a heatmap (Figure 1E).
Among the modules, blue gene module contained 194 genes and
was the most positively related to WHO grade (r = 0.77, P <

0.0001). In addition, the blue gene module was also correlated
with age (r = 0.56), IDH status (r = −0.87), survival time (r =
−0.32), and survival status (r = 0.56). Therefore, genes in the
blue module were used for further study.

Construction of the Risk Signature With
Five-Gene in GBM Cohorts
To select prognosis related genes, we performed univariate
Cox proportional hazards regression analysis to analyze the
genes in blue module in TCGA GBMLGG (RNA-seq) and HG-
UG133A platforms. Seventeen overlapped genes significantly
correlated with overall survival (P < 0.05) between the two
platforms were obtained (Figure 2A; Supplementary Table 2).
Next, multivariable Cox regression analysis was implemented
to filter and optimize the genes for constructing risk signature.

Five genes (DES, RANBP17, CLEC5A, HOXC11, POSTN) were
screened out, among which RANBP17 was defined as protective
with HR < 1, whereas others were defined as risky with HR > 1
(Figure 2B). The risk-score formula was constructed as follows:
risk score = (0.5536 × expression level of DES) + (−0.7340 ×

expression level of RANBP17) + (0.0995 × expression level of
CLEC5A) + (0.2810 × expression level of HOXC11) + (0.0566
× expression level of POSTN). The risk score for each patient
in TCGA HG-UG133A platform was calculated (mean ±SD,
1.5290 ± 0.4039; Quartiles were 1.3257 at 25%, 1.5936 at 50%,
and 1.7968 at 75%, respectively) and all the 525 patients were
divided into high-risk or low-risk groups based on the median
cutoff value of the scores. As shown in Figure 2C, GBM patients
with high risk scores indicated poor prognosis. The AUC for
the five-gene signature risk score model at 1, 3, and 5-year
survival were 0.671, 0.706, and 0.796, respectively (Figure 2D).
The results indicated that the risk signature can better predict
1, 3, and 5-year survival for GBM patients. With the increase of
risk score, the expression level of RANBP17 was down-regulated,
and the expression level of the other 4 genes were up-regulated
(Figures 2E,F). In the mean-time, the number of alive patients
decreased (Figure 2G).

Application of the Risk Signature in
Stratified GBM Cohorts
To further explore its clinical application, we investigated the
relationship between the risk score and glioma subtype, IDH1
and MGMT promoter status, respectively. The mesenchymal
subtype inclined to have higher risk scores than neural and
proneural subtype (Figure 3A). The risk scores of patients
with IDH1 mutant type were lower than IDH1 wild type
(Figure 3B). This result was in accordance with the conclusion
that IDH1 mutant in glioma was related to better patient
prognosis (23). For MGMT promoter, the risk scores decreased
in patients with methylated status (P < 0.01, Figure 3C),
though the average risk scores between the two groups didn’t
differ largely.

The relationships between the risk score and patient prognosis
stratified by IDH1, MGMT promoter status were also explored.
There was no significant statistical difference between high-
risk group and low-risk group in GBM patients with IDH1
mutant (Figure 3D). This result might be mainly due to the
insufficient number of patients. In IDH1 wild-type cohort,
patients with low risk scores exhibited longer survival time than
high risk group (Figure 3E). In terms of MGMT promoter, no
matter of methylated or unmethylated state, the high-risk group
indicated dismal prognosis compared with the low-risk group
(Figures 3F,G). Furthermore, in consideration of the importance
of radio- and chemo-therapy in the treatment of glioma, we
analyzed the association between the risk score and the response
to standard radio- and chemo-therapy. The patients with low
risk scores exhibited favorable prognosis in either radiotherapy
or chemotherapy (Figures 3H,I). These results revealed that the
risk signature could serve as an independent factor for predicting
the prognosis of patients with GBM.
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TABLE 2 | Multivariate analysis of the training cohort and validation cohort for overall survival.

Variable Training cohort Validation cohort

P HR 95% CI P HR 95% CI

Risk score <0.0001 2.4617 1.7110–3.5417 0.0043 1.9083 1.2246–2.9738

Age (years) 0.0004 1.0177 1.0079–1.0276 0.001 1.0244 1.0098–1.0392

Radiotherapy

yes vs. no

<0.0001 0.4230 0.3139–0.5701 0.0013 0.4827 0.3099–0.7518

Chemotherapy

yes vs. no

0.0011 0.6274 0.4740–0.8304 0.0159 0.5825 0.3755–0.9036

FIGURE 5 | Construction of the nomogram based on the risk signature with five-gene. (A) The nomogram was constructed for predicting 1, 3, 5-year survival rate of

GBM patients. (B) ROC curve was used to evaluate the efficiency of the clinical predictive model. (C–E) The calibration curves for predicting patient survival at 1, 3,

and 5 years in the validation cohort.
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Functional Analysis of the Five Genes in
the Risk Signature
To further investigate the functional roles and KEGG pathways
associated with the risk signature, we first screened out the
DEGs between the high-risk group and low-risk group.
Ninety-five genes with FDR < 0.05 were selected for
GO and KEGG pathway analysis via DAVID (Figure 4A;
Supplementary Table 3). We discovered that the five-gene risk
signature was functionally associated with extracellular matrix
related terms, including extracellular exosome, extracellular
matrix, and extracellular matrix organization (FDR < 0.05,
Figure 4B). Correspondingly, several KEGG pathways (P <

0.05) such as ECM-receptor interaction and focal adhesion
pathways were also obtained (Figure 4C). To further confirm
these results, the samples were divided into high-risk and
low-risk groups according to the median of risk scores, and
GSEA were applied. Similar GO terms and KEGG pathways
were observed via GSEA analysis (Figures 4D,E). Collectively,
these results revealed that the five-gene risk signature was
correlated to extracellular matrix and cell adhesion functions,
which play vital roles in glioma invasion and progression
(24, 25).

Construction of a Clinical Survival
Prediction Model via the Risk Signature
Combined With Clinicopathologic Features
Since the risk signature had a better performance in
predicting the prognosis of GBM patients, we explored its
clinical significance combining with clinical characters (age,
radiotherapy, and chemotherapy experience). Firstly, the
samples in the TCGA HG-UG133A platform were divided into
training cohort (364 cases) and validation cohort (155 cases)
randomly (Table 1). Then, multivariable Cox regression analysis
was performed to assess the selected variable’s contribution in
predicting prognosis of GBM patients. The results indicated that
the factors, such as risk score, age, acceptance of radiotherapy
and chemotherapy, were correlated with patients’ survival
significantly both in training cohort and validation cohort
(Table 2). A clinical survival prediction model was constructed
based on the data in training cohort and presented in a
nomogram for predicting 1, 3, 5-year survival (Figure 5A).
C-index, ROC curve and calibration plot were used to evaluate
the efficiency of the clinical predictive model. The C-indexes
in training cohort and validation cohort were 0.729 and 0.708,
respectively. The area under the curves (AUC) of the nomogram
for 1, 3, 5-year-survival were 0.771, 0.808, and 0.838 in validation
cohort, respectively (Figure 5B). In the training set, the area
under the curves (AUC) for 1, 3, 5-year-survival were 0.796,
0.79, and 0.851, respectively (Supplementary Figure 1A). The
calibration plot for the probability of survival at 1, 3, or 5-years
showed an optimal agreement between the prediction and
observation, both in the validation cohort (Figures 5C–E)
and training cohort (Supplementary Figures 1B–D). These
results above revealed that the nomogram demonstrated a good
accuracy for predicting 1, 3, or 5-year survival of GBM patients.

DISCUSSION

So far, GBM is still a lethal disease without efficient therapeutic

regimens. The failure to develop new treatments ascribes to a

lack of validation of novel molecular targets, which are often

performed in animal models and directly translated to human
trials (26). Thus, exploration and validation novel molecular
targets are not only necessary, but also very urgent. In the
present study, we identified DEGs between GBM and LGG in
TCGA data, and confirmed 17 genes significantly correlated
with prognosis. Finally, five genes (DES, RANBP17, CLEC5A,
HOXC11, POSTN) were selected to construct a risk signature
for GBM. Among the five genes, POSTN is an ECM protein
and is involved in various cellular processes, including epithelial-
mesenchymal transition (EMT) and cell migration (27). POSTN
is highly expressed in glioma tissues and has been considered as
a biomarker of glioma malignancy and recurrence (28, 29). It
has also been reported that POSTN recruits M2 tumor-associated
macrophages and promotes glioma stem cells (GSCs) growth
(30). CLEC5A is a spleen tyrosine kinase-coupled receptor,
which is abundantly expressed in monocytes, macrophages
and neutrophils, and critical for inflammation response (31,
32). A recent study has shown that CLEC5A is upregulated
in GBM significantly and is associated with poor prognosis
(33). Furthermore, downregulation of CLEC5A can inhibit
the capabilities of proliferation, migration, and invasion, and
promotes apoptosis and G1 arrest in GBM cell lines (33). These
results are consistent with our findings that the expression level
of CLEC5A increased with the ascent of risk scores and CLEC5A
was a risk factor in GBM. Although few have been reported
about the other three genes in glioma, they have vital functions
and might serve as potential targets for GBM. For instance,
DES encodes the intermediate filament protein desmin, which
is expressed in cardiac, skeletal, and smooth muscle cells, and
its mutations can cause isolated cardiomyopathies and cardiac
conduction diseases (34, 35). A recent study demonstrated that
desmin loss is observed in 92%malignant mesothelioma samples,
76% malignant effusions, 29% benign mesothelial hyperplasia
tissues, but not in the reactive effusions (36). Thus, desmin
may serve as a useful biomarker in the discrimination between
reactive mesothelial proliferation and malignant mesothelioma.
As a RanGTP-binding protein, RANBP17 belongs to the
importin beta family and is preferentially expressed in the testis
(37, 38). RANBP17 is upregulated in dilated cardiomyopathy
and ischemic cardiomyopathy samples, and may regulate the
transport of different cargos in specific cardiomyopathies
through enhancing the transcriptional activation of the EA2
transcription factors E12 and E47 (39). HOXC11 belongs
to homeobox superfamily that are responsible for encoding
transcription factors regulating development (40). HOXC6 and
HOXC11 have been shown to induce differentiation of GOTO
neuroblastoma cells into Schwannian cells via transcription
activation of S100β (41). Moreover, HOXC11 is found to
be closely correlated with the survival of patients with renal
cell cancer, cervical cancer or breast cancer, and serves as
a therapeutic target (40, 42). This risk signature comprised
of the five genes was identified to significantly correlate
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with the survival of GBM patients, as well as stratified by
IDH1 status, MGMT promoter status, and radiochemotherapy.
In addition, GO and KEGG pathway analysis were applied
via DAVID and GSEA, and elucidated that the five-gene
risk signature was mainly related to extracellular matrix and
cell adhesion function. EMC organization and cell adhesion
are indispensable biological processes in tumor development
and progression (43, 44), indicating the essential value of
our signature.

Nomograms have been applied extensively and exhibit
favorable effects on predicting clinical risk signatures and
outcomes in some cancers (45, 46). For better clinical application,
we combined the risk signature with clinical factors (age,
radiotherapy, and chemotherapy experience) and established a
nomogram, which was validated to have better performance for
predicting the outcomes of patients with GBM. The nomogram
contained four items, and predicted the 1, 3, 5-year survival
rate based on the sum of the score in each item. This clinical
prediction model aimed at precisely predicting the prognosis
of GBM patients and corresponded to the idea of individual
treatment. However, there were some deficiencies in this study.
Firstly, the sample size was limited. Five hundred nineteen
samples were incorporated, and 364 cases were used for
constructing model. The second limitation was that the samples
were downloaded from TCGA, and it didn’t contain information
about extent of tumor resection, which is a key factor closely
related to survival time in patients with GBM (47). A collection
of detailed clinical records and further validation should be
carried out in future study. Despite the above shortcomings,
this study still has its advantages and innovations. Firstly, we

performed an accurate and widely used method, WGCNA (48),
and confirmed genes associated with glioma grade, which is
an clinical indicator directly associated with the prognosis of
glioma patients. Secondly, the risk signature with five genes
was proven to be an independent prognostic biomarker in
GBM via Kaplan-Meier survival analysis and multivariable
Cox regression analysis. In addition, on the basis of the risk
signature and other clinical factors (age, radiotherapy, and
chemotherapy experience), the nomogram can predict the 1,
3, 5-year survival rate precisely, thus providing evidences of
treatment for GBM patients. Altogether, our study indicated
the potential value of our model for predicting the survival of
GBM patients.
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