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Fetal nerve maturation is a dynamic process, which is reflected in fetal movement and

fetal heart rate (FHR) patterns. Classical FHR variability (fHRV) indices cannot fully reflect

their complex interrelationship. This study aims to provide an alternative insight for

fetal neural development by using the coupling analysis of uterine electromyography

(UEMG) and FHR acceleration. We investigated 39 normal pregnancies with appropriate

for gestational age (AGA) and 19 high-risk pregnancies with small for gestational age

(SGA) at 28–39 weeks. The UEMG and FHR were recorded simultaneously by a

trans-abdominal device during the night (10 p.m.−8 a.m.). Cross-wavelet analysis was

used to characterize the dynamic relationship between FHR and UEMG. Subsequently,

a UEMG-FHR coupling index (UFCI) was extracted from the multiscale coupling power

spectrum. We examined the gestational-age dependency of UFCI by linear/quadratic

regression models, and the ability to screen for SGA using binary logistic regression.

Also, the performances of classical fHRV indices, including short-term variation (STV),

averaged acceleration capacity (AAC), and averaged deceleration capacity (ADC),

time- and frequency- domain indices, and multiscale entropy (MSE), were compared as

references on the same recordings. The results showed that UFCI provided a stronger

age predicting value with R2 = 0.480, in contrast to the best value among other fHRV

indices with R2 = 0.335, by univariate regression models. Also, UFCI achieved superior

performance for predicting SGA with the area under the curve (AUC) of 0.88, compared

with 0.79 for best performance of other fHRV indices. The present results indicate that

UFCI provides new information for early detection and comprehensive interpretation of

intrauterine growth restriction in prenatal diagnosis, and helps improve the screening

of SGA.

Keywords: fetal neural development, uterine electromyography, fetal heart rate, cross-wavelet analysis,

intrauterine growth restriction, small for gestational age
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INTRODUCTION

There is increasing consensus that many adverse outcomes,
such as stillbirth, neonatal complications (1), and impaired
neurobehavioral and motor development during childhood (2,
3), are associated with intrauterine growth restriction (IUGR),
also referred to as fetal growth restriction (FGR). IUGR is defined
as the pathologic inhibition of intrauterine fetal growth of the
fetus that fails to reach its growth potential (4). In clinical
practice, the structural parameters estimated by ultrasound is the
preferred method to screen fetal developmental problems in the
uterus. The IUGR referred for ultrasound evaluation, commonly
determined by population standards for estimated fetal weight
(EFW) <10th and/or abdominal circumference (AC) <10th in
utero (5). Similarly, small for gestational age (SGA) is most
commonly defined as a birthweight below the 10th percentile for
the gestational age in the newborn (5). They both represent a
condition that, in the context of fetal development, may serve
as a model of possible delay of structural parameters due to
chronic nutritional deprivation and hypoxemia. Many studies
have shown the possible delay in the functional maturation of the
sympathetic nervous system (related to FHR accelerations) (6, 7).

Movement-related heart rate acceleration patterns monitored
by electronic fetal monitoring (EFM) may provide additional
information for fetal neurodevelopment.

Recently, a series of studies based on fetal
magnetocardiographic (fMCG) with high temporal resolution
demonstrated that fHRV patterns directly reflected the
development and maturation of the fetal nervous system.
Van Leeuwen and co-workers (8) noted that a complexity
measure of RR intervals increased linearly with fetal age (R2 =

0.79). Similarly, Hoyer et al. (9) demonstrated that the multiscale
entropy (MSE) of FHR over a range of short scales increased
with age in the quiet state, and age dependencies were found
to be weaker in the active state. Further, Hoyer et al. developed
a fetal autonomic brain age score (fABAS) based on various
fHRV indices and achieved excellent performance (10, 11).
However, the relevant indicators are based on the RR sequence
of fMCG, and their analysis from common 4Hz resampled FHR
is pending. In addition, several topical fHRV indices, short-term
variation (STV) (12–14), averaged acceleration capacity (AAC)
and averaged deceleration capacity (ADC) based phase-rectified
signal averaging (PRSA) methodology (15–17), and MSE (18)
are commonly used indicators for screening IUGR and SGA.
However, such studies were limited by a single short-term FHR
signal and might be easily affected by other factors including
sleep cycle and women’s status (19, 20).

Another core of assessing fetal development lies in the

emergence of a temporal association between fetal movement
(FM) and FHR acceleration (21, 22). Previous studies empirically

determined a coupling, depending on the fixed amplitude and
interval time. Moreover, FM-FHR coupling is quantified by
cross-correlation (23), but the effectiveness of cross-correlation is
limited by non-stationary signals, andmainly, it is not suitable for
the analysis of long-term FHR data that might evolve and become
drastically different over time. Currently, significant progress has
beenmade in long-term FHR and fetal movement-related uterine

electromyography (UEMG) monitoring technology based on
abdominal electrical signals (24). Meanwhile, new coupling
analysis methods based on wavelets have achieved impressive
performance in evaluating the dynamic properties of cerebral
autoregulation in autonomic failure patient, and neonatal
hypoxic-ischemic encephalopathy during hypothermia (25). The
wavelet technique has several advantages: it makes no assumption
about the stationarity of input signals (26), and the cross-wavelet
power spectrum can characterize time-varying common power
between two signals at multiple scales of frequency (27, 28).

In this study, we use the cross-wavelet power spectrum to
quantify the coupling of UEMG signal and FHR accelerations.
We postulate that the coupling extent could provide new
information for fetal neurodevelopment, and help improve
the surveillance of SGA fetuses. Also, the performances of
classical fHRV indices, including short-term variation (STV),
averaged acceleration capacity (AAC), and averaged deceleration
capacity (ADC), time- and frequency- domain indices, and
multiscale entropy (MSE), were compared as references on the
same recordings.

METHODS

Study Design and Population
This study was approved by the Ethical Committee of Peking
University Third Hospital. Each subject signed an informed
consent before enrolling.

From June 2014 to 21 November 2018, we recruited
high-risk pregnancies with hypertensive disorders complicating
pregnancy (HDCP) and/or IUGR between 28 and 39 weeks
gestational age. Also, 19 pregnancies with SGA newborns
were included in the study group. The controls were 39
uncomplicated pregnancies with newborns whose birthweight
were appropriate for gestational age (AGA), (See the next
section for a detailed definition of HDCP, IUGR, and SGA).
The following conditions served as exclusion criteria—maternal:
multiple pregnancies, known uterine contractions during the
recording; Fetal: known fetuses with chromosomal or structural
anomalies, fetal cardiac arrhythmias. The information about each
woman, the characteristics of the fetus and newborn outcomes
were collected from the medical records.

Maternal and Infant Characteristics
The detailed maternal and infant characteristics of the AGA and
the SGA are presented in Table 1. These two groups were broadly
comparable in terms of maternal age, BMI, gestational age at
monitoring, and gender distribution. However, the birthweight
was significantly lower in the SGA group (P < 0.001) compared
to the AGA. In addition, from the “time internal between
monitoring and birth” item, we can see that the SGA fetus were
born about onemonth earlier than controls. Also, 42.1% (8/19) of
the SGA group are preterm labor and require neonatal intensive
care unit (NICU) admission in the SGA group.

Clinical Definitions
In this study, the diagnostic criteria of HDCP in pregnancy refers
to systolic blood pressure ≥140 mmHg and/or diastolic blood
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pressure ≥90 mmHg on at least two occasions at least 4 h apart
after the 20th week of gestation. The diagnosis of IUGR was
defined by both abdominal circumference and estimated fetal
weight (EFW) ≤10th percentile for the gestational age at the
time of mid-gestation ultrasound scan. The diagnosis of SGA
was defined by a birthweight below the 10th percentile for the
gestational age in the newborn. A newborn whose birthweight
was appropriate for the gestational age, at 10–90th percentile, was
defined as AGA (29).

Data Collection
For each participant, UEMG and FHR were trans-abdominally
recorded by the maternal-fetal monitor, Monica AN24
(Monica Healthcare, Nottingham, UK), during one night after
recruitment. Note that the sampling frequency of abdominal
fetal ECG is 300Hz. Fetal heart period was determined to
an accuracy of 3.3ms as the time between consecutive QRS
complexes. However, limited by the common settings of existing
commercial electronic fetal monitoring (EFM) devices, we used
resampled 4Hz data for later offline analysis. UEMG signal
mainly reflects fetal movement information ranges between
0 and 100 in arbitrary units (a.u.). In the actual acquisition,
some signals were dropped due to the electrode slice becoming
loose or the signal being masked by noise, which were set as
0. For each subject, the recording between 22:00 pm to 8:00

TABLE 1 | Summary statistics for pregnant women’s and fetal demographic and

characteristics between the AGA and the SGA.

AGA group

(n = 39)

SGA group

(n = 19)

P-value

Age (years) 30.3 ± 3.5 34.6 ± 3.7 <0.001

BMI 27.1 (25.6,28.9) 27.3(24.1,29.2) n.s.

Systolic blood pressure 121 (114,126) 130(119,141) 0.006

Diastolic blood pressure 73 (68,80) 82 (70,90) 0.019

Gestational age at

monitoring (weeks)

36 (33,38) 36 (35,37) n.s.

Gestational age at birth

(weeks)

40 (39,40) 37 (35,38) <0.001

Time interval between

monitoring and birth (days)

19 (7,44) 7 (7.7) <0.001

Gestational hypertension

disease

0 (0) 13 (68.4) <0.001

IUGR/FGR 0 (0) 9 (47.4) <0.001

Mode of delivery n.s.

Vaginal 27 (69.2) 9 (47.4)

Cesarean 12 (30.8) 10 (52.6)

Preterm labor 0(0) 8(42.1) <0.001

Birthweight (g) 3378 ± 413 2070 ± 334 <0.001

Birthweight <10th

percentile

0 (0) 19 (100) <0.001

Birthweight <3th percentile 0 (0) 11 (57.9) <0.001

Neonatal sex (male) 21 (53.8) 10 (52.6) n.s.

APGAR <7 0 (0) 0 (0) –

NICU admission 0 (0) 8 (42.1) <0.001

Data are mean ± std, median (quartile 1, quartile 3), or n (%) unless otherwise specified.

am, mostly overnight, was selected for analysis to minimize
motor activity that could result in signal loss (24). We provided
a brief summary of statistics for data characteristics between
the AGA and the SGA in Table 2. The signal loss rate was
the proportion of 0 bpm of the FHR value in the recording.
We also used the term recording quality (RQ) during an hour
to indicate a valid 60-min segment with RQ >60% based on
Dawes-Redman criteria (30). As Graatsma et al. (24) reported,
the data quality was satisfactory at night (10 p.m.−8 a.m.) with
a loss rate of 10.86 ± 9.78 in AGA group and 16.11 ± 16.96 in
SGA group.

Data Preprocessing
The FHR preprocessing stage contains four steps: remove signal
loss artifacts, evaluate the FHR baseline, eliminate FHR outliers,
and extract the positive part above the FHR baseline.

(1) Remove signal loss artifacts. Empirically, we have observed
that most of the signal loss occurs over a continuous period
of time. Thus, the part of signal loss, both in FHR and
UEMG, were removed directly rather than interpolated.

(2) Evaluate the FHR baseline. Baseline estimation is a necessary
condition for identifying FHR acceleration and deceleration.
In this study, FHR baseline is estimated by a conventional
algorithm (31), which was constructed by a lowpass filter and
a trim function. As the top plot in Figure 1A, the red slow
change trend over time is FHR baseline.

(3) Eliminate FHR outliers. There are a few outliers in FHR
time series. We used the linear spline interpolation method
implemented in Matlab to replaced outliers with values
>25% of the baseline.

(4) Extract the positive part above the FHR baseline.
Considering that this study is concerned with the coupling
of fetal heart rate acceleration and UEMG, we extracted
the positive part above the FHR baseline for next coupling
analysis (see Figure 1A).

FHR Segmentation
From the whole night recordings, 60-min segments were selected
by non-overlapping sliding window. Also, the valid segments
(RQ > 60%) were included in the analysis. All 10-min segments
of the recordings in AGA were selected by two independent
obstetricians according to quiet and active sleep related FHR

TABLE 2 | Summary statistics for data characteristics between the AGA and

the SGA.

AGA group

(n = 39)

SGA group

(n = 19)

P-value

Monitor time

(hours)

9.67 ± 0.69 9.78 ± 0.59 n.s.

Signal loss

(%)

10.86 ± 9.78 16.11 ± 16.96 <0.01

60-min segments 9 (8,10) 6 (6,10) <0.01

Quiet segments 8 (5,16) – –

Active segments 34 (28,39) – –
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FIGURE 1 | Quantification of couplings between UEMG and FHR. (A)

Twenty-minute digital UEMG and FHR synchronous monitoring data. The top

plot shows FHR (blue line), and the slow change over time is FHR baseline (red

line). The second plot shows only the positive part of the FHR after removing

the baseline drifts. The last plot provides UEMG data in arbitrary units. (B) The

cross-wavelet power spectrum of the UEMG and FHR. The x-axis represents

time, the y-axis represents period (1/8-1/1024Hz), and the color scale

represents the magnitude of power with a log2 scale (-10 - 10 a.u.). The three

gray shadow regions (left -> right) represent almost uncoupling, narrow-scale

coupling and broad-scale coupling, respectively.

patterns. Moreover, the detailed criteria for distinguishing quiet
and active states are referred to (10, 11, 32). In Table 2, we
show the statistical results of the sleep states. Notably, because
the status of some SGA fetuses is difficult to distinguish by the
characteristics of FHR, we only consider indices based on the
overall data.

In addition, when calculating the fHRV parameters for each
segment (whether 60-min or 10-min), the preprocessing steps
only include two steps: remove signal loss artifacts and eliminate
FHR outliers. For each individual, the mean of the parameters of
multiple segments is the corresponding index.

UEMG-FHR Coupling Index
Cross-wavelet analysis, which is a time-frequency domain
approach, was used to characterize the dynamic relationship
between UEMG and FHR. The UEMG-FHR coupling was
quantified by cross-wavelet power spectrum. A typical example
of coupling analysis is shown in Figure 1B.

Briefly, the cross-wavelet power spectrum is based on the
continuous wavelet transform (CWT) (26). Here, the mother
wavelet is Morlet wavelet (withω0=6), of which Fourier period
is almost equal to the scale. The CWT decomposes a signal x

(n) of length N into a set of sinusoidal oscillations with specific
amplitudes and phases at each frequency, which is defined as:

WX(n, s) =

√

△ t

s

N
∑

n′−n

x(n) ∗

[

(n′ − n)(
△ t

s
)

]

(1)

where n is a time index, 1t is a time step, s denotes the time scale
that is in inverse proportion to frequency, and ∗ indicates the
complex conjugate. We analyzed the FHR and UEMG variability
by CWT, respectively.

In order to quantify the energy of UEMG and FHR
acceleration, respectively, two new parameters, the integral area
of FHR power spectrum density (FHRIAP) and integral area
of UEMG power spectrum density (UEMGIAP) were extracted
as follows:

UEMGIAP=
1

N

1/15
∫

1/600

N
∫

1

|WX(n, s)|2dtds (2)

FHRIAP=
1

N

1/15
∫

1/600

N
∫

1

|WY (n, s)|2dtds (3)

Where UEMGIAP and FHRIAP were first calculated as the mean
power over time at different scales, and then the integral area
of the mean power curve in a specific frequency range was
calculated. Note that the specific range of s (1/600–1/15Hz) is
the frequency band of FHR accelerations (33).

The cross-wavelet power spectrum of UEMG and FHR, x (n)
and y (n), is defined as:

WXY(n, s) = WX(n, s)WY∗
(n, s) (4)

The |WXY (n, s)|2 exposes UEMG-FHR common power at a given
frequency in a given time. As Figure 1B, the three gray shadow
regions (left -> right) represent almost uncoupling, narrow-scale
coupling and broad-scale coupling, respectively.

Also, the color scale represents the magnitude of power with a
log2 scale (-10 - 10 a.u.).

We further defined an index, UEMG-FHR coupling index
(UFCI), which was extracted as follows:

UFCI =
1

N

1/15
∫

1/600

N
∫

1

|WXY (n, s)|2dtds (5)

Where UFCI was first calculated as the mean power ofWXY (n, s)
overtime at different scales, termed UFCIS, and then calculated
the integral area of the UFCIS in a specific frequency range.
Essentially, UFCI is the average of UEMG-FHR multi-scale
coupling energy over a period of time. In this study, a MATLAB-
based software package (27) was used for wavelet analysis
between UEMG and FHR.
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Representative fHRV Indices
CTG Compatible Indices
• STV:mean difference between consecutive R-R interval epochs

in all analyzable 1min sections. The algorithm described in
Pardey et al. (30) was used to calculate STV, which first discards
minutes that contain>50% signal loss or a deceleration. Then,
it calculates the difference between the average pulse interval
values for adjacent 3.75 second-epochs in each minute. Lastly,
the values for each minute were averaged over the whole
reading to give the STV.

PRSA Indices
• AAC/ADC: PRSA-based method calculates not only the

variation of the FHR but also the speed of changes in
FHR, which allows separate characterization of the average
acceleration (AAC) and deceleration (ADC) capacities (15,
17). Here, the following parameters were used for PRSA: s=10
samples, T=10 samples, L= 50 samples; anchor points were
defined as increases/decrease of < 5%.

Time Domain Indices
• Skewness: a measure of the asymmetry of the distribution of

FHR series.
• pNN5: percentage of differences between adjacent NN

intervals that are >5ms. pNN5 measures fast vagal rhythms
that are reflected in the differences of successive NN intervals
exceeding 5 ms.

• AC/DC: an acceleration (AC) is defined as an increase in
FHR for >15 s with a minimum deviation from FHR baseline
exceeding 10 bpm. A deceleration (DC) is defined as a decrease
below the FHR baseline for >30 s and a deviation >20 bpm,
or below the FHR baseline for 60 s and a deviation >10
bpm, respectively (30). Notably, an index with w/o DC (e.g.,
skewness w/o DC) indicates the index under exclusion of DC.
Similarly, an index with basic (e.g., pNN5 basic) indicates the
index under exclusion of DC and AC.

Power Spectra Indices
• VLF/LF: the ratio of very low frequencies fluctuations

(0.02–0.08Hz) compared to low frequency (0.08–0.2Hz)
band power. VLF/LF reflects the short-range FHR baseline
fluctuation, according to David et al. (34).

Complexity Indices
• MSE: multiscale entropy (MSE) is introduced by Costa

et al. (35), which extends sample entropy and investigates
complexity in FHR series at multiple (time) scales.
Here, MSE was calculated using the code provided by
Physionet (https://archive.physionet.org/physiotools/mse),
with embedding dimension: m = 2, tolerance level: r = 0.15,
scale: 1–10.

Statistical Analysis
For each statistical analysis, the normality of data was tested
using the Kolmogorov-Smirnov test to determine whether
parametric or non-parametric tests were required. All parameters
of the normal distribution are expressed by mean ± std, and
the independent T-test was used. Also, all parameters of the

non-normal distribution are expressed by median (quartile
1, quartile 3), the non-parametric Mann–Whitney U-test was
used. Moreover, the value of the different indices in predicting
fetal age was assessed by univariate linear and quadratic term
regression models. The coefficient determination R2 was used to
estimate goodness-of-fit. Consideringmost of the predictors were
significant, only non-significant results are marked by “n.s.”

Furthermore, we explored discrimination of SGA and AGA
group by means of bivariate logistic regression models that
include [UFCI, gestational week] and [other indices, gestational
week], respectively. Receiver operator curves (ROC) were
constructed from the binary logistic regression models and were
compared by areas under the curve (AUC). All analyses were
performed using SPSS 22 (IBM Corp, Armonk, NY). P-values <

0.05 were considered statistically significant.

RESULTS

Normal Development of AGA
Whole Night Recordings
Figure 2 presents the scatter plots and linear/quadratic
regression lines of FHRIAP (A), UEMGIAP (B), and UFCI (C)
in dependency on gestation age for the AGA fetuses between
28 and 39 weeks. The parameter FHRIAP clearly predicted the
maturation age with a determination R2 = 0.301 in quadratic
regression, which reflects how the FHR acceleration energy
gradually increased between 28 and 36 weeks, but decreased
slightly between 36 and 39 weeks. Also, the parameter UEMGIAP

shows an increasing trend (R2 = 0.273 in linear regression)
with the increase of gestational age. UFCI provided a stronger
age predicting value of R2 = 0.480 in quadratic regression.
This result shows that the coupling power of UEMG and FHR
acceleration is superior to their ability to predict age alone.

To comprehensively evaluate the value of UFCI for fetal
neurodevelopmental age, topical fHRV indices, selected
according to classical CTG (STV), PRSA-based (AAC/ADC),
and fABAS-MCG related (skewness, pNN5, and MSE), were
analyzed in Table 3. In univariate linear regression models, the
coefficients of determination R2 for the model including age and
fHRV indices was best for UFCI (0.449), followed by MSE10
(0.210), FHRIAP (0.127) and VLF/LF (0.123). UFCI, MSE10, and
FHRIAP were partly improved by including a quadratic term
(R2 = 0.480, 0.222, 0.301). However, CTG compatible STV,
PRSA-based AAC/ADC, which are commonly used indicators of
fetal well-being, are non-significant linear and have a quadratic
relationship with gestational age. From the fABAS-MCG related
time-domain parameters, pNN5 provided low univariate linear
age predictors (R2 = 0.076), but no linear and quadratic
correlation between skewness and gestational age.

Quiet and Active Segments of 10 Min
Further, linear and quadratic regression analyses of fHRV indices
and gestational age by 10-min segments in quiet/active sleep were
shown in Table 4. In the quiet sleep segments, the time-domain
indices (skewness and pNN5: R2 = 0.208, 0.304 in linear; 0.212,
0.304 in quadratic) were stronger univariate predictors than the
complexity index (MSE10, R2 = 0.151 and 0.158). Concerning
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FIGURE 2 | Scatter plots and linear/quadratic regression lines of FHRIAP (A), UEMGIAP (B), and UFCI (C) in dependency on gestation age for the AGA fetuses

between 28 and 39 weeks. Note that the bold lines are quadratic mean fitted values, and dashed lines are 95% confidence intervals.

TABLE 3 | Analyses of whole night recordings: linear and quadratic regression

models, topical indices selected according to classical CTG, PRSA-based,

fABAS-MCG related, R2 > 0.2 in bold.

Parameter Whole night recordings (R2)

Linear Quadratic

CTG compatible

STV (ms) n.s. n.s.

PRSA based

AAC (ms) n.s. n.s.

ADC (ms) n.s. n.s.

fABAS-MCG related*

Time domain

Skewness n.s. n.s.

pNN5 0.076 n.s.

Power spectra

VLF/LF 0.123 n.s.

Complexity

MSE3 0.154 0.161

MSE10 0.210 0.222

UEMG-FHR coupling

FHRIAP 0.127 0.301

UEMGIAP 0.273 0.274

UFCI 0.449 0.480

*based on 60-min segments recordings.

the exclusion of DC, the predictive value of pNN5 w/o DC (R2

= 0.333 and 0.335, linear and quadratic) and MSE10 w/o DC
(R2 = 0.188 and 0.192) was increased, but skewness w/o DC
(R2 = 0.185 and 0.186) was decreased. Concerning the exclusion
of DC and AC, skewness basic (R2 = 0.255 and 0.258, linear
and quadratic) was increased, but pNN5 basic (R2 = 0.194 and
0.208) and MSE10 basic (n.s. and n.s.) were decreased and even
did not provide predictive value. In the active sleep segments,
pNN5 (R2 = 0.161 and 0.230, linear and quadratic) predicted
the fetal age, but skewness and MSE did not provide a predictive
value. Overall, the predictive performances of the conventional
indices (skewness, pNN5 and MSE10) were partly improved by

TABLE 4 | Analyses of 10-min segments in quiet and active sleep: linear and

quadratic regression models, coefficients of determination R2, indices selected

according to fABAS-MCG and UFCI, R2 > 0.2 in bold.

Parameter 10-min segments (R2)

Linear Quadratic

QUIET SLEEP STAGE

Time domain

Skewness 0.208 0.212

Skewness w/o DC* 0.185 0.186

Skewness basic* 0.255 0.258

pNN5 0.304 0.304

pNN5 w/o DC 0.333 0.335

pNN5 basic 0.194 0.208

Complexity

MSE3a n.s. n.s.

MSE10 0.151 0.158

MSE10 w/o DC 0.188 0.192

MSE10 basic n.s. n.s.

UFCI n.s. n.s.

ACTIVE SLEEP STAGE

Skewnessb n.s. n.s.

pNN5b 0.161 0.230

MSE10b n.s. n.s.

UFCI 0.311 0.330

*w/o DC, indices under exclusion of DC; basic, indices under exclusion of DC and AC.
aMSE3 has no predictive value under all conditions (quiet/active segments, w/o DC

or basic).
bActive sleep state.

including a quadratic term, respectively. Also, the age predicting
values of these indices in the quiet stage are better than those
in the active stage. However, UFCI provided a stronger age
predicting value (R2 = 0.311 and 0.330, linear and quadratic)
in the active stage in contrast to no predictive value in the
quiet stage.

Changes Associated With SGA
SGA represents a condition that, in the context of fetal neural
development, may serve as a model of delay due to chronic
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lack of nutritional supply. In Figure 3, two typical UEMG-FHR
coupling spectrogram of an AGA fetus (UFCI = 0.97) and an
SGA fetus (UFCI = 0.39) are presented, respectively. These
results of the power spectrum indicate that the AGA fetus visually
shows a healthy pattern dominated by dense coupling, but the
SGA fetus shows a high-risk pattern with sparser coupling. In
addition, from the FHR baseline (red line) fluctuations, the AGA
fetus shows apparent quiet-active cycles, whereas such cycles can
hardly be observed in SGA fetuses. Moreover, because the criteria
previously used for dividing quiet and active stages according
to FHR patterns are developed based on normal AGA fetuses,
and the status of some SGA fetuses in this study are indeed
difficult to distinguish, we only considered the indices based on
the overall data.

In Figure 4, we presented that comparison of UEMG-FHR
coupling power at different scales (UFCIS: 1/15–1/600Hz)
between the AGA and the SGA at the group level. The overall
level in SGA was found to be lower than that of AGA.

In Table 5, we compared the results of representative fHRV
indices, including STV, AAC/ADC, MSE10, and novel UFCI
between the SGA and the AGA. The result indicates that the value
of UFCI (0.47± 0.25) in the SGA is significantly lower (P < 0.01)
than that of the AGA (0.78 ± 0.27). Also, the value of MSE10
(1.06± 0.17) in the SGA is decreased significantly (P< 0.01) than
that of the AGA (1.20 ± 0.14). These results are consistent with
the fact that SGA may serve as a model of fetal developmental
delay. Additionally, the FHRIAP was found to be significantly
lower in SGA (0.78 ± 0.35) than that in the AGA (1.09 ± 0.35).

However, there is no significant difference in UEMGIAP between
the SGA and the AGA. The other three fHRV indices (STV, AAC,
and ADC) were all significantly (P < 0.01) decreased in the SGA
group (8.23 ± 1.95, 7.34 ± 5.81, 3.06 ± 0.70), compared with
those of the AGA control (9.69 ± 1.50, 14.2 ± 3.87, 3.84 ±

0.65). Moreover, multiple binary logistic regression was used to
compare the ability of different indices to distinguish SGA. As
Figure 5 demonstrates, the best single indicator is UFCI with an
AUC of 0.88 (95% CI: 0.79–0.97, P < 0.001), compared with 0.79
for ADC (95% CI: 0.66–0.93, P < 0.001), and followed by AAC
0.76 (95% CI: 0.61–0.91, P < 0.01), and STV 0.71 (95% CI: 0.55–
0.87, P < 0.05). Additionally, the AUC of FHRIAP is 0.74 (95%
CI: 0.61–0.87, P < 0.01) and UEMGIAP provides no value for
predicting SGA (95% CI: 0.42–0.75, P = 0.29).

DISCUSSION

Main Findings
In this study, a new wavelet-based approach was applied
for the first time to characterize the multiscale coupling
between the UEMG and FHR during long-term (>6 h)
monitoring. The UEMG-FHR coupling index, UFCI was
extracted from the multiscale coupling power spectrum. In
univariate regression models, UFCI demonstrated a strong
relationship with gestational age (R2 = 0.449 and 0.480, linear
and quadratic, 28–39 weeks). In addition, UFCI achieved
superior performance for predicting SGA with AUC of 0.88,

FIGURE 3 | Comparison of UEMG-FHR coupling spectrums of a typical AGA fetus and an SGA fetus (left panels: AGA; right panels: SGA). (A) About 400-min

digitized UEMG and FHR time series of two fetuses aged 35 weeks. From the FHR baseline (red line) fluctuation, the AGA fetus has an apparent sleep cycle, but SGA

hardly observes it. (B) UEMG-FHR coupling power spectrums and corresponding time series. Note that the SGA fetus (UFCI = 0.39) result visually apparent decrease

of fluctuation amplitudes of FHR and UEMG compared to the AGA result. Also, the AGA fetus (UFCI = 0.97) shows a normal pattern dominated by dense coupling,

but the SGA fetus shows a high-risk pattern with sparser coupling.
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FIGURE 4 | At group level, comparison of UEMG-FHR coupling power at

different scales (UFCIS, 1/15–1/600Hz) between the AGA and the SGA. The

solid lines represent the group-averaged values, and the shaded regions

denote the standard errors.

TABLE 5 | Summary statistics for the results of representative indices between

the SGA and the AGA.

AGA group

(n = 39)

SGA group

(n = 19)

P-value

STV 9.69 ± 1.50 8.23 ± 1.95 <0.01

AAC 14.2 ± 3.87 7.34 ± 5.81 <0.01

ADC 3.84 ± 0.65 3.06 ± 0.70 <0.001

MSE10 1.20 ± 0.14 1.06 ± 0.17 <0.01

FHRIAP 1.09 ± 0.35 0.78 ± 0.35 <0.01

UEMGIAP 3.03 ± 1.68 2.54 ± 1.60 n.s.

UFCI 0.78 ± 0.27 0.47 ± 0.25 <0.001

Data are mean ± std.

FIGURE 5 | Comparison of UEMG-FHR coupling index (UFCI) and

representative fHRV indices in predicting SGA. AUC, area under the curve.

compared with 0.79 for the best performance of other classical
fHRV indices.

Strengths and Limitations
The principal strength of the current study is the wavelet-
based coupling analysis approach, which is not limited by non-
stationary signals and is more suitable for processing long-term
monitoring data. More importantly, our results showed that
UEMG-FHR coupling index, UFCI, is superior to the single-
signal energy indices (UEMGIAP and FHRIAP), both in predicting
fetal age and the SGA. Additionally, our study is based on
long-term (>6 h) monitoring data, including various fetal states
that can reflect more objective and sufficient fetal information.
Further, the entire night’s monitoring data can be transformed
into the coupling spectrogram with our approach (as Figure 3),
which makes it much easier to distinguish the time-varying
coupling information of future long-term monitoring visually.

This study has several limitations. Firstly, the proposed
coupling index, UFCI, can provide a new viewpoint on the
fetal nervous development, but the small sample size and partial
gestational age (28–39 weeks) might limit the identification of
more subtle differences. Massive data, including more gestational
age could be explored in the next. Secondly, the definition of SGA
based structural parameters is a surrogate endpoint. This study
did not explore the relationship between UFCI and premature
delivery, or other definitions of IUGR including ultrasound blood
flow parameters (16), or other adverse pregnancy outcomes.
We consider that appropriately designed studies should be
performed to confirm these hypotheses. Thirdly, since the
presented methodology is based on FHR acceleration and fetal
movement recorded by UEMG signal during antenatal, it is
not applicable in the presence of fetal cardiac arrhythmias,
and occurring uterine contractions during labor stages. In
addition, for a fair evaluation of the here proposed coupling
analysis methodology and other fHRV indices, the search for
the respective optimal parameters should also be taken into
consideration. This study aims to provide additional information
for fetal neurodevelopment from the perspective of the coupling
analysis of FHR and fetal movement.

Interpretation
Predicting Fetal Neural Development
Human neuromaturation is a dynamic process, which is closely
related to the fetal functional development of the central nervous
system (CNS) (36). Just as fetal respiration is necessary for
normal lung development, the fetal movement promotes the
normal development of the limbs and the formation of specific
FHR patterns closely related to CNS.

Compared with the fHRV indices (skewness, pNN5, VLF/LF,
and MSE) extracted from high-precision FMCG signal, our
results show a lesser performance in predicting gestational age
with a decrease in R2, or even no predictive value (see Tables 3,
4). We think there are two main reasons for this. On the
one hand, the gestational age ranged from 28 to 39 weeks in
this study, but it was between 22 and 39 weeks in previous
studies. On the other hand, the heart rate data used in this
study was commercially available 4Hz sampling, but previous
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studies used real beat-to-beat signals (9–11). For resampled FHR
series, Gonçalves et al. (37) found that fHRV indices with 4Hz
sampled signals were significantly different from those indices
with beat-to-beat signals. However, these differences did not
affect the direction of change trend of the fHRV indices (time–
and frequency–domain indices and entropy) to change with
physiological changes. In our results, pNN5, VLF/LF, and short
scale complexity (MSE3 and MSE10) increased with progressing
gestation, which was in line with previous findings (9–11).
Skewness has undergone a fundamental change with no age
predicting value in 60-min segments and 10-min active segments.
This is most likely due to the fact that the signal resampled by
interpolation disturbs the original asymmetry. Besides, the results
showed that there was no linear or quadratic correlation between
STV and gestational age. This differs from the previous findings
that STV describes fetal maturation over gestation (R2 = 0.20 and
0.21, linear and quadratic) (11). This inconsistency may be due to
the heterogeneity among different data sets. A possible factor is
diurnal rhythms, which could significantly affect the value of STV
(38). Also, different populations and different behavioral states
are also potential influencing factors.

In Figure 2C, the proposed UFCI gradually increases between
28 and 36 weeks. This characteristic curve is in line with
the previous observations, which showed that the course of
pregnancy between 30 and 35 weeks is an important period of
autonomic nervous system maturation (39). Also, UFCI may
reflect the saturating maturation after 36 weeks with a stable
line between 36 and 39 weeks. Interestingly, UFCI provided
a stronger age predicting value (R2 = 0.449 and 0.480, linear
and quadratic) in the entire recording in contrast to predictive
value (R2 = 0.311 and 0.330, linear and quadratic) in active
segments. This result may be explained by the fact that UFCI of
the entire recording contains more information than that of the
active stage. Specifically, UFCI of the entire recording contains
information on two aspects: one is the coupling energy of each
time point in the active state, and the other is the ratio of duration
time of the active state to total monitoring time (RAS) that has
been shown to provide predicted value for fetal development
(R2 = 0.190 in quadratic regression). In other words, UFCI
reflects the information of sleep cycles (cycling of quiescent and
active states, see Figure 3, left panels: AGA), which is valuable
information reflecting the maturity of the nerves (40).

In addition, because the active stage includes most of
movement-related FHR accelerations, it is easy to infer that the
value of UFCI in the active state is significantly higher than
that in the quiet state (see Figure 3, left panels: AGA). In future
investigations, we will evaluate the performance of UFCI in
distinguishing quiet and active states under the reference of gold
standard (such as ultrasonic testing).

Predicting the SGA
For predicting the SGA fetus, our findings based on
representative fHRV indices broadly support previous works in
this area (see Table 5), including decreased STV (12–14, 40),
decreased AAC and ADC (16, 17), and decreased MSE10 (18).
AAC and ADC are superior to STV, and this result is consistent
with previous studies (16, 17). In addition, the performances of
all fHRV indices (STV, AAC/ADC, and MSE10) in screening

SGA were worse than UFCI. Moreover, UEMGIAP and FHRIAP

performed worse than UFCI in predicting fetal developmental
age and screening for SGA.

This indicates that coupling analysis with the combination of
FHR and UEMG information could lead to better performance.

The main clinical manifestations of SGA are malnutrition and
hypoxia. Previous studies have shown the possible delay in the
functional maturation of the sympathetic nervous system (related
to FHR accelerations) due to chronic nutritional deprivation and
hypoxemia (6, 7). Besides, it is believed that if the fetus is not
supplied with enough oxygen through the placenta, it will often
respond by reducing exercise (6, 7). This also means that the SGA
fetus may have a less active status and lacks a sleep cycle. These
may be the main reasons why UFCI was significantly (P < 0.01)
decreased in the SGA group compared with those of the AGA
control. Moreover, the SGA predicted by neurodevelopmental
indicators (UFCI and other fHRV indices) was slightly different
from SGA defined by birth weight ≤10th, which may imply
that those were constitutionally small but showed normal
neurodevelopment. Also, the SGA with premature delivery may
be associated with accelerated and altered nerve maturation.

CONCLUSION

Our study proposed a novel indicator UFCI from the perspective
of the multiscale coupling analysis between UEMG fluctuation
and the associated FHR acceleration.

UFCI provided a stronger age predicting value of R2 =

0.480 in quadratic regression (between 28 and 39 weeks),
in contrast to univariate regression models based on other
fHRV indices. Further, we demonstrated that UFCI achieved
superior performance in predicting SGA (AUC = 0.88). The
present results indicate that UFCI provides new information for
early detection and comprehensive interpretation of intrauterine
growth restriction in prenatal diagnosis, and is helpful for
improving the screening of SGA.
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