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REM Behavior Disorder (RBD) is now recognized as the prodromal stage of α-

synucleinopathies such as Parkinson’s disease (PD). In this paper, we describe deep

learning models for diagnosis/prognosis derived from a few minutes of eyes-closed

resting electroencephalography data (EEG) collected at baseline from idiopathic RBD

patients (n= 121) and healthy controls (HC, n= 91). A few years after the EEG acquisition

(4±2 years), a subset of the RBD patients were eventually diagnosed with either PD (n=

14) or Dementia with Lewy bodies (DLB, n= 13), while the rest remained idiopathic RBD.

We describe first a simple deep convolutional neural network (DCNN) with a five-layer

architecture combining filtering and pooling, which we train using stacked multi-channel

EEG spectrograms from idiopathic patients and healthy controls. We treat the data as in

audio or image classification problems where deep networks have proven successful by

exploiting invariances and compositional features in the data. For comparison, we study

a simple deep recurrent neural network (RNN) model using three stacked Long Short

Term Memory network (LSTM) cells or gated-recurrent unit (GRU) cells—with very similar

results. The performance of these networks typically reaches 80% (±1%) classification

accuracy in the balancedHC vs. PD-conversion classification problem. In particular, using

data from the best single EEG channel, we obtain an area under the curve (AUC) of

87% (±1%)—while avoiding spectral feature selection. The trained classifier can also

be used to generate synthetic spectrograms using the DeepDream algorithm to study

what time-frequency features are relevant for classification. We find these to be bursts

in the theta band together with a decrease of bursting in the alpha band in future RBD

converters (i.e., converting to PD or DLB in the follow up) relative to HCs. From this first

study, we conclude that deep networks may provide a useful tool for the analysis of EEG

dynamics even from relatively small datasets, offering physiological insights and enabling

the identification of clinically relevant biomarkers.
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1. INTRODUCTION

RBD is a parasomnia characterized by intense dreams with
during REM sleep without muscle atonia (1), i.e., with
vocalizations and body movements. Idiopathic RBD occurs in
the absence of any neurological disease or other identified
cause, is male-predominant and its clinical course is generally
chronic progressive (2). Several longitudinal studies conducted
in sleep centers have shown that most patients diagnosed
with the idiopathic form of RBD will eventually be diagnosed
with a neurological disorder such as Parkinson disease (PD)
or dementia with Lewy bodies (DLB) (1–4). In essence,
idiopathic RBD has been suggested as a prodromal stage of α-
synucleinopathies [PD, DLB, and less frequently multiple system
atrophy (MSA) (1, 4)].

RBD has an estimated prevalence of 15–60% in PD and has
been proposed to define a subtype of PD with relatively poor
prognosis, reflecting a brainstem-dominant route of pathology
progression (see (5) and references therein) with a higher risk
for dementia or hallucinations. PD with RBD is characterized
by more profound and extensive pathology—not limited to the
brainstem—, with higher synuclein deposition in both cortical
and sub-cortical regions.

Electroencephalographic (EEG) and magnetoencepha
lographic (MEG) signals contain rich information associated
with functional processes in the brain. To a large extent, progress
in their analysis has been driven by the study of spectral
features in electrode space, which has indeed proven useful
to study the human brain in both health and disease. For
example, the “slowing down” of EEG is known to characterize
neurodegenerative diseases (6–8). It is worth mentioning
that the selection of disease characterizing features from
spectral analysis is mostly done after an extensive search in the
frequency-channel domain.

However, neuronal activity exhibits non-linear dynamics and
non-stationarity across temporal scales that cannot be studied
properly using classical approaches. Tools capable of capturing
the rich spatiotemporal hierarchical structures hidden in these
signals are needed. In Ruffini et al. (8), for example, algorithmic
complexity metrics of EEG spectrograms were used to derive
information from the dynamics of EEG signals in RBD patients,
with good results, indicating that such metrics may be useful per
se for classification or scoring. However, ideally we would like
to use methods where the relevant features are found directly by
the algorithms.

Deep learning algorithms are designed for the task of
exploiting compositional structure in data (9). In past work, for
example, deep feed-forward autoencoders have been used for the
analysis of EEG data to address the issue of feature selection, with
promising results (10). Interestingly, deep learning techniques,
in particular, and artificial neural networks in general are
themselves bio-inspired by the brain—the same biological system
generating the electric signals we aim to decode. This suggests
they may be well suited for the task.

Deep recurrent neural networks (RNNs), are known to be
potentially Turing complete [see, e.g., (11) for a review], but
general RNN architectures are notoriously difficult to train (12).

In this regard, it is worth mentioning that “reservoir” based
RNN training approaches are evolving (13). In earlier work,
a particular class of RNNs called Echo State Networks (ESNs)
that combine the power of RNNs for classification of temporal
patterns and ease of training (14) was used with good results
with the problem at hand. The main idea behind ESNs and other
“reservoir computation” approaches is to use semi-randomly
connected, large, fixed recurrent neural networks where each
node/neuron in the reservoir is activated in a non-linear fashion.
The interior nodes with random weights constitute what is called
the “dynamic reservoir” of the network. The dynamics of the
reservoir provides a feature representation map of the input
signals into a much larger dimensional space (in a sense much
like a kernel method). Using such an ESN, an accuracy of 85% in
a binary, class-balanced classification problem (healthy controls
vs. PD patients) was obtained using a relatively small dataset
in Ruffini et al. (14). The main limitations of this approach, in
our view, are the computational cost of developing the reservoir
dynamics of large random networks and the associated need
for feature selection (e.g., which subset of frequency bands and
channels to use as inputs to simplify the computational burden).

In this paper we use a similar but simpler strategy as the
one presented in Vilamala et al. (15), using Deep Convolutional
Neural Networks with EEG signals, i.e., multi-channel time
series. In comparison to Vilamala et al. (15), we reduce the
number of hidden layers from 16 to 4, use a simpler approach
for the generation of spectrograms, and do not rely on transfer
learning from a network trained on a visual recognition
task. Indeed, we believe such a pre-training would initialize
the filtering weights to detect object-like features not present
in spectrograms. The proposed method outperforms several
shallow methods used for comparison as presented in the
results section.

Lastly, we employ deep-learning visualization techniques for
the interpretation of results. Once a network has been trained,
one would like to understand what are the key features it is
picking up from the data for classification. We show below how
this can be done in the context of EEG spectrogram classification,
and how it can be helpful in identifying physiologically
meaningful features that would be hard to select by hand. This is
also very important for the clinical translation of such techniques,
since black-box approaches have been extensively criticized.

2. MATERIALS AND METHODS

2.1. Deep Learning in the Spectrogram
Representation
Our goal here will be to train a network to classify subjects
from the EEG spectrograms recorded at baseline in binary
problems, with classification labels such as HC (healthy control),
PD (idiopathic RBD who will later convert to PD), etc.

Here we explore first a deep learning approach inspired by
recent successes in image classification using deep convolutional
neural networks designed to exploit invariances and capture
compositional features in the data [see e.g., (9, 11, 12)]. These
systems have been largely developed to deal with image data,
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i.e., 2D arrays, possibly from different channels, or audio data
[as in van den Oord et al. (16)], and, more recently, with EEG
data as well (15, 17). Thus, inputs to such networks are data
cubes (multichannel stacked images). In the same vein, we aimed
to work here with the spectrograms of EEG channel data, i.e.,
2D time-frequencymaps. Such representations represent spectral
dynamics as essentially images with the equivalent of image
depth provided by multiple available EEG channels (or, e.g.,
current source density maps or cortically mapped quantities from
different spatial locations). Using such representation, we avoid
the need to select frequency bands or channels in the process of
feature selection. This approach essentially treats EEG channel
data as an audio file, and our approach mimics similar uses of
deep networks in that domain.

RNNs can also be used to classify images, e.g., using image
pixel rows as time series. This is particularly appropriate in the
case of the data in this study, given the good performance we
obtained using ESNs on temporal spectral data Ruffini et al. (14).
We study here also the use of stacked architectures of long-short
term memory network (LSTM) or gated-recurrent unit (GRU)
cells, which have shown good representational power and can be
trained using backpropagation (12, 18, 19).

Our general assumption is that some relevant aspects in
EEG data from our datasets are contained in compositional
features embedded in the time-frequency representation. This
assumption is not unique to our particular classification domain,
but should hold of EEG in general. In particular, we expect
that deep networks may be able to efficiently learn to identify
features in the time-frequency domain associated to bursting
events across frequency bands that may help separate classes,
as in “bump analysis” (20). Bursting events are hypothesized to
be representative of transient synchrony of neural populations,
which are known to be affected in neurodegenerative diseases
such as Parkinson’s or Alzheimer’s disease (21).

Finally, we note that in this study we have made no attempt
to fully-optimize the network architecture. In particular, no
fine-tuning of hyper-parameters has been carried out using a
validation set approach, something we leave for future work with
larger datasets. Our aim has been to implement a proof of concept
of the idea that deep learning approaches can provide value for
classification and analysis of time-frequency representations of
EEG data—while possibly providing new physiological insights.

2.2. Study Subjects
Idiopathic RBD patients (called henceforth RBD for data analysis
class labeling) and healthy controls were recruited at the Center
for Advanced Research in SleepMedicine of theHôpital du Sacrè-
Cœur de Montréal as part of another study and kindly provided
for this work. The protocol was approved by the Hôpital du
Sacré-Cœur de Montréal Ethics Committee, and all participants
gave their written informed consent to participate. For more
details on the protocol and on the patient population statistics
(age and gender distribution, follow up time, etc.), see Rodrigues-
Brazéte et al. (7) and Ruffini et al. (8).

The dataset includes a total of 121 patients diagnosed with
idiopathic RBD (of which 118 passed the first quality tests) and
85 healthy controls (of which only 74 provided sufficient quality

data) without sleep complaints and in which RBD was excluded.
EEG data was collected in every patient at baseline, e.g., when
patients were still RBD. After 1–10 years of clinical follow-up 14
RBDpatients converted to PD, 13 toDLB, while the rest remained
idiopathic RBD (see Figure 1).

In addition to EEG recording at baseline (further described
below) participants also underwent a complete neurological
examination by a neurologist specialized in movement disorders
and a cognitive assessment by a neuropsychologist. The only
data used from the follow-up evaluation, which was conducted
on average 10 years after baseline, was the updated diagnosis
change, if any, from RBD into PD or DLB, or the confirmation
of the RBD diagnosis. These data elements have been used
here as ground truth in the DCNN training and in the
performance evaluation on the test set as set up in the cross
validation procedure.

RBD was diagnosed based on AASM Version II
(https://aasm.org/aasm-updates-scoring-manual-version-
2-2-with-new-option-for-monitoring-respiratory-effort-
during-hsat/). This included a history of dream enactment
behaviors and a subsequent assessment of overnight
polysomnography (PSG) evaluation including video recording
and EMG evaluation (22). EEG was acquired at the end of the
PSG recording session in awake state.

PD was diagnosed following the Movement Disorder Society
Clinical Diagnostic Criteria for Parkinson’s disease (PD) (23).
In early recordings, the criteria was the standard at that
time based on Hughes et al. (24). DLB diagnosis was based
on standard procedures described in McKeith et al. (25).
Some subjects may have gone through neuroimaging (MRI, as
no DAT Scan was available in Canada) for confirmation or
differential diagnosis, but not in a systematic way in the overall
PD/DLB population.

No healthy controls reported abnormal motor activity during
sleep or showed cognitive impairment on neuropsychological
testing. Only a subset of healthy controls was followed up. In
general, patients were recruited within a year of RBD diagnosis.
However, we note as a limitation that the cohort was recruited
during a period of 15 years, which may have affected the
recruiting conditions.

2.3. EEG Dataset
All RBD patients with a full EEG montage for resting-state EEG
recording at baseline and with at least one follow-up examination
(without EEG) after the baseline visit were included in the study.
The first valid EEG for each patient enrolled in the study was
considered baseline.

As in related work (7, 8, 14), the raw data in this study
consisted of resting-state EEG collected from awake subjects
using 14 scalp electrodes. The recording protocol consisted of
conditions with periods of with eyes open of variable duration
(∼2.5 min) followed by periods with eyes closed in which
patients were not asked to perform any particular task. EEG
signals were digitized with 16-bit resolution at a sampling rate
of 256 S/s. The amplification device bandpass filtered the EEG
data between 0.3 and 100 Hz with a notch filter at 60 Hz
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FIGURE 1 | (A, top) Generation of spectrogram stack for each data epoch for a subject from preprocessed (artifact rejection, referencing, detrending) EEG data. (B,

bottom) Timeline and data collection study design: from diagnosis and EEG data collection to follow up with clinical evaluation for conversion to PD and DLB (or

remaining idiopathic RBD).

to minimize line power noise. All recordings were referenced
to linked ears.

2.4. Preprocessing and Generation of
Spectrograms
To generate spectrograms (here called frames), EEG data from
each channel was processed using Fourier analysis (FFT) after
detrending blocks of 1 s with a Hann window (FFT resolution
is 2 Hz) (see Figure 1). Twenty second 14 channel artifact-free
epochs were collected for each subject, using a sliding window
of 1 s. FFT amplitude bins in the band 4–44 Hz were used. The
resulting data frames are thus multidimensional arrays of the
form [channels (14)] x [FFTbins (21)] x [Epochs (20)]. To avoid
biases, the number of frames per subject was fixed as a trade-
off between data per subject and number of subjects included, to
148, representing about 2.5 min of data. We selected a minimal
suitable number of frames per subject so that each subject
provided the same number of frames. For training, datasets were
balanced for subjects by random replication of subjects in the
class with fewer subjects. For testing, we used a leave-pair-out
strategy [LPO, see (26)], with one subject from each class. Thus,
both the training and test sets were balanced both in terms of
subjects and frames per class. Finally, the data was centered and
normalized to unit variance for each frequency and channel.

2.5. Network Architectures
We have implemented three architectures: DCNN and stacked
RNN, as we now describe, plus a shallow architecture for
comparison (see Figure 2).

2.5.1. DCNN Architecture

The network (which we call SpectNet), implemented in
Tensorflow (27), is a relatively simple four hidden-layer
convolutional net with pooling (see Figure 2). Dropout has been
used as the only regularization. All EEG channels may be used
in the input cube. The design philosophy has been to enable
the network to find local features first and create larger views
of data with some temporal (but not frequency) shift invariance
via max-pooling.

The network has been trained using a cross-entropy
loss function to classify frames (not subjects). It has been
evaluated both on frames and, more importantly, on
subjects by averaging subject frame scores and choosing
the maximal probability class, i.e., using a 50% threshold. For
development purposes, we have also tested the performance
of this DCNN on a synthetic dataset consisting of Gaussian
radial functions randomly placed on the spectrogram time
axis but with variable stability in frequency, width and
amplitude (i.e, by adding some jitter top these parameters).
Frame classification accuracy was high and relatively
robust to jitter (∼95–100%, depending on parameters),
indicating that the network was capable of learning to detect
burst-like features with time-translational invariance and
frequency specificity.

2.5.2. RNN Architecture

The architectures for the RNNs consisted of stacked LSTM (12,
18) or GRU cells (19). The architecture we describe here consists
of three stacked cells, where each cell uses as input the outputs
of the previous one. Each cell used 32 hidden units, and dropout
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FIGURE 2 | (A) DCNN model displaying input, convolution with pooling layers, and hidden-unit layers. The input consists of a spectrogram stack (with a spectrogram

per chosen EEG channel). The output, here for the binary classification problem using one-hot encoding, is a two node layer. (B) Shallow neural network architecture

used for comparison. (C) Deep RNN using LSTM or GRU cells.

was used to regularize it. The performance of LSTM and GRU
variants was very similar.

3. RESULTS

3.1. Classification Performance
Assessment
Our goal is to classify subjects (e.g., HC or PD converter
labels) rather than frames. The performance of the networks
has been evaluated in the balanced dataset using two metrics
in a leave-pair out cross-validation framework—where the
data from a subject in each class is left out for validation
(LPO). First, using the accuracy metric (probability of good
a classification), and second, by using the area under the
curve (AUC) using the Wilcoxon-Mann-Whitney statistic (26).
To map out the classification performance of the DCNN for
different parameter sets, we have implemented a set of algorithms
based on the Tensorflow package (27) as described in the
following pseudocode:

TABLE 1 | Performance in different problems using a single EEG channel (P4, see

Figure 4).

Problem N

train/test

Frame

train/test ACC

Subject test

ACC (AUC)

DCNN: HC vs. PD 2x73 / 2x1 80% / 73% 79% (87%)

RNN: HC vs. PD 2x73 / 2x1 77% / 74% 81% (87%)

DCNN: HC+RBD vs. PD+DLB 2x159 / 2x1 73% / 68% 73% (78%)

RNN: HC+RBD vs. PD+DLB 2x159 / 2x1 76% / 68% 72% (77%)

From left to right: architecture used and problem addressed (groups); Number of subjects

in training and test sets per group (always balanced); train and test average performance

on frames; test accuracy and LPO cross-validation area-under-the-curve metric (AUC)

(26). Results to ±1%.

REPEAT N times (experiments):
1- Choose (random, balanced) training and
test subject sets (leave-pair-out)

2- Augment smaller set by random
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FIGURE 3 | (A) RNN Frame score histogram per class (HC in blue, PD in orange) using one channel (P4). (B) Subject mean score across folds. In this particular run,

with mean ACC = 80%, AUC = 87% (both ±1%). There are clearly some subjects that are not classified correctly (this is consistently with DCNN results). The PD

outlier is unusual in terms of other metrics, such as slow2fast ratio (EEG slowing) or LZW complexity (8). Results from the DCNN are very similar.

replication of subjects
3- Optimize the NN using stochastic
gradient descent with frames as inputs

4- Evaluate per-frame performance on
training and test set

5- Evaluate per-subject performance
averaging frame outputs

END
Compute mean and standard deviation of
performances over the N experiments

For each frame, the classifier outputs the probability of the
frame belonging to each class [using softmax, see, e.g., (12)] and,
as explained above, after averaging over frames per subject we
obtain the probability of the subject belonging to each class. This
provides an interesting score in itself. Classification is carried out
by choosing the class with maximal probability.

The results from classification are shown in Table 1 for
the HC vs. PD problem and the HC+RBD vs. PD+DLB
problem, which includes more data. Sample results for the
RNN architecture (which are very similar to DCNN results)
are provided in Figure 3. For comparison, using a shallow
architecture neural network resulted in about 10% less ACC
or AUC (in line with our results using support vector
machine (SVM) classifiers (Soria-Frisch et al., in preparation),
which required feature selection). On the other hand, in
Ruffini et al. (14), a peak accuracy of 85% was reached in
the balanced problem of HC vs PD, although this required

appropriate feature selection (a selection of channels and bands),
and in Ruffini et al. (8) similarly high AUC performance
was reached using global (in channel and frequency space)
complexity metrics.

Figure 4 provides the performance in the HC vs. PD problem
using different EEG channels (statistics computed using a smaller
number of folds).

3.2. Interpretation
Once a DCNN has been trained, it can be used to explore which
inputs optimally excite network nodes, including the output
nodes that provide the classification (29). The algorithm for
doing the latter consists essentially in maximizing a particular
class score using gradient descent, starting from, e.g., a random
noise image. An example of the resulting images using the
trained DCNN above can be seen in Figure 5, where image
corresponds to the input that maximizes each class output, e.g.,
HC vs. PD. This is a particularly interesting technique in our
diagnosis/prognosis problem and provides new insights on the
class-specific features in EEG of each class. In the case of
a HC vs. PD trained network, we can see alterations in the
alpha and theta spectral bands, appearing differentially in the
form of bursts in each class. In the difference spectrograms
we can observe the disappearance of alpha bursts in exchange
with bursting at lower frequencies. This findings are consistent
with others relating to alterations and slowing of EEG (6–
8, 28, Soria-Frisch et al., in preparation), and in particular of
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FIGURE 4 | Sample images produced by maximizing network outputs for a given class. (Left) From a network was trained using P4 electrode channel data on the

problem of HC vs. PD. The main features are the presence of 10 Hz bursts in the image maximizing HC classification (Top) compared to more persistent 6 Hz power

in the pathological spectrogram (Middle). The difference of the two is displayed at the bottom. (Right) Network was trained using P4 electrode data on the problem

of HC vs. PD+DLB (i.e., HC vs. RBDs that will develop an α-synucleinopathy or SNP). The main features are the presence of 10 Hz bursts in the HC class maximizing

image (Top) compared to more persistent 6–8 Hz power bursting in the pathological spectrogram (Middle).

FIGURE 5 | Mean test accuracy (blue) and AUC (black) per EEG channel (averages and standard error of the mean evaluated over 2,000-folds) for the single channel

HC vs. PD classification problem. Occipital and parietal electrodes provide better discrimination (top: DCNN architecture, bottom: RNN).

longitudinal alpha frequency and theta frequency band relative
power increases in PD with dementia (30). However, they
point out in more detail what the network has learned as
feature to separate the classes: bursting in the observed bands.
This adds a dimension (time) to the usually identified features
(power, slowing).

4. DISCUSSION

Our results using deep networks are complementary to earlier
work using machine learning to analyze this type of data using
SVMs and ESNs. However, we deem the use of deep learning
methods to be particularly interesting for various reasons. First,
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they largelymitigate the need for feature selection (in this case the
choice of spectral bands and channels). Here we preprocessed the
EEG data to obtain spectrograms as a way to simplify the learning
task given the limitations in data availability (given enough data,
it would seem natural to work with raw or minimally cleaned
up multichannel EEG data). Secondly, the employed method
represents an improvement over related prior efforts, increasing
performance by about 5–10% in AUC (28, Soria-Frisch et al.,
in preparation).

The obtained results and especially the ones derived from the
use of feature visualization are in agreement with the findings
of slowing of EEG in PD with respect to HC and RBD patients
as observed in previous studies, i.e., power increase in lower
frequency bands and decrease in higher ones. More specifically,
the shifting of bursting events in the alpha band to lower
frequencies is especially interesting and may suggest potential
mechanistic explanations regarding the effects of disease on the
alpha band underlying circuitry. This underscores the fact that
the DCNN can pick up relevant discriminative features without
explicitly being tuned to do so, which is not the case for those
previous studies with hand-picked features.

The performance of the network was higher with the task of
discriminating HC and converters than RBD non-converters and
converters, which is expected and probably reflecting different
time courses of disease in subjects. This reflects a limitation in
our study, namely, that RBD diagnosis and recruitment may have
happened along different timepoints for each subject, creating a
confound in the analysis.

We note that another limitation in the used dataset is the
presence of healthy controls without follow up, which may
be a confound for the network—worsening its performance,
as some controls may actually be prodromal PD, for example
[around 2.2% (31)]. We hope to remedy in the future this by
enriching our database with improved diagnosis and follow up
methodologies. In addition to dataset quality improvements,
future steps include the exploration of this approach with
larger datasets as well as a more systematic study of network
architecture and regularization schemes. This includes the use
of deeper architectures, improved data augmentation methods,
alternative data segmentation and normalization schemes. With
regard to data preprocessing, we should consider improved
spectral estimation using more advanced techniques such as
state-space estimation and multitapering—as in Kim et al. (32),
and working with cortically or scalp-mapped EEG data prior
creation of spectrograms.

Although here, as in Vilamala et al. (15), we worked with
time-frequency pre-processed data, the field will undoubtedly
steer toward working with raw data in the future when larger
datasets become available—as suggested in Schirrmeister et al.
(33). Working with time-frequency power representations is
definitely a limitation, given current view indicating that neural
processing involves both amplitude and phase of signals, e.g.,
as in communication through coherence or, more generally,
oscillation-based communication (34).

In closing, we note that the techniques used in this pilot study
can be extended to other EEG related problems, such as brain-
computer interfaces, sleep scoring, detection of epileptiform
activity or EEG data pre-processing, where the advantages of
deep learning approaches may prove useful as well.
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