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Background and Purpose: Susceptibility-weighted imaging (SWI) has emerged as

a useful clinical tool in many neurological diseases including multiple sclerosis (MS).

This study aims to investigate the relationship between SWI signal changes due to iron

deposition in MS lesions and tissue blood perfusion and microstructural abnormalities to

better understand their underlying histopathologies.

Methods: Forty-six patients with relapsing remitting MS were recruited for this

study. Conventional FLAIR, pre- and post-contrast T1-weighted imaging, SWI, diffusion

tensor imaging (DTI), and dynamic susceptibility contrast (DSC) perfusion MRI were

performed in these patients at 3T. The SWI was processed using both magnitude

and phase information with one slice minimal intensity projection (mIP) and phase

multiplication factor of 4. MS lesions were classified into 3 types based on their lesional

signal appearance on SWI mIP relative to perilesional normal appearing white matter

(peri-NAWM): Type-1: hypointense, Type-2: isointense, and Type-3: hyperintense lesions.

The DTI and DSC MRI data were processed offline to generate DTI-derived mean

diffusivity (MD) and fractional anisotropy (FA) maps, as well as DSC-derived cerebral

blood flow (CBF) and cerebral blood volume (CBV) maps. Comparisons of diffusion and

perfusion measurements between lesions and peri-NAWM, as well between different

types of lesions, were performed.

Results: A total of 137 lesions were identified on FLAIR in these patients that include

40 Type-1, 46 Type-2, and 51 Type-3 lesions according to their SWI intensity relative

to peri-NAWM. All lesion types showed significant higher MD and lower FA compared

to their peri-NAWM (P < 0.0001). Compared to Type-1 lesions (likely represent iron

deposition), Type-2 lesions had significantly higher MD and lower FA (P < 0.001) as well

as lower perfusion measurements (P< 0.05), while Type 3 lesions had significantly higher

perfusion (P < 0.001) and lower FA (P < 0.05). Compared to Type-2, Type-3 lesions

had higher perfusion (P < 0.0001) and marginally higher MD and lower FA (P < 0.05).
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Conclusion: The significant differences in diffusion and perfusion MRI metrics

associated with MS lesions, that appear with different signal appearance on SWI, may

help to identify the underlying destructive pathways of myelin and axons and their

evolution related to inflammatory activities.

Keywords: DTI (diffusion tensor imaging), susceptibility-weighted imaging, multiple sclerosis (MS), PWI =

perfusion-weighted imaging, MRI - magnetic resonance imaging

INTRODUCTION

Multiple sclerosis (MS) is an inflammatory autoimmune
neurodegenerative disease of the central nervous system (CNS),
characterized by inflammation, demyelination, gliosis and neuro-
axonal loss in lesions. It is generally believed that the basic
pathogenesis of MS is collapse of immune tolerance to CNS
myelin or myelin-like antigens followed by pro-inflammatory
phagocytosis, oxidative injury, antigen presentation and T
cell co-stimulation (1). Demyelinating and axonal injury are
further consequences, which are typical features of MS. As
we have already known, the progressive neurodegenerative
processes in MS take a great toll on physical disability
and cognitive disorder (2), and can seriously impact the
quality of life in patients. Recent studies have shown that
the changes of iron content that are commonly seen in
MS lesions may be related to inflammatory activities (e.g.,
active myelin phagocytosis and intracellular iron depletion)
and oxidative tissue injury in the demyelinating disease (3–6).
Some other studies have found that iron is closely related to
the biosynthetic enzymes of myelin formation (7, 8). Public
opinions are divergent, but the effect of iron deposition on
cellular and microstructural changes in the MS lesions remains
an unresolved issue.

MRI has had an enormous impact on MS and plays a
critical role as a paraclinical tool in routine clinical practice.
The multi-sequence or multi-contrast MR imaging not only
improves the diagnosis but also provides different specificity for
various elements of pathology including iron deposition and
microstructural destruction (9). Susceptibility weighted imaging
(SWI) (10), as a three dimensional high resolution gradient
echo sequence, is extensively applied for detecting abnormal iron
deposition or microbleeds inMS (11). Compared to conventional
T1- and T2-weighted MRI, SWI is more superior in displaying
paramagnetic dark or hypointense signals, including the iron
content in various forms of hemosiderin, ferritin and iron-
laden macrophage (12–15) with high sensitivity even with only
1 gFe/g tissue iron changes (16). Studies have shown that MS
lesions can also appear as an isointense or hyperintense signal
on SWI with unclear pathophysiological implications (16, 17). It
is therefore essential to identify the pathophysiological meaning
of different SWI signal appearances of MS lesions using non-
invasive imaging to fulfill this unmet need.

Recently, quantitative imaging measures have been
increasingly used in MS research to better elucidate the
hidden pathological mechanisms associated with tissue
microstructural and inflammatory changes (9). Among these
techniques, diffusion tensor imaging (DTI) (18–20) and dynamic

susceptibility contrast MRI (DSC-MRI) (21, 22) are gaining more
wide-spread utility in clinical practice and have shown great
potential for detecting the cellular microstructural integrity and
hemodynamic impairment at different stages of lesion evolution
in MS, respectively. The aim of this study is to characterize the
quantitative DTI-derived diffusion and DSC-derived perfusion
parameters changes underlying different SWI signal intensities
of MS lesions. We hypothesized that signal intensities detected
on SWI in MS lesions may be a noninvasive biomarkers that
can help clinicians to determine specific pathological processes
associated with demyelination, axonal loss, and inflammatory
processes in patients with relapsing-remitting MS.

MATERIALS AND METHODS

Subjects
The research protocol of this retrospective study followed
the tenets of the Declaration of Helsinki and was approved
by the New York University Langone Health (NYULH)
Institutional Review Board. Forty-six clinically definite
relapsing remitting MS patients (28 women, 18 men,
mean age 35.9 ± 11.3 years) enrolled from January 2012
to December 2016, were used in this study. All patients
were informed and signed the institutional review board
approved written consent form. The median disease duration
in these patients was 4.4 years (range 1.6–11.4 years) and the
median expanded disability status scale (EDSS) was 3.5 (range
1.5–5.5). These patients had no history of cerebrovascular
disease, evidence of small vessel ischemic disease and no
substantial intracranial pathology besides MS lesions in
MR imaging.

Image Acquisition and Processing
All patient data were acquired on a 3.0T Trio (Siemens Medical
Solutions, Erlangen, Germany) MR scanner using a 20-channel
array head coil. The MRI protocol included the following
sequences: (1) Fluid-attenuated inversion recovery (FLAIR)
imaging (TR/TE=9420/134ms, voxel size= 1× 1× 3 mm3); (2)
pre and post T1-weighted (T1W) imaging (TR/TE=630/15ms,
voxel size = 1 × 1 × 3 mm3); (3) susceptibility weighted
imaging (SWI) (TR/TE=28/20ms; FA=15◦, voxel size =0.86
× 0.86 × 3 mm3); (4) DTI with 30 directions (TR/TE =

7300/89ms, voxel size = 3.0 × 3.0 × 3.0 mm3, b = 1000
s/mm2); (5) dynamic susceptibility contrast (DSC) perfusion
imaging (TR/TE = 956/32ms, voxel size = 1.7 × 1.7 × 3.0
mm3) applied to 13 axial slices centered at lateral ventricle
body with 10 seconds injection delay. For DSC, a 3–5 cc/sec
bolus of Gadolinium contrast agent (Gd-DTPA; Magnevist,
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Bayer Schering Pharma) was administered at a dose of 10–
20 cc (0.075 mmol/kg) to acquire 60 time points. The post-
contrast T1-weighted imaging (the same sequence with pre-
contrast) was performed 10min after injection. The image
slice thickness from all sequences above is the same for lesion
identification and registration on different imaging contrast.
All sequences had 45 slices (13.5 cm) coverage of brain
except DSC. The total scan time for all sequences was about
45 min.

SWI data is processed using an in-house image-processing
software (SPIN) (23). The raw magnitude and phase from
each SWI scan used to generate minimal intensity projection
(mIP) using phase multiplication factor of 4 to enhance the
susceptibility effects. Instead of using multiple slices for mIP, one
slice mIP was used in this study to keep the slice thickness the
same with the rest sequences and to minimize the partial volume
effects from multi-slice mIP. DTI data analysis was performed
offline using DTI studio, by which tensor images were generated
to construct mean diffusivity (MD) and fractional anisotropy
(FA) (24). MD and FA are the scalar measures of the total
diffusion (e.g., average of eigenvalues) within a voxel and the
degree of anisotropy in a given voxel, respectively. DSC data was
processed using the perfusion analysis software package in Olea
Sphere (Olea Medical, Cambridge, MA). Data first underwent
preprocessing consisting of motion correction followed by spatial
and temporal filtering. The standard single value decomposition
(SVD) technique was then applied to the preprocessed data to
generate maps of mean transit time (MTT), CBF, and leakage-
corrected CBV (25). Because the absolute values of CBF (ml/100
ml/min) and CBV (ml/100ml) can only be determined up
to a multiplicative constant, the comparisons between lesion
types were used as relative measures (i.e., rCBF, rCBV) in this
study. Lastly, the diffusion and perfusion maps were manually
registered to their corresponding conventional T1 and FLAIR
imaging as well as SWI images using tkregister2 (Free Surfer,
Massachusetts General Hospital, Harvard Medical School) for
manually ROI placement and analysis.

Data and Statistical Analysis
As shown in Figure 1, according to signal intensity appearances
on SWI mIP, MS lesions were classified into three distinct
lesion types. Type-1: hypointense (i.e., higher susceptibility),
Type-2: isointense, and Type-3: hyperintense lesions. To
avoid the visual predisposition bias, a cut-off value of 30%
difference of mean intensity, measured between lesions and
perilesional region, was applied. Only lesions with a diameter
of 5mm or larger were included in the data analyses. These
lesions were first blindly reviewed and classified by each
of the two experienced radiologists, and finally determined
by consensus between the two for lesions with inconsistent
opinion. Quantitative data analyses of diffusion and perfusion
measurements were performed with Image J (National Institutes
of Health, Bethesda, MD) software. Lesions were identified
on conventional FLAIR, T1-weighted, and SWI images, on
which the anatomical regions of interest (ROIs) were manually
selected and then transferred onto co-registered FA, MD, CBF,
and CBV maps. For each lesion, the ROI was placed on

both lesion and perilesional NAWM (peri-NAMW) region for
comparison. In order to increase the accurate lesion selection
and avoid partial volume, the image with the lesion target
was zoomed-in 3 times bigger on ImageJ for better ROI
placement. On this magnified view, the ROI placement of peri-
NAWM was also improved. Mixed model analysis of covariance
(ANCOVA) was used to compare the lesions of each type to
the perilesional normal appearing white matter (peri-NAWM)
and to compare lesions of different types to each other with
respect to FA, MD, rCBF, and rCBV. A separate univariate
analysis was conducted for each perfusion measure. When
the value of P < 0.05, the difference is considered to be
statistically significant.

RESULTS

A total of 137 lesions were identified on conventional T2-
weighted and post-contrast T1-weighted imaging in 46
patients with relapsing remitting MS that had both DTI
and DSC data. Among them, there were 40 (or 29.2%)
Type-1, 46 (or 33.6%) Type-2, and 51 (or 37.2%) Type-3
lesions (Figure 1). In addition, there were 11 enhancing
lesions found in 6 patients; and 9 of these enhancing
lesions were Type-3 lesions that showed hyperintensity
on SWI, and another 3 enhancing lesions were Type-
2 lesions that show isointensity on SWI. In contrast,
none of the Type-1 lesions (hypointense on SWI) showed
Gadolinium enhancement.

As shown in Figure 2, compared to peri-NAWM
measurements, FA was significantly lower and MD was
significantly higher in all types of lesions (P < 0.0001), indicating
clear microstructural disruption in MS lesions. The mean FA
values of Type-1, Type-2, and Type-3 lesions were 0.31 ± 0.05,
0.24 ± 0.07, 0.27 ± 0.08, respectively; and the mean FA values
for their corresponding peri-NAWM were 0.49 ± 0.11, 0.52 ±

0.09, 0.45 ± 0.12 respectively. The mean MD values of Type-1,
Type-2, and Type-3 lesions were 1.16 ± 0.27, 1.42 ± 0.34,
1.27 ± 0.36, respectively; and the mean MD values for their
corresponding peri-NAWM were 0.71 ± 0.16, 0.68 ± 0.17, 0.82
± 0.09, respectively. For perfusion measures, both CBF and
CBV in Type-3 lesions (297.6 ± 126.5 ml/100 g/min, 385.9 ±

142.9 ml/100 g) showed significantly higher than peri-NAWM
(216.9 ± 80.6 ml/100 g/min, 234.7 ± 75.6 ml/100 g) with P =

0.0002 and P < 0.0001, respectively. Type 2 lesions showed
significantly lower CBF than peri-NAWM (158.6± 77.1 vs. 193.7
± 82.3 ml/100 g/min, P = 0.04) and significantly lower CBV
(206.4 ± 95.1 vs. 257.4 ± 89.1 ml/100 g, P = 0.009). However,
Type-1 lesions didn’t show a significant difference in perfusion
measurements with peri-NAWM.

The DTI-derived mean FA and MD values as well as DSC-
derived rCBF and rCBV values of three types of lesions and their
comparisons (P-values) are summarized in Table 1. Compared
to Type-1 lesions, Type-2 lesions showed significantly higher
MD and lower FA. Compared to Type-1 lesions, Type-3 lesions
only showed significant difference in MD (P = 0.036) but not
in FA. Compared to Type-3 lesions, Type-2 lesions showed

Frontiers in Neurology | www.frontiersin.org 3 July 2019 | Volume 10 | Article 747

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Sheng et al. Tissue Changes Associated With Iron

FIGURE 1 | MS lesions are classified into three types based on their signal intensity appearance on SWI mIP image—Type-1: hypointense lesions; Type-2: isointense

lesions; and Type-3: hyperintense lesions. The group classification is defined as the difference between lesion signal intensity and surrounding perilesional NAWM

(peri-NAWM) is equal or over 30% cut-off. The arrows indicate the lesion types with different signal appearance on single-slice mIP SWI.

FIGURE 2 | Bar graphs showing comparisons of DTI-derived MD (A) and FA (B), as well as DSC-derived CBF (C) and CBV (D) measurements, between each lesion

type and its corresponding perilesional normal appearing white matter (per-NAWM). *P < 0.05, **P < 0.01, ***P < 0.001. MD, CBF, and CBV are in their units of

mm2/s, ml/100 g tissue/min, and ml/100 g tissue, respectively.

marginally higher MD and lower FA (P = 0.04). The mean
rCBF and rCBV were the lowest in Type-2 lesions and were
the highest in Type-3 lesions with Type 1 lesions being in the
middle. The increased blood perfusion in Type-3 lesions may

be associated with vascular inflammatory activities since most
enhancing lesions (9 out of 11) were Type-3 lesions.

Examples of diffusion and perfusion imaging parameter
characteristics of Type-1 lesions were shown in Figure 3.
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TABLE 1 | Diffusion and perfusion imaging measurements in different types of MS lesions on SWI and their comparisons.

Individual lesion types Comparison between types

Imaging measurements Type 1 Type 2 Type 3 Type 1 vs. Type 2 Type 1 vs. Type 3 Type 2 vs. Type 3

hypointense lesions Isointense lesions hyperintense lesions

MD 1.13 ± 0.32 1.41 ± 0.03 1.27 ± 0.04 P < 0.0001 P = 0.036 P = 0.047

FA 0.31 ± 0.05 0.27 ± 0.07 0.30 ± 0.12 P = 0.0004 P = 0.792 P = 0.047

rCBF 1.05 ± 0.46 0.86 ± 0.34 1.39 ± 0.41 P = 0.036 P = 0.0003 P < 0.0001

rCBV 1.05 ± 0.42 0.86 ±0.41 1.67 ± 0.46 P = 0.039 P < 0.0001 P < 0.0001

The values were reported in mean ± standard deviation. The unit for MD is in mm2/s. The reported rCBF and rCBV are relative (i.e., ratio) measurements and FA is an index for the

amount of diffusion asymmetry between 0 and 1 within a voxel, therefore, they don’t have absolute units. The intensity of different types of lesions is relative to the surrounding white

matter on SWI.

FIGURE 3 | Representative images of Type-1 lesions in two MS patients (top row from a 36-year-old male patient and bottom row from a 37-year-old female patient)

include FLAIR (A,A′), Gd-enhanced T1-weighted (B,B′), and SWI (C,C′), as well as parameter maps of MD (D,D′), FA (E,E′), and CBF (F,F′). The hypointense lesions

on SWI (arrows) are associated with a less significant change in diffusion and perfusion measurements, as compared perilesional NAWM.

As shown in one patient (in Figure 3 top row), SWI was
most sensitive in detecting iron-laden component of lesions.
The hypointense Type-1 lesions demonstrated a significant
increase in MD and decrease in FA but no change in
perfusion measurements compared to perilesional NAWM.
Similarly, in another patient (Figure 3 bottom row), visible
changes of MD and FA can be seen in another Type-
1 lesion compared to peri-NAWM with uncertain perfusion
changes. Representative Type-2 lesions were shown in Figure 4,

in which SWI lesions that appeared as slightly hypointense
(top row) or isointense (bottom row) showed a remarkable

increase in MD and decrease in FA as well as reduced CBF.
Such lesions in Figure 4 (top row) also showed hypointensity
on both FLAIR and post-contrast T1-weighted images. Two
Type-3 lesions with Gadolinium enhancement were shown
in Figure 5, in which there is a mild increase in MD
and marked decrease in FA as well as increase in CBF.
One MS lesion with both Type-2 and Type-3 components
was shown in Figure 6, in which the lesion showed a
mixed pattern of significant diffusion and perfusion changes
associated with non-enhancing center region and the enhancing
rim, respectively.
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FIGURE 4 | Representative images of Type-2 lesions in two MS patients (top row from a 43-year-old female patient and bottom row from a 37 female patient) include

FLAIR (A,A′), Gd-enhanced T1-weighted (B,B′), and SWI (C,C′), as well as parametric maps of MD (D,D′), FA (E,E′), and CBF (F,F′) The slightly hypointense (top

row) or isointense (bottom row) lesion on SWI (arrow) showed a remarkable increase in MD, and decrease in FA and CBF, suggesting the chronic necrotic lesions

indicated by the hypointensity on FLAIR, and T1-weighted imaging (i.e., top row) have severe microstructural destruction and disturbed perfusion.

FIGURE 5 | Representative images of Type-3 lesions in two MS patients (top row from a 32-year-old female and bottom row from 41-year-old female patient) include

FLAIR (A,A′), Gd-enhanced T1-weighted (B,B′), SWI (C,C′), as well as parametric maps of MD (D,D′), FA (E,E′), and CBF (F,F′). The hyperintense lesions (arrow) on

SWI showed gadolinium enhancement that is corresponding to increased perfusion and slightly increased MD as well as decreased FA.

DISCUSSION

Conventional MRI offers the most sensitive way to detect
MS lesions and their changes over time for ruling in
or ruling out a diagnosis of MS and for disease follow-
up monitoring. The addition of SWI, which is a quick
scan of routine conventional MRI protocols, may provide

in vivo pathophysiological insights into cellular microstructural
injury and tissue hemodynamic changes. Our results of MS
lesions on SWI, combining quantitative multi-contrast and
multi-parameter MRI, suggest that the intensity-based lesion
types on SWI may represent a specific stage of lesion
evolution or a certain pathological substrate associated with
demyelination/axonal injury or inflammatory activity. These
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FIGURE 6 | An ring-enhancing lesion in a 32-year-old female MS patient on FLAIR (A), Gd-enhanced T1-weighted (B), and SWI (C), as well as on MD (D), FA (E), and

rCBF (F) parametric maps. The lesion has both Type-2 (isointense center on SWI) and Type-3 (hyperintense rim on SWI) components. The center of the lesion

demonstrated larger MD changes compared to the enhancing rim that has increased perfusion of the entire lesion.

hidden pathological changes including blood-brain barrier
dysfunction can possibly be detected with SWI without using
Gadolinium contrast agent (26) as shown in Type-3 lesions. Our
data also confirm previous imaging-histopathological correlative
evidence of iron deposition, demyelination and axonal loss (6, 27,
28). In particular, three major observations emerge from these
data. First, a hyperintense (Type-3) lesion on SWI may be related
to the underlying enhanced vascular inflammatory activity with
increased BBB disruption that results in increased CBF and CBV.
Second, hypointense (Type-1) lesions on SWI are likely to have
less tissue destruction by diffusion measures compared to Type-
2 lesions; they also have less inflammatory activity than Type-
3 lesions by perfusion measures. Third, isointense SWI Type-2
lesions may represent a more chronic demyelinated plaque with
irreversible tissue destruction (e.g., black holes) showing themost
severe DTI-derived diffusion changes.

SWI is a 3D gradient-echo high-resolution sequence that is
fully flow-compensated with long-echo and combines magnitude
and filtered-phase information to enhance susceptibility effects
due to paramagnetic substances, such as hemosiderin and
deoxyhemoglobin (10). Unlike quantitative susceptibility
mapping (QSM), SWI is considered to be a qualitative MRI
technique for enhanced lesion detection, its unique image

contrast is particularly useful to gauge tissue iron content
and venous structures. Therefore, it is well-recognized that
hypointense (Type-1) lesions of MS are corresponding
to increased iron content, which is likely due to chronic
inflammatory activity with an elevated number of microglia and
macrophages that contain high amounts of iron (15, 29). Type-1
lesions are also likely caused by increased hemosiderin (30) from
old blood products leaked from inflammation-induced damaged
vessels. All Type-1 lesions in this study were not enhancing on
post-contrast T1-weighted imaging even though some lesions
showed slightly increased blood perfusion, indicating certain
inflammatory activities or lesion reactivity with increased
macrophage cells (21). Compared to Type-2 lesions, these Type
1 lesions showed less diffusion abnormalities, which are believed
to be corresponding to a lower degree of cellular architecture
destruction during a tissue repair stage (8, 31).

Most SWI studies of MS have been focusing on hypointense
(Type-1) lesions. In this study, besides the hypointense SWI
lesions, we have also characterized quantitative diffusion and
perfusion imaging features of isointense and hyperintense SWI
lesions. Out of 137MS lesions, 33.6% are Type-2 isointense
lesions and 37.2% are Type-3 hyperintense lesions. Since mIP
is a post-processed image using phase multiplication (with a
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factor of 4 in this study) and minimal intensity projection
algorithm (10), the true meaning of signal intensity on multi-
slice mIP images is uncertain. Therefore, in this study, the mIP
image was generated using only one slice, in order to avoid
the mixture effects of projected intensities. Except for high
susceptibility substances (e.g., non-heme iron or venous blood)
that contribute to dark signal on SWI, the non-dark signal
on SWI is likely due to the combined effects of the amount
free water content and edema (non-free intra- or extra-cellular
water) due to pro-inflammation activation status. SWI does not
provide a typical T1- or T2-weighted imaging contrast. After
being applied with phase information, it does not seem to be
a standard T2∗ contrast either. Although the non-iron laden
isointense or hyperintense SWI lesions have been consistently
shown in the literatures and represent most MS lesions (16,
17, 32, 33), their histopathological characteristics are unclear.
In this study, we found most isointense Type-2 lesions on SWI
are corresponding to isointense or hypointense (or black hole)
lesions on T1-weighted imaging. The well-demarcated black hole
lesions on T1-weighted imaging likely represent the hypocellular
area characterized by necrotic fluid elements and the loss of
tissue structures.

Our results of combining quantitative diffusion and perfusion
measurements support the notion that SWI can be used
as a promising alternative in determining the underlying
histopathological hallmarks of MS lesions. We found that Type-1
lesions have less diffusion changes than Type-2 lesions and less
perfusion changes than Type-3 lesions, despite Type-1 lesions
usually containing iron deposition. According to the previous
study, the origins of iron deposition in MS lesions may be the
concentrated iron of macrophages, debris of oligodendrocyte
and myelin, or hemosiderin of hemorrhagic products from the
leaky vessels (34, 35). The exact role of iron in MS is unclear
with views from both sides that iron can either contribute to
chronic inflammation, oxidative stress and neurodegeneration
(35) or contribute to tissue repair (31). The slightly increased
perfusion measurements (e.g., CBF and CBV) of Type-1 lesions
found in this study may support the increased inflammation and
cell activities.

To the best of our knowledge, this is the first time to
characterize the hyperintense signal (Type-3) lesions on SWI
with diffusion and perfusion measurements. Type-3 lesions
showed significantly increased rCBF and rCBV but less diffusion
changes compared to Type-2 lesions, indicating local vascular
inflammation induced vasodilation and increased perfusion in
these lesions (21, 36). This is also indicated by that fact that 9
out of 11 enhancing lesions in these patients are Type-3 lesions.
Based on QSM analysis, Zhang et al. (26) showed gadolinium-
enhancing MS lesions had relative low QSM values than non-
enhancing lesions, which are consistent with the findings in this
study that these enhancing lesions appear hyper- rather hypo-
intense on SWI. Another study (32) has also demonstrated that
enhancing lesions are likely to be hyperintensities in contrast to
the central dark vein on post-gadolinium SWI images, despite
that gadolinium is a paramagnetic agent and has strong T2∗

shortening effect. These results suggest that signal intensities on
SWI may help better detect BBB dysfunction and identify subtle

inflammatory activities that are not detected on post-contrast
T1-weighted imaging (35). The marginal or no difference of
diffusion measurements between Type-3 and Type-1 lesions,
as well as between Type-3 and Type-2 lesions, indicate that
there is a large span of variabilities for microstructural changes
in MS lesions depending on stages of lesion development and
evolution. However, Type-2 lesions demonstrated the highest
MD and lowest mean FA, suggesting most severe architecture
destruction and tissue loss in these lesions; and Type-1 lesions
showed the lowest mean MD, which may suggest a certain level
of water diffusion restriction [i.e., cytotoxic edema from hypoxia
injury (37, 38)] occurs in these lesions during high level of
macrophage activities.

There were several limitations associated with this study.
First, due to the challenge for quantifying the absolute CBF
and CBV using DSC MRI (39, 40) due to the uncertainties
of scaling coefficients for relaxivity and AIF partial volume,
we used relative perfusion measures for comparison between
lesion types. For comparisons between lesions and peri-NAWM,
although we used the actual CBF and CBV values from DSC
SVD algorithms, the values reported in these tissues are supposed
to be interpreted for comparisons only. Future longitudinal
studies are warranted for validating some of the findings
regarding the underlying histopathology of lesion development
and progression, in particular with a large sample size of patients
with enhancing lesions. Lastly, the definition of different types of
lesions was using 30% signal intensity differencemay be arbitrary,
however, we found the classification based on such a threshold
provided appropriate differentiable imaging features from DTI
and DSC data.

CONCLUSION

This study indicates that the addition of SWI to clinical MRI
protocol may provide in vivo pathological insights, suggesting
that the intensity-based lesion types on SWI may represent
a specific stage of lesion evolution or a certain pathological
substrate associated with iron deposition, demyelination/axonal
injury or inflammatory activity. Further studies investigating the
longitudinal evolution of lesion appearances on SWI and their
quantitative correlations will be envisioned.
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