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Aging is one of the strongest risk factor for Alzheimer’s disease (AD). However, several

data suggest that dyslipidemia can either contribute or serve as co-factors in AD

appearance. AD could be examined as a metabolic disorder mediated by peripheral

insulin resistance. Insulin resistance is associated with dyslipidemia, which results in

increased hepatic ceramide generation. Hepatic steatosis induces pro-inflammatory

cytokine activation which is mediated by the increased ceramides production. Ceramides

levels increased in cells due to perturbation in sphingolipid metabolism and upregulated

expression of enzymes involved in ceramide synthesis. Cytotoxic ceramides and

related molecules generated in liver promote insulin resistance, traffic through the

circulation due to injury or cell death caused by local liver inflammation, and because

of their hydrophobic nature, they can cross the blood-brain barrier and thereby exert

neurotoxic responses as reducing insulin signaling and increasing pro-inflammatory

cytokines. These abnormalities propagate a cascade of neurodegeneration associated

with oxidative stress and ceramide generation, which potentiate brain insulin resistance,

apoptosis, myelin degeneration, and neuro-inflammation. Therefore, excess of toxic lipids

generated in liver can cause neurodegeneration. Elevated homocysteine level is also a

risk factor for AD pathology and is narrowly associated with metabolic diseases and

non-alcoholic fatty liver disease. The existence of a homocysteine/ceramides signaling

pathway suggests that homocysteine toxicity could be partly mediated by intracellular

ceramide accumulation due to stimulation of ceramide synthase. In this article, we briefly

examined the role of homocysteine and ceramide metabolism linking metabolic diseases

and non-alcoholic fatty liver disease to AD. We therefore analyzed the expression of

mainly enzymes implicated in ceramide and sphingolipid metabolism and demonstrated

deregulation of de novo ceramide biosynthesis and S1P metabolism in liver and brain of

hyperhomocysteinemic mice.
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INTRODUCTION

Insulin resistance is a major public health outcome by
its association with the non-alcoholic fatty liver disease
(NAFLD), metabolic syndrome, type 2 diabetes mellitus (T2DM),
obesity, and Alzheimer’s disease (AD)-type neurodegeneration
epidemics. Aging is also a powerful AD risk factor. However,
many data imply dyslipidemic conditions as contributor or co-
factors in pathogenesis of AD. The classical “amyloid cascade”
hypothesis in AD, actually deeply debated, demonstrates that
cognitive defects and memory loss implicate the development of
wide and insoluble beta amyloid plaques in various brain areas,
resulting in apoptosis of neurons (1).

Apart from amyloid-β peptide (Aβ), many evidences suggest
that impairing of insulin signaling and brain glucose metabolism
act an important role in AD development. Human post-
mortem studies support this notion, indicating that insulin
resistance in AD brain is systematically showed and increased
with disease advancement (2–4). Another connection between
T2DM and AD could be supplied by Tau processing failures.
Neurofibrillary tangles (NFTs) are principally constituted by
hyperphosporylated tau proteins. NFTs, such as amyloid beta
plaques, account as important histopathological characteristics of
AD. Some authors have called AD as “type 3 diabetes” in relation
with the alterations, at the very early disease stages, of insulin
signaling more specifically in the brain (2). Insulin resistance
is linked with inflammation and dyslipidemia which results
in increased ceramides generation notably in hepatic function
(5, 6). For this reason, AD could be considered like metabolic
diseases mediated by disorders due to peripheral insulin
resistance. Progressive hepatic steatosis induces inflammation
with activation of pro-inflammatory cytokines, leading not
only to increased ceramide production, but also alteration in
one carbon metabolism. Ceramides build up in cells because
of disruptions in sphingolipid metabolism and activation of
pro-ceramides genes (7). Cytotoxic ceramides and related
molecules generated in liver promote insulin resistance, traffic
through the circulation due to injury or apoptosis caused by
local liver inflammation, and because of their hydrophobic
nature, can pass through the blood-brain barrier (BBB),
thereby exerting toxic responses as reducing insulin signaling
and increasing pro-inflammatory cytokines. These defects
initiate or support propagation of neurodegeneration with an
oxidative stress and ceramide production, exacerbating brain
insulin resistance, neuronal apoptosis, and neuro-inflammation.
Therefore, neurodegeneration can be caused by toxic liver
lipid production (5). In mice, increased production of toxic
lipid/ceramide can be induced by liver/peripheral tissue-brain
axis of neurodegeneration and be moved through the BBB
resulting cognitive impairments (8).

Disturbances in one carbon metabolism, determined
by enzyme failures integral to this process, comply with
abnormally increased plasma homocysteine (Hcy) levels,
namely hyperhomocysteinemia (HHcy). HHcy has been
frequently linked with T2DM, cardiovascular diseases (CVD),
atherosclerosis and present in NAFLD (9–11). Given that the
majority of dietary methionine metabolism is made in liver,

this organ represents the major place for Hcy metabolism
(12). During liver failure, metabolism of Hcy was modified in
association with lipid metabolism disturbance (13–15). Increased
Hcy level is also associated with AD pathology (16–19). Taken
as a whole, results suggest that Hcy/ceramides signaling
pathway exists which suggests a link between Hcy toxicity
and intracellular ceramide accumulation via the activation of
ceramide synthase (20).

HOMOCYSTEINE, A LINK BETWEEN
NAFLD, T2DM, AND AD

In the world, NAFLD is the most shared hepatic disorder,
its incidence reaching 70–90%. It is also linked with obesity,
T2DM and related metabolic diseases (21). NAFLD is linked
to hepatic insulin resistance and occurs frequently with
obesity/T2DM. Intrahepatic fat accumulation is the feature
of NAFLD. Progression of NAFLD is more likely to take
place in metabolic diseases patients (22). Oxidative stress
associated with insulin resistance have an essential part in
NAFLD (23). One-carbon metabolism is involved in methylation
of notably proteins, DNA, RNA, and protects cells against
oxidation (24). S-adenosylmethionine (SAM) is produced
by methionine adenosylation and is the most important
methyl-group donor in cellular metabolism (25) (Figure 1).
DNA methylation capacity of cells can be modified by a
reduction of SAM concentration associated with a reduction
in SAM: S-adenosylhomocysteine (SAH) ratio (26). One-
carbon metabolism perturbation consequently participates to
pathogenesis and NAFLD promotion.

In the liver, Hcy, a thiol-containing amino acid, is involved
in metabolism of dietary methionine. SAH metabolism
produces Hcy, SAH being produced through methylation
reactions implicating SAM and methyltransferases. Hcy can be
metabolized by conversion to cysteine via the transsulfuration
pathway, the first step involving cystathionine beta synthase
(CBS) (27) (Figure 1). In alcoholic fatty liver disease (28) but
also in non-alcoholic steatohepatitis (NASH) (29), serum Hcy
levels are elevated and good predictor of disease progression.
Hepatic steatosis in human patients and in mice with CBS
deficiency is associated with HHcy (29–32). In rats, HHcy due
to decreased hepatic CBS activity is elicited by NAFLD induced
by high fat diet (15). Therefore, NAFLD is early characterized
by HHcy. The involvement of dual-specificity tyrosine-(Y)-
phosphorylation regulated kinase (DYRK1A) in one carbon
metabolism is strengthened by the positive correlation between
hepatic protein expression and CBS activity (33, 34). DYRK1A,
a protein involved in development, growth and apoptosis (35),
is also implicated in Hcy cycle (36, 37) (Figure 1). DYRK1A
is also implicated in β-cell mass adjustment and involved in
carbohydrate metabolism (38, 39). In mice, DYRK1A is also
implicated in liver damage induced by alcohol consumption (34).

Individuals with NAFLD can exhibit neuropsychiatric
dysfunction, including anxiety and depression, which frequently
precede cognitive impairment and dementia. Factors affecting
one-carbon metabolism and consequently elevated Hcy levels
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FIGURE 1 | Integrated pathways for homocysteine/cysteine synthesis from methionine and sphingolipid synthesis. BHMT, betaine-homocysteine methyl transferase;

CBS, cystathionine beta-synthase; Cers, ceramide synthases; CERT, ceramide transferase; CGL, cystathionine gamma-lyase; DEGS1, dihydroceramide desaturase

1; KSR, 3-keto-sphinganine reductase; MAT, methionine adenosyl transferase; MS, methionine synthase; MTHFR, 5,10-methylene tetrahydrofolate reductase;

SAHH, S-adenosyl homocysteine hydrolase; SGPL, sphingosine-1-phosphate lyase; Sphk, sphingosine kinase; SPTlc, serine palmitoyltransferase; STHM,

serine transhydroxymethylase.

have been linked to AD. Divers risk factors of sporadic AD have
been characterized by long-term and prospective population and
cross-sectional retrospective studies, as hypercholesterolemia,
T2DM, and HHcy (40). Elevated proinflammatory cytokines
have metabolic connotation (40). Older patients suffering from
mild hypertension showed association between hippocampal
atrophy, and white matter atrophy, with HHcy. Elderly patients
with HHcy showed increased rate of hippocampal atrophy and
cognitive decline (41, 42). In the aged population, elevated Hcy
level can be established as a risk factor for cognitive decline (43).
Progression of white matter hyperintensities and faster rates
of total brain volume loss have been associated with increased
plasma Hcy levels in patients with hypertension (19). Many
studies have demonstrated that moderately elevated Hcy levels
increased late-onset Alzheimer’s disease (LOAD) risk, even if
the value is close to the critical threshold (16–19, 44). According
to recent international consensus statement (45), moderately
elevated Hcy level can increase the relative risk of dementia in
the elderly 1.15- to 2.5-fold, with the Population Attributable
risk from 4.3 to 31%.

Many mechanisms have been suggested to connect
elevated Hcy level with AD. Many experimental studies
have demonstrated that elevated Hcy level can produce many
neurotoxic effects implying excitotoxicity, oxidative stress,

mitochondrial dysfunction, DNA damage and apoptosis.
Therefore, HHcy can participate to AD neurodegeneration (46).
Preclinical studies show that HHcy generates Aβ accumulation
in brain (47–51) and increased hyperphosphorylation of tau
(52). The link of Hcy to Aβ can lead to the development of
interconnections and consequently to the development of
aggregates (53). Elevation of Hcy contributes to the decrease
of SAM levels. Demethylation of DNA can be produced by
decreased SAM level, leading to overexpression of presenilin
(PSEN1) and beta-secretase (BACE1), the β-site amyloid
precursor protein (APP)-cleaving enzyme (54). Another study
demonstrates that dimerization of apoE3 can be block by Hcy,
reducing apoE3-mediated high-density lipoprotein (HDL)
generation and consequently reducing microglial degradation
of soluble Aβ (55). Patients with HHcy, compared to control
subjects, have lower ratio of apoE3 dimers in their cerebrospinal
fluid (CSF).

Many studies demonstrate the involvement of DYRK1A in
AD (56). DYRK1A interacts with APP, and plays a role in
APP processing by direct phosphorylation of APP at Thr-668
and indirect phosphorylation of PSEN1 at Thr-354, promoting
the pathological Aβ pathway and the production of Aβ.
Increased DYRK1A expression enhances APP phosphorylation
and its cleavage, resulting in increased Aβ40 and Aβ42 levels
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and thus promoting brain β-amyloidosis (57). Its direct tau
hyperphophorylation and indirect phosphorylation of alternative
splicing factor promotes neurofibrillary degeneration, showing
its involvement in neurodegenerative processes and neuronal
depletion appearing in AD (57–60). We have previously shown,
on the one hand, that plasma DYRK1A levels correlate positively
with CSF tau and phosphorylated-tau proteins in AD (61),
and on the other hand that combined assessment of plasma
levels of DYRK1A and Hcy can be validate as diagnostic
marker for AD (44). Lipidomics analysis showed that not
only triglycerides (TG) content but also ceramide content were
increased in HHcy mice which have decreased liver DYRK1A
protein expression (36, 62). We previously demonstrated altered
lipoprotein metabolism in mice overexpressing DYRK1A (63).
Note that mice overexpressing DYRK1A have, on the contrary,
not only a decreased plasma Hcy level (37) but also a decreased
serum TG level (0.369 ± 0.04 vs. 0.519 ± 0.057 mmol/L; p <

0.05 by Student’s t-test; n = 8 for each). It will be important to
demonstrate if the effects of Hcy not only in liver but also in brain
are mediated by ceramide signaling.

SPHINGOLIPID METABOLISM AND AD

Considered for a long time as structural compounds, several
evidences demonstrated that bioactive sphingolipids are involved
as signaling molecules in the various tissues including the
brain. In these tissues, sphingolipids play important role in
several pathologies including neurodegenerative diseases, such
as AD. Sphingolipids could be produced by several pathways.
De novo sphingolipid synthesis is initiated in the cytoplasmic
face of the endoplasmic reticulum (ER) which is started with
the condensation of palmitoyl-CoA L-serine with to form 3-
ketosphinganine (Figure 1). Serine palmitoyl-transferase (SPT)
catalyzes this reaction (64). Two subunits, SPTLC1 and SPTLC2,
showing a similarity at amino acid sequence of around 20%,
compose the heterodimer SPT. SPTLC1 and SPTLC2 seem to
be both required for enzyme activity. However, the SPTLC2
subunit contains a pyridoxal phosphate binding motif (65) and
produces the common and major C18-sphingoid bases. A third
SPT subunit, SPTLC3, has been identified, with 68% homology
to the SPTLC2 subunit. However, SPTLC3 is involved in the
production of C14- and C16-sphingoid bases. SPTLC2 and
SPTLC3 are therefore distinct from a specificity point of view
(66). The SPT substrate preference toward the requirement
of longer acyl-CoA could be modulated by the differential
expression of SPTLC2 and SPTLC3. Moreover, C16-sphingoid
bases could be transformed into more complex sphingolipids,
such as C16-ceramide and glycosphingolipid. Sphingolipids
can be implicated in AβPP/Aβ metabolism and therefore AD
development due to their structural roles in cellular membranes
including lipid rafts (67). Conversely, ceramide formation can
be promoted by accumulation of oligomerized Aβ in AD brain.
Indeed, Aβ peptides can activate SPT, resulting in neurotoxic
ceramide increase by the de novo synthesis pathway (68,
69). Interestingly, SPTLC2 was found to be up-regulated in
AD (70, 71). However, a regulation of SPTLC3 subunit has

not been explored in neurodegenerative diseases development,
such as AD.

3-ketosphinganine is formed and rapidly reduced by 3-
ketosphinganine reductase into dihydrosphingosine (DH-Sph)
(Figure 1). The reaction results in DH-Sph, implicated in the
production of various species of dihydro-ceramides by ceramide
synthases (CerS) (Figure 1). This species will differ by the nature
of acyl-CoA chain length used for the N-acylation of DH-Sph
(72). The dihydroceramide desaturases (DEGS1) metabolizes
dihydro-ceramides into ceramides (Figure 1). Interestingly,
CerS1 and CerS2 are up-regulated in AD brains whereas CerS6
is reduced (70, 71), suggesting a remodeling of ceramide species
during the development of AD. The ceramide produced are
converted in the Golgi apparatus into sphingomyelin or glucosyl-
ceramides by sphingomyelin synthase and glucosyl-ceramide
synthase, respectively (73) (Figure 1).

Ceramidases could deacylated ceramides to produce
sphingosine (Figure 1). In cells, sphingosine but also other
sphingoid bases can be phosphorylated by two sphingosine
kinases (SphK 1 and SphK2) to form sphingosine-1-phopshate
(S1P). S1P can be dephosphorylated to sphingosine by specific
S1P phosphohydrolases, the reaction being reversible, or can
be cleaved by a pyridoxal-dependent S1P lyase (SGPL) into
ethanolamine phosphate and hexadecenal, the reaction being
irreversible (74) (Figure 1). S1P, in contrary to ceramide, is
known to be a pro-survival lipid for various cells including
neurons (74). Interestingly, S1P metabolism has also been related
to AD. Indeed, FTY720, a substrate of SphK2 that can bind S1P
receptors has been shown to reduce neuronal Aβ generation (75).
Loss of neuroprotective S1P and SPHK activity was found early
in AD development prior to AD diagnosis with a decrease of
Sphk2 activity in hippocampus (76). However, the role of SphK2
is still controversial in AD since S1P production by SphK2 and
Aβ processing seemed to be positively correlated (77). This
discrepancy could come from subcellular distribution of SphK2
between cytosol and nucleus which is altered in AD brains (78).
These data suggest that the pro-survival cytosolic S1P may be
less efficient by a shift in the subcellular localization of the S1P
generating by SphK2 which will lead to the production of nuclear
S1P associated with deleterious effects in AD pathogenesis. Up to
date, SphK2 and SGPL (70) have been shown to be overexpressed
whereas SphK1 was found to be down-regulated in AD brain
suggesting a deregulation of S1P signaling in this pathology
which remained to be clarified.

CERAMIDES, A LINK BETWEEN NAFLD,
T2DM, AND AD

Ceramides are also important mediators of insulin resistance
in various peripheral tissues but also in pancreatic β cell
deregulation induced by obesity (79, 80). Obesity is well-
established as a predisposing factor for the appearance of hepatic
steatosis, NAFLD being strongly associated with both hepatic
and peripheral insulin resistance with a defect in the ability
of insulin to suppress endogenous glucose production (81). In
addition, NAFLD is linked to important hepatic changes in
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lipid metabolites, such as an increase in hepatic cholesterol.
When excess of saturated fatty acids are poorly incorporated
into hepatocyte triglycerides, they induce lipotoxicity, resulting
in liver injuries (82). Excess of saturated fatty acids constitutes a
preferential substrate for the de novo ceramide biosynthesis (83).
It is known that ceramide levels contribute to the development of
NAFLD by mediating obesity, inflammation, insulin resistance,
and oxidative stress (84).

In addition to intracellular-based actions, circulating
extracellular ceramides have roles in insulin resistance. In vitro
studies showed that hepatocytes treated with palmitate could
efficiently secrete newly synthesized ceramide in response
to hyperlipidemia, demonstrated by increased extracellular
ceramide concentration (85). Ceramide could be either
transported by lipoproteins but also by cell-derived membrane
shed both basally and under stress conditions called extracellular
vesicles (86, 87). Interestingly, advanced pathological signs of
AD and also induced neuronal apoptosis could be elicited by
chronic NAFLD in mice (88). Therefore, chronic inflammation
induced by obesity-associated NAFLD outside from the brain is
sufficient to induce neurodegeneration in the absence of genetic
predisposition. Since NAFLD is associated with an increase of
circulating sphingolipid, such as ceramide, it is tempting to
suggest that circulating ceramide originating from liver could
also target brain tissues and favor the development of AD.

Some of sphingolipids could constitute biomarkers to identify
individuals who are at risk to develop T2DM. Therefore, it
will be more important to quantify circulating sphingolipid
concentrations. Plasma dihydro-ceramides levels were showed
effectively to be significantly elevated up to 9 years before the
detection of the disease of individuals from two human cohorts
who will progress to diabetes (89). Interestingly, deregulation
of ceramide metabolism reflected by an increase of plasma
ceramide level could arise in different stages of AD progression
(90, 91). Moreover, it would be important to define whether
AD is associated with a differential distribution of ceramides
in lipoproteins, but also in exosomes, which could serve as
biomarkers of disease progression.

S1P has been also shown as a potent regulator of NAFLD,
treatment with S1P enhancing hepatic lipid storage (92). A 2-
fold increase of SphK1 was determined in livers from humans
with NAFLD but also in mice feeded with a high saturated fat
diet (92, 93). These mice showed activation of NFκB, elevated
cytokine production, and immune cell infiltration. Importantly,
a total SphK1-null mice were protected from these outcomes.
To date, the role of SphK2 has not been explored in the context
of NALFD. In contrast, it has been shown that a total SPL-
null mice resulted in a widespread change in lipid metabolism
genes expression pattern, with a significant increase in the
expression of PPARgamma, a key transcriptional regulator of
lipid metabolism (94), suggesting that regulation of SGPL could
be a potent regulator of NAFLD. The liver is known to be
engaged in regulating the plasma level of S1P, as liver produces a
chaperone for S1P transport, the apolipoprotein M (apoM) (95).
Interestingly, polarized endothelial cells, composing the lining of
the BBB, also express and secrete apoM toward the brain as well
as to the circulation suggesting that circulating S1P could target

the brain by this way (96). Therefore, as ceramide, secretion of
S1P by hepatocytes could constitute a potent regulator of AD by
targeting the brain.

STATEMENT OF HYPOTHESIS: CERAMIDE
AND SPHINGOLIPID METABOLISM IS
MODIFIED IN LIVER AND
HYPOTHALAMUS OF
HYPERHOMOCYSTEINEMIC MICE ON A
HIGH FAT DIET

Based on the results described above, we used mice heterozygous
for targeted disruption of the Cbs gene (Cbs+/−) (30) and
wild type (Cbs+/+) mice on the same background, fed on a
standard diet supplemented with 0.5% L-methionine (Sigma-
Aldrich, France) in drinking water to induce intermediate HHcy
in Cbs+/− mice (97), and with a high-fat diabetogenic diet (HFD)
(98). As expected, Cbs+/− mice showed a significant increase of
plasma Hcy level (37.1± 3.2µM vs. 6.4± 0.4µM; p < 0.0001 by
Student’s t-test n = 8 for each). We previously evaluated plasma
Hcy levels in transgenic mouse models of AD. No significant
difference was observed in blood of transgenic mouse models
of AD compared to control mice, indicating that Hcy is not
a primary cause of AD (99). Animal studies using AD-like
transgenic mouse models, on a methionine enriched diet, were
used to provide potential mechanisms by which HHcy might
influence AD development. Tg2576 transgenic female mice
expressing hAPP with the Swedish mutation (K670N/M671L) on
amethionine enriched diet exhibited an increase from 6 to 35µM
(51, 100).

Effect of HHcy and HFD on Enzymes
Expression Involved in Ceramide and
Sphingolipid Metabolism in Liver
Gene expression of mainly enzymes implicated in ceramide
and sphingolipid metabolism has first been analyzed by Q-PCR
in mice liver. As expected, Cbs+/− mice showed a significant
decrease of liver CBS activity (45.2 ± 11.1 vs. 102 ± 21.6; p <

0.05 by Student’s t-test n = 4 for each), commensurate with a
decrease in mRNA expression (13.5 ± 7.3 vs. 100 ± 26; p < 0.03
by Student’s t-test n = 4 for each). Cbs+/− mice also showed a
significant decrease of liver Dyrk1A level (40.6 ± 6.3 vs. 100 ±

16; p < 0.02 by Student’s t-test n = 4 for each) (36), associated
with a decrease in mRNA expression (18.9 ± 14 vs. 100 ± 21.3;
p < 0.023 by Student’s t-test n = 4 for each). SGPL1 and SPTlc2
expression were decreased in liver of Cbs+/− on methionine and
HFD (Table 1) (Figures 2A,B). In agreement with the decreased
gene expression of SPTlc2, we also found a decrease in protein
level (Figure 2C). Hepatic expression of CBS and SGPL1 (r =

0.96, p< 0.02), Sphk2 (r= 0.83, p< 0.05), and SPTlc2 (r= 0.93, p
< 0.03) were positively correlated, Dyrk1A and Cers5 expression
being correlated negatively (r =−0.93, p < 0.02).

Ceramide is a potent regulator of cell proliferation, activation,
and apoptosis. Ceramide plays an key role in different cellular
functions, such as plasma lipoprotein metabolism and cell
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TABLE 1 | Relative liver and hypothalamus mRNA expression based upon Q-PCR data obtained from wild-type (Cbs+/+ mice) and mice heterozygous for targeted

disruption of the Cbs (Cbs+/− mice) on a methionine enriched diet (Met) and high fat diet (HFD).

mRNA (%) Hypothalamus Cbs+/+ mice

Met/HFD

(n = 4)

Hypothalamus Cbs+/− mice

Met/HFD

(n = 4)

Liver Cbs+/+ mice

Met/HFD

(n = 4)

Liver Cbs+/− mice

Met/HFD

(n = 4)

Cers1 100 ± 52.2 354 ± 211 100 ± 71 107.7 ± 52.8

Cers2 104 ± 8 247 ± 29** 100 ± 21 124 ± 15

Cers3 100 ± 26 115 ± 48 100 ± 41 95 ± 24

Cers4 99.9 ± 63.9 103.1 ± 58.8 100.9 ± 29.3 101.7 ± 55.1

Cers5 100 ± 18 226 ± 87 100 ± 28 189 ± 43

Cers6 100 ± 33 157 ± 58 100 ± 30 82 ± 21

CERT 100.4 ± 22.5 40.8 ± 17.1 100 ± 35.2 48.2 ± 25.4

DEGS1 100 ± 38.9 61.1 ± 26.1 100 ± 10.3 105.8 ± 29.6

SGPL1 100 ± 51.6 57.3 ± 23 100 ± 15.3 13.5 ± 7.4**

Sphk1 99.3 ± 27.9 71.6 ± 39.2 100.4 ± 44 21 ± 10

Sphk2 100.1 ± 36.4 14.8 ± 6.5* 100.4 ± 24.2 45 ± 21.6

SPTIc1 100 ± 28 10.5 ± 1* 100 ± 22.9 115.4 ± 32.3

SPTIc2 100 ± 2 52 ± 20.6 100 ± 31.6 9.5 ± 6.3*

SPTIc3 98.3 ± 47 371.3 ± 118.3 97.5 ± 24.9 294.5 ± 144.6

Total RNA was isolated from the hypothalamus and liver, reverse transcribed and real time quantitative PCR amplification reactions were carried as described using the LightCycler

FastStart DNA Master plus SYBR Green I kit (Roche) (97). The mRNA transcript level was normalized against the mean of two genes: H1a and TBP (Table S1). Data were normalized

to the mean of Cbs+/+ mice on Met/HFD. Data are presented as mean ± SEM, and analyzed with the Student’s t-test by using Statview software. n, number of mice. *p < 0.05; **p

< 0.01. Data were considered significant when p < 0.05.

FIGURE 2 | Effect of hyperhomocysteinemia and high fat diet on liver (A) SGPL1 mRNA, (B) SPTlc2 mRNA, (C) SPTlc2 protein, (D) Cers2 hypothalamus mRNA, (E)

Sphk2 hypothalamus mRNA, and (F) SPTlc1 hypothalamus mRNA level in wild type (Cbs+/+ mice) and mice heterozygous for targeted disruption of the Cbs

(Cbs+/− mice) on a methionine enriched diet (Met) and high fat diet (HFD). Relative liver and hypothalamus mRNA expression was described in Table 1. Liver SPTlc2

was determined by western blot and quantified by slot blotting [1/1,000 (101)]. β-actin (1/10,000) (Sigma-Aldrich, France) was used as an internal control for Western

blot analysis or ponceau-S coloration for slot blot analysis. Data are presented as mean ± SEM, and analyzed with the Student’s t-test by using Statview software. n,

number of mice. Data were considered significant when p < 0.05.

membrane formation, known to contribute to the development
of atherosclerosis and other sclerotic diseases, such as insulin
resistance, obesity, and AD (102, 103). Previous results have
demonstrated that de novo ceramide biosynthesis is implicated
in induction of kidney NAD(P)H oxidase activity in HHcy rats

fed a folate-free diet and report the important role of redox
signaling catalyzed by ceramides in glomerular injury induced by
HHcy in rats (104). Acid sphingomyelinase is also involved in the
development of glomerular oxidative stress and injury induced
by HHcy (105, 106).
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In HHcy induced by supplementation of Hcy in drinking
water for 6 weeks in mice, hepatic steatosis was found to
be associated with a notable increase in ceramide-related
metabolites and subsequent upregulation of ceramide synthesis
genes including Sptlc3, Degs2, Cer4, and Smpd4 (62). Moreover,
ceramide synthases were suggested to be involved in Hcy-
induced ceramide production by the fact that abolishing
the expression of Sptlc3 and Degs2 by omega-3 significantly
ameliorated HHcy-mediated increases of hepatic ceramide (62).
In our study, the increase of Cers5 (correlating negatively
with Dyrk1A expression), the non-significant increase of Sptlc3
support an increased ceramide levels in liver of Cbs+/−

mice on methionine and HFD mediated through specific
ceramide synthases. The SPTLC3 subunit has been identified
as generating short chain sphingoid bases (66) compared to
SPTLC2. Commensurate with the increased Sptlc3 level, Sptlc2
was found to be decreased in liver of Cbs+/− mice onmethionine
and HFD, correlating with CBS expression. Palmitate-CoA is
the predominant substrate for SPTLC2, whereas mysristoyl and
lauryl-CoA is the preferential substrates for SPTLC3, which
results in the production of different chain length of the
sphingoid base. It is possible that these two subunits can be
switched in a SPT enzyme complex to replenish the ceramide
pool, knocking down all SPTLC subunits being necessary to
decrease total ceramides significantly (107). The hepatic decrease
of SPTLC2 in Cbs+/− mice on methionine and HFD could
therefore lead to a decrease of ceramides with a C18-sphingoid
bases backbone and promotes the synthesis of ceramide species
through the action of SPLTC3 with a C16-sphingoid base
backbone. Interestingly, SPTLC3 expression has been associated
with NAFLD (108) and therefore could participate to its
development under the context of HHcy. We also found a
strong hepatic decrease of SGPL in Cbs+/− on methionine
and HFD suggesting an altered catabolism of S1P. Knowing
the novel role of S1P in hepatic injury, such as NAFLD (109),
it will tempting to propose that S1P metabolism also could
contribute to NAFLD in Cbs+/− mice on methionine and
HFD (109). More importantly, down-regulation of SGPL could
also contribute to increased circulating S1P levels since it has
been shown that saturated fatty acids serve to the synthesis
of S1P in hepatocytes which is released in the extracellular
environment (110). Increasing S1P levels in HHcy mice could
have repercussion on glucose homeostasis by targeting peripheral
tissues but could also target the brain where S1P is a potent
regulator of AD development (111). Hypothalamic insulin
resistance and lipotoxicity have been previously reported to be
induce by de novo ceramide biosynthesis (101). Therefore, we
also analyzed the main enzymes implicated in ceramide and
sphingolipid metabolism in hypothalamus of mice.

Effect of HHcy and HFD on Enzymes
Expression Involved in Ceramide and
Sphingolipid Metabolism in Hypothalamus
As expected, Cbs+/− mice showed a significant decrease of CBS
mRNA expression in hypothalamus (15 ± 10 vs. 100 ± 29; p <

0.03 by Student’s t-test n = 4 for each). A significant increase of

hypothalamus Dyrk1A level (259 ± 22.3 vs. 101.4 ± 25.2; p <

0.003 by Student’s t-test n = 4 for each) was found as expected,
without difference in mRNA level (58.9 ± 21.1 vs. 100 ± 30.7;
n = 4 for each) (112). Expression of Cers2 was increased, with a
decrease of Sphk2 and SPTlc1 in hypothalamus of Cbs+/− mice
on methionine and HFD (Table 1) (Figures 2D–F). A positive
correlation was found between hypothalamic expression of CBS
and SGPL1 (r = 0.76, p < 0.04), Sphk2 (r = 0.81, p < 0.03), and
SPTlc1 (r = 0.94, p < 0.04). We also found a positive correlation
between liver expression of CBS and hypothalamic expression of
Sphk2 (r = 0.86, p < 0.02), and SPTlc1 (r = 0.79, p < 0.04).

It has been demonstrated that Hcy-treatment of cerebral
endothelial cells induces acid sphingomyelinase ceramide
pathway (113). The increase of Cers2, the decrease of Sphk2 with
the non-significant increase of Sptlc3 and the non-significant
decrease of SGPL (Sphk2 and SGPL correlating positively with
CBS expression) support increased hypothalamic ceramide levels
in HHcy mice on HFD mediated through the regulation of
specific ceramide synthases. Previous results found in human
post-mortem brain andmouse transgenic ADmodel an increased
mRNA level of Cers1, Cers2, and a decrease in Sphk1 and Sphk2
(68, 76, 114). Loss of neuroprotective S1P and SPHK activity
was found early in AD pathogenesis prior to AD diagnosis
(76). Altogether, our results suggest that local alteration of S1P
metabolism also could contribute to AD development associated
with HHcy.

CONCLUSION

In this study, we used HHcy mice due to CBS deficiency to
analyze expression of the main enzymes implicated in ceramide
and sphingolipid metabolism. Our results support an increased
ceramide levels in liver of HHcy mice, particularly implicated in
NAFLD, and altered hepatic catabolism of S1P, which could target
the brain where S1P is a potent regulator of AD development.
Our results also support an increased hypothalamic ceramide
levels in HHcy mice, with a local alteration of S1P metabolism.
Altogether, our study emphasizes the role of Hcy/ceramides
pathway in AD pathology.
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