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Context: Accurate discrimination between obstructive and central hypopneas

requires quantitative assessments of respiratory effort by esophageal pressure (OeP)

measurements, which preclude widespread implementation in sleep medicine practice.

Mandibular Movement (MM) signals are closely associated with diaphragmatic effort

during sleep.

Objective: We aimed at reliably detecting obstructive off central hypopneas events using

MM statistical characteristics.

Methods: A bio-signal learning approach was implemented whereby rawMM fragments

corresponding to normal breathing (NPB; n = 501), central (n = 263), and obstructive

hypopneas (n = 1861) were collected from 28 consecutive patients (mean age = 54

years, mean AHI = 34.7 n/h) undergoing in-lab polysomnography (PSG) coupled with a

MM magnetometer, and OeP recordings. Twenty three input features were extracted

from raw data fragments to explore distinctive changes in MM signals. A Random

Forest model was built upon those input features to classify the central and obstructive

hypopnea events. External validation and interpretive analysis were performed to evaluate

the model’s performance and the contribution of each feature to the model’s output.

Results: Obstructive hypopneas were characterized by a longer duration (21.9 vs.

17.8 s, p < 10−6), more extreme low values (p < 10−6), a more negative trend reflecting

mouth opening amplitude, wider variation, and the asymmetrical distribution of MM

amplitude. External validation showed a reliable performance of the MM features-based

classification rule (Kappa coefficient = 0.879 and a balanced accuracy of 0.872). The

interpretive analysis revealed that event duration, lower percentiles, central tendency,

and the trend of MM amplitude were the most important determinants of events.

Conclusions: MM signals can be used as surrogate markers of OeP to differentiate

obstructive from central hypopneas during sleep.

Keywords: sleep apnea syndrome, hypopnea, respiratory effort, mandibular movements, obstructive hypopnea,

central hypopnea
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INTRODUCTION

Hypopnea is the most frequent respiratory event reported during
sleep (1). AASM rules recommend, as an option, to sub-divide
hypopnea as either obstructive or central, depending on the
underlying respiratory effort (RE) (2), reflecting increases, or
decreases in the central respiratory command, respectively. The
gold standard marker of RE during sleep is the amplitude
of the esophageal pressure (OeP) curve, a surrogate of
the diaphragmatic muscular contraction in the presence of
increased flow resistance within the airways (3). Alternative
non-invasive technique for assessing RE such as thoraco-
abdominal inductance plethysmography, that detects phase angle
differences or inspiratory flow limitation assessed by nasal
pressure recordings or snoring loudness remain to be validated
against OeP for routine hypopnea characterization (2, 3). Correct
characterization of the hypopnea sub-type provides information
about its origin and contributes to the therapeutic personalized
decision-making process (4).

We have recently shown that analysis of respiratory
mandibular movements (MM) during sleep reproducibly and
reliably identifies RE in patients being evaluated for suspected
obstructive Sleep Apnea Syndrome (OSAS). The amplitude of
MM mid-sagittal and vertical displacements at the breathing
frequency change across different types of scored events similarly
to the amplitudes of the EMG activity of the crural diaphragm
(5). These findings strongly suggest that MM amplitudes reflect
the intensity of RE (6), and also that hypopneas characterized by
different levels of RE reflecting more or less recruitment of the
central ventilatory command can be potentially identified and, as
such, serve as a reliable marker of OeP, a technique that is seldom,
if ever, implemented in clinical sleep studies (5).

In this study, we aimed to identify in patients being
evaluated for suspected OSAS, whether hypopneas scored as
either obstructive or central, based on the OeP measurement
and strictly following 2012 AASM rules, would be predictably
identified by MM analyses. To this effect, MMs were recorded
as time series data and, in the context of the large amount
of raw data acquired, we searched for surrogate features of
specific patterns to make quantitative comparisons between the
scored hypopneas.

MATERIALS AND METHODS

Study Subjects
Thirty-six consecutive adult patients referred for suspected OSAS
in a single sleep center (CHU UCL Namur, Saint Elisabeth site,
Namur, Belgium) were invited to participate. All participants
had symptoms suggestive of underlying OSAS. The study was
approved by the local human ethics committee (IRB 00004890-
number B707201523388), and all participants provided a written
informed consent.

Abbreviations: AASM, American Academy of Sleep Medicine; EMG,

Electromyography; MM, Mandibular movement; NPB, Normal Period of

Breathing; OeP, Esophageal Pressure; OSAS, Obstructive Sleep Apnea Syndrome;

PSG, Polysomnography; RE, Sleep Respiratory Effort; SpO2, Pulsed O2 Saturation.

Study Design
This was a prospective cross-sectional study performed during a
single night PSG.

Measurements and Data Acquisition
Polysomnography
A commercial digital acquisition system (Somnoscreen Plus,
Somnomedics, Randersacken, Germany) was used for recording
in laboratory PSG. The parameters monitored included EEG
(Fz-A+, Cz-A+, Pz-A+), right and left electro-occulogram,
submental EMG, tibial EMG, chest and abdominal wall
motion by respiratory inductance plethysmography (SleepSense
S.L.P.Inc, St. Charles, IL, USA), nasal and oral flows, respectively
with a pressure transducer and a thermistor, and O2 saturation
by digital oximeter displaying pulse wave form SpO2 (Nonin,
Nonin Medical, Plymouth, MN, USA). Following instillation of
local anesthetic, a 2.5mm external diameter soft silicone covered
catheter (Gaeltec Ltd, Dunvegan, Isle of Skye, Scotland, UK) was
inserted through the nares into the esophagus.

The catheter is mounted with 1 pressure transducer, which
is a thin film resistive strain gauge sensors. Proper positioning
of the catheter was verified by visual inspection of the signal
itself. The catheter was secured with tape to the patient’s nose, lip,
and cheek. The transducer was calibrated relative to atmospheric
pressure (zero) before each recording.

The catheter was connected to a miniature computer recorder
(digitraper) that is placed on the bedside locker overnight (7).

Mandibular Movements (MM)
MM were assessed with a midsagittal mandibular movement
magnetic sensor (Brizzy R© Nomics, Liege, Belgium) which
measures the distance between two parallel, coupled, resonant
circuits placed on the forehead, and on the chin. It was used to
record mandibular movements (8). The transmitter generates a
pulsed magnetic wave of low energy. The change in the magnetic
field recorded at the receiver is inversely related to the cube of
the distance between the chin and forehead probes. The distance
between the two probes is measured in mm with a resolution of
0.1mm. Basically, this signal provides the instantaneous position
of the mandible (e-Figure 1).

Polysomnography Scoring
PSG scoring (sleep stages and respiratory events) was performed
by two trained technicians who were blinded to the study aims
and an in strict accordance with the American Academy of Sleep
Medicine rules (2).

Analysis was restricted to 28 of the 36 originally recruited
patients who spent a minimum of 4 h sleeping along with
good quality signals on all recorded channels including the
OeP. Normal breathing periods (NPB), central, and obstructive
hypopnea events were scored.

Scoring of the conventional polysomnography supplemented
with Esophageal pressure measurement showed a strong
agreement between the two readers: ICC (2.1) = 0.927 (95%CI:
0.901–0.962; p < 0.001).

A hypopnea was defined as a reduction in nasal pressure signal
(flow) of > 10 s, ended by an arousal or a decrease in SpO2 of
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at least 3% relative to baseline. Hypopneas were characterized
in obstructive vs. central events depending on the presence or
absence of RE during at least one respiratory cycle. This was
assessed by changes in OeP swings accompanied by at least one
other PSG signal reporting RE (namely, flow pressure limitation,
respiratory belt asynchrony, or snoring). OeP swings consisted in
progressively more negative amplitudes terminated by a sudden
increase to a less negative level.

A central hypopnea was identified if there was a clear
reduction in OeP swings from baseline along all the episode
time (3). The hypopneas combining periods of no RE or
decreasing RE and then at least one respiratory cycle with
marked increasing RE (mixed hypopneas) were scored as
obstructive (2). An example of fragment is shown in e-Figure 1

after unblinding.
Nevertheless, to optimize the validity of labeling, only the

labels which represent a perfect agreement between 2 scorers
have been included formain analysis. Ambiguous fragments were
excluded from training data.

Data Processing Analysis
The analysis plan is summarized in the Figure 1. Feature
extraction, data processing and descriptive were done in R
statistical programming language (8), while Machine learning
experiments were conducted using sci-kit learn and SHAP
packages in Python language.

(1) After PSG scoring, individual raw data were acquired from
28 patients. Each dataset contained OeP and MM signals
(synchronized at 10Hz frequency and processed with noise
reduction). From this database, 2625 fragments including
raw MM signal during normal breathing periods (NPB;
n = 501), obstructive hypopneas (n = 1,861), or central
hypopneas (n= 263) were analyzed.

(2) A customized algorithm (e-Table 1) was applied to extract
23 features from MM raw signal of each event (Figure 2) or
each 10 s of NPB (9). Those features included: the central
tendency (mean, median andmode) ofMM amplitudes; MM
distribution (raw or enveloped signals): skewness, Kurtosis,
IQR, 25th, 75th, and 90th centiles; extreme values: Min, Max,
5th and 95th centiles of MM amplitudes; the tendency of
variation: linear trend and coefficients of Tensor product-
based spline factors (S1, 2, 3, 4) from a generalized additive
model to evaluate MM in function of Time; and the duration
of each event.

(3) The extracted features and corresponding target labels were
integrated to a tabular dataset.

(4) Exploratory data visualization, one-way ANOVA and
pairwise student-t tests with Bonferroni correction were
performed to compare 23MM features among 3 groups:
normal breathing, obstructive and central hypopneas.
Significance level was set at highly stringent criteria (p =

0.001) (10) for null-hypothesis testing.
(5) Model development: The data were randomly split into 2

subsets: a larger set (70%) for model development and a
smaller set (30%) for model validation. Because the original
training set was unbalanced between central (minority class)
and obstructive hypopneas (majority class), a synthetic

minority over-sampling technique (SMOTE) on the trainset
before model development was applied (11).

A multiclass classification rule was built to classify the 3
groups using 23 input features. This consisted of a Random
Forest algorithm that combined 500 distinct decision trees
(each one was constructed on a random subset of 5 features).

(6) Model interpretation: The content of the Random Forest
model was analyzed in order to evaluate the importance of
each feature and the possible coalition that contributed to
the classification (potential combinations among them to
differentiate obstructive from central hypopnea). To evaluate
the contribution of each features to the prediction, the
Lundberg’s Shapley additive explanation (SHAP) method
was adopted (12). The theory of this method is explained in
the Online Supplement (13, 14).

RESULTS

Characteristics of the Studied Population
and Scoring Performance
Thirty-six OSA patients were recruited and 28 had at least 4 h
of tracings without artifacts. The characteristics of the group are
presented in Table 1.

Scoring of the conventional polysomnography including
esophageal pressure measurement showed a strong agreement
between the two readers: ICC (2.1)= 0.927 (95%CI: 0.901–0.962;
p < 0.001).

Exploratory Analysis of MM Signal
Features
MM signal characteristics were evaluated during obstructive
hypopneas (n = 1,861), in comparison with NPB (n = 501) and
central hypopneas (n = 263). The first features group measured
the lower and upper extremities of MM amplitudes. As presented
in the Figure 3A, there was a clear contrast between the two
types of hypopnea in terms of extremity levels of MM amplitude.
All features, including minimum, maximum and 4 centiles (5th,
25th, 75th, and 95th) were 2 to 4 times larger during obstructive
hypopnea compared to central hypopnea events (all differences
were significant at p value thresholds below 10−6).

The second feature set describes the central tendency
(mean, median, mode), the dispersion (interquartile range)
and the distribution shape (skewness and kurtosis) of MM
signals (Figure 3B).

NPB were characterized by a steady and symmetrical MM
pattern with the amplitude centralized at zero. By contrast,
there was a high variability in distribution of MM values during
hypopnea events, that could be symmetrical, right or left skewed,
leptokurtic, or platykurtic. The differences were consistent for all
3 centrality parameters, suggesting that obstructive hypopneas
had a significantly higher MM amplitude compared with central
hypopnea events (p < 10−6). No significant difference was found
in terms of skewness and kurtosis.

The third feature set allows to capture the duration (in s),
the linear and the curvilinear trends of MM in function of time
(Figure 3C). Compared to the central events, the obstructive
events had a significantly longer duration (21.9 vs. 17.8 s,
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FIGURE 1 | This schematic diagram summarizes a 6 steps data analysis plan. (1) Acquisition and preprocessing of individual data in 28 patients. OeP, Esophageal

pressure signal; MM, Mandibular movement signal; (2) Manual label scoring based on OeP signal: N, Normal breathing (n = 501), O= Obstructive hypopneas (n =

21861) and C, Central hypopneas (n = 263); (3) Feature extraction and data compilation; (4) Exploratory data analysis; (5) Developing a classification rule based on

Random Forest algorithm; (6) Model explanation, to determine the role of each contributor and their interactions to identify the 3 target events.

p < 10−6). During NPB, the MM trend was null, confirming
that MM signal was in a steady state. The linear and curvilinear
trend of MM time series became negative during central
and obstructive hypopneas, though no significant differences
emerged between these two groups.

MM Based Classification Rule to
Differentiate Central and Obstructive
Hypopneas
Model’s Performance by External Validation
The optimized Random Forest model implied randomly 5
features for each one in 500 different decision trees. When
validated on unseen data (n = 788 events), the model showed
a good performance to classify the 3 classes (normal breathing,
central and obstructive hypopneas), with a balanced accuracy
of 0.876 and a high agreement with the manual blind scoring

based on esophageal signal (Cohen’s Kappa coefficient = 0.879).
A confusion matrix of the model validation is provided in the
Online Supplement (e-Figure 2).

Model Interpretation
The interpretation consisted in two steps: (1) Understanding
the model structure and (2) Evaluating the contribution of the
features to the model’s output (e-Figure 3).

Themodel’s complex structure is described through a network
by examining all possible interconnection among 23 features
across all decision trees (Figure 4). The network showed that all
23 features contributed to the model’s structure, although some
features may be more important than others. The event duration
played a central role, it was present in all decision rules and
collaborated with every other feature. The 5th centile, linear trend
andminimum values also had an important role, as these features
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FIGURE 2 | Surrogate features to describe the characteristics of MM signal during central and obstructive hypopnea events. Mandibular movement signal was

recorded as a time series (sampling rate = 10Hz). The figure presents two distinct series: a 12.5 s central hypopnea event (125 points, in red) and an obstructive

hypopnea event (45 s or 450 points, in blue). Each point (a) indicates a single value in the series. The slope of a linear model (c) allows to describe the linear trend of

MM signal. A generalized additive model (b,d) with polynomial smoothing spline function was fitted for estimating the time dependent variability of MM signal in 2

series, then the intercept (b) and 4 coefficients of spline function (denoted as S1, S2, S3, and S4) were extracted from the model as surrogate features to characterize

the complex trajectories of MM in time. The distribution shape parameters (e) (skewness, Kurtosis, Variance) were estimated to describe the shape of MM signal

distribution in each series. Other parameters aimed to describe the centrality (h), including mean, mode and median), lower extremities (g, including the minimum, 5th

and 25th centiles) and upper extremities (f, including maximum, 95th and 75th centiles) of MM amplitude. Finally, the event duration (i, measured in second) was also

included as characteristic feature.

TABLE 1 | Characteristics of the OSA patients (n = 28).

Parameter Median IQR 95%CI

Age (year) 54.0 19.5 29.5 – 77.0

BMI (kg/m2) 29.6 11.3 22.2 – 51.8

TST (min) 381.0 93.1 242.8 – 522.5

AHI (n/h) 34.7 32.9 2.8 – 95.8

ArI (n/h) 30.9 23.1 13.9 – 86.1

BMI, Body mass index; TST, Total sleep time; AHI, Apnea/Hypopnea index; ArI, Cortical

Arousal index.

were linked to many other features in more than 250 rules. The
variance of MM amplitude and intercept was also highlighted
as these emerged as important elements in the network. The
connection among those 6 relevant features formed the core of
the ensemble model.

According to the SHAP value analysis (Figure 5, e-Figure 4),
the contribution of the input features could be interpreted
as follows:

The most relevant features allowing to distinguish central
from obstructive hypopnea included: event duration, variance
in signal amplitude, lower extremities (minimum, 5th and
25th centiles), while the central tendency (mean, median and
intercept), and the linear trend of the signal showed only
moderate contribution.

More specifically, a longer event duration, higher value of
centrality (mean, median), and more important linear trend
supported the prediction of obstructive hypopnea; in contrast,
a shorter event duration, higher values of minimum, 5th and

25th centiles, lower values of mean, or median allowed to rule-
out the obstructive hypopnea. On the other hand, a coalition of
moderate event duration, lower central tendency (mean, mode
or median), lower values of minimum, 5th and 25th centiles, and
less important linear trend predicted central hypopnea.

Although the upper extremities (Max, 90th, or 95th centiles),
as well as the intercept were found relevant for the prediction,
their contributions were equally distributed in both hypopnea
types, and thus remained impervious for either central hypopnea
or obstructive hypopnea. Other features such as skewness,
interquartile range, 75th centile and spline functions were least
important as their contribution rarely impacted the model’s
output (SHAP values were close to zero).

DISCUSSION

This study expands on our previous findings (5) indicating
the clinical utility of MM signals as a surrogate marker
of RE during sleep, by extracting more features from the
raw MM data and focusing on the differentiation between
obstructive and central hypopnea events, an issue that provides
more informative content than the general classification of
sleep breathing disorders. The Random Forest algorithm was
adopted as a statistical inference tool because it offers the
capacity to handle multiclass problems as well as delineate
complex interactions among input features. The findings not
only confirmed the ability of MM to differentiate obstructive
from central hypopneas and periods of NPB, but also provided
enhanced understanding about the changes in MM signal
patterns during these episodes. In general, hypopneas can
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FIGURE 3 | Characteristics of mandibular movement signal during obstructive and central hypopnea events. Each panel visualizes the distribution of a surrogate

feature of MM signal in 3 event types: normal breathing (501 series, green color), central hypopneas (n = 263 series, red color) and obstructive hypopnea (n = 1,861

series, blue color). The surrogate features are presented in 3 groups: (A) The extreme levels of signal amplitude, with lower extremities on left side and upper

extremities on the right side; (B) The centrality or location parameter of the signal (left) and distribution shape parameters (right); (C) The event duration, linear trend

and coefficients of the smoothing spline time series model (S1–S3). The letter-value boxplot was used to ensure a better description for large data (10). Multiple boxes

were drawn, each one represents a pair of lower and upper letter values. The procedure starts with the median, followed with quartiles, and so on. The innermost box

is equivalent the conventional boxplot. As moving toward the tails, the boxes became incrementally narrower until we reached the extremes values (outliers, minimum,

and maximum). The p_values correspond to a pairwise comparison using t-test with Bonferroni correction. A difference is considered significant if p_value is lower

than 10−6.
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FIGURE 4 | Average marginal contribution of the 18 most relevant features to the model’s prediction. Each line in this graph corresponds to a single feature and

consists of 3 violin plots showing the contribution of that feature to the prediction of 3 target groups. Each column corresponds to a target group (normal, central and

obstructive hypopneas). The violin plots and X scale indicate the distribution of the SHAP value, a score assigned to each feature to measure the average marginal

contribution of that feature across all possible coalitions with other features to make a certain prediction. The shape and location of the violin plots indicate the impact

of each feature on the model’s output, or how much a feature may contribute to a certain prediction. A negative SHAP value indicates that the feature participates to

rule out that group (by decreasing the predicted probability), whilst a feature with positive SHAP value would increase the probability of that group, thus supporting its

identification. Larger absolute SHAP scores (the density plot extends further to the left or right side) indicate more important role of that feature. A zero SHAP value

(concentrated density plot) indicates that the feature does not contribute at all to the prediction of that group. The feature values were normalized and mapped to a

blue/red color scale (blue = lower values, red = higher values), allowing to estimate the tendency of prediction as the feature value increases or decreases.

be reproducibly and correctly characterized as either central
(without signs of increasing RE) or obstructive (presence of
marked or increasing RE) when considering an ensemble of
statistical features in sleep MM signals.

We have previously shown that MM signals provide accurate
estimates on the degree of RE in patients with OSAS (15). In a
group of consecutive patients clinically referred for evaluation in
the sleep laboratory for suspected OSA, MM analyses allowed for
successful detection of RE as defined by the conventional scoring
rules. Moreover, as shown herein MM can readily differentiate
between obstructive and central hypopnea events.

Since many patients exhibit a preponderance of events during
sleep that are scored as hypopnea rather than apnea, and since
obstructive hypopnea likely share the same pathophysiological
determinants and obstructive apnea (4), the AHI does not
provide accurate clinical risk stratification since it includes
both central and obstructive events, and therefore other PSG-
derived features are needed to better define sleep-disordered
breathing (16). In the context of the last iteration of AASM
scoring rules in 2012, it did not seem that differences with
previous scoring guidelines would enhance the prediction
of the risk of cardio-vascular morbidities (17). However,
the importance of identifying the sub-type of hypopneas to
better stratify morbidity risks and overall outcomes cannot be
over emphasized.

The current study pointed to both predictive and
interpretative goals. However, there is always a trade-off between
the predictive power and the interpretability when adopting a
statistical learning algorithm. Due to the high dimensionality of
the extracted features data and multiclass classification problem,
we had to adopt the Random Forest classifier.

We found, however, that both the extremities (min, max)
and the lower centiles of the MM amplitudes, as well as the
central tendency parameters (mean, median or intercept of
a linear regression) provided informative content about the
position of the mandible during sleep events, and that obstructive
hypopneas lasted longer as compared to central hypopneas. The
parameters of the values distribution shape showed no significant
differences. In contrast, a smaller variance in the mandibular
position and in peak amplitudes was more typically observed
during central hypopneas.

Similarly, the linear and the curvilinear trend analyses
along the hypopnea spectrum highlighted that the obstructive
events generated a more negative signal (mouth more open).
The coefficients of the spline function in the non-linear trend
analysis were similar between both hypopnea sub-types;
it is likely because the signal curve shape of the temporal
series was dependent on the individual characteristics.
Notably, hypopnea duration contributed importantly to the
distinction between central from obstructive hypopnea, the
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FIGURE 5 | Cooperation network among MM signal features in Random

Forest classifier. The figure presents a network of all possible combinations

among the 23 potential surrogate features of MM signals that occurred in 500

classification rules in the Random Forest model. Pi, ith percentile; IQR,

interquartile range; Amp, amplitude of MM signal; Int, intercept of the linear

model estimating MM signal amplitude in function of time; S1–S4, spline

functions determining the curvilinear trend of MM signal amplitude in function

of Time; Skew, skewness; Kurto, Kurtosis; Trend, linear trend of the MM

signal. Each node in the network indicates a feature and the link connecting

between two nodes indicates that these two features did co-exist in at least

250 decision trees. The color intensity of connection links is proportionate with

the frequency of that combination. The nodes are positioned in function of

their ability to inter-connect with other nodes, thus the more centralized nodes

(colored in yellow; more links), such as event duration (length), 5th centile,

linear trend, intercept, variance, and Min were the most important features,

because those features did participate in almost every classification rule.

latter being more likely to be of longer duration. Those
findings were consistent in both traditional statistical inference
(ANOVA) and model interpretative analysis using the
SHAP method.

The importance of identifying the sub-type of hypopneas
to better stratify morbidity risks and overall outcomes of sleep
apnoea patients is now widely recognized. Identification of
central breathing events without RE or with decreasing RE
is paramount to formulate tailored treatment decisions (18).
Indeed, emergence of central respiratory disturbances provides
clinically important information on underlying pathological
conditions: frequent sleep/wake transitions, excessive loop gain
with or without excessive arousability and sleep fragmentation,
prolonged circulatory time as in congestive heart failure with
increased risk for Cheyne-Stokes breathing, or central alveolar
hypoventilation of various causes (19–22). However, all these
conditions associated with central hypopnea tend in general
to result in shorter events. Episodes, including those with
longer decreases in RE are in fact of mixed nature, and
were regrouped in this study with the obstructive hypopneas.

Previous algorithmic analyses had to consider multiple PSG
parameters in combination (flattening of nasal flow-pressure
signal, paradoxical breathing, arousal, event termination profile,
and sleep stage) to characterize the hypopnea with a satisfactory
overall accuracy. In the search for a useful single signal source
that manifest overnight stability in the absence of magnetic
interferences, MM emerges as a good candidate that can be used
in machine-based classifiers aiming at separating central from
obstructive hypopneas.

LIMITATIONS

Similar to any study, our study has a few important limitations
that deserve comment. Even though a classification rule was
built in our analyses, this approach was simply aimed as an
experimental demonstration of feasibility and proof-of-concept,
rather than reflecting a final and authoritative diagnostic rule.
Extracted feature-based algorithms may not be the best solution
for clinical practice, due to their higher computation cost
and other biases. Therefore, more advanced methods such as
recurrent or convolutional neural networks are more efficient for
bio-signal learning, pattern recognition, as these algorithms can
innately handle both feature extraction and model optimisation,
independently from human knowledge-based interventions. As
such, implementation of the approaches proposed herein should
incorporate a multicentre large cohort from which derivation
of more robust and validated rules could be then implemented
and disseminated.

We should also point out the imbalance among the 3 event
groups, as central hypopneas were less frequent compared to
the larger number of obstructive events. However, this problem
was handled by conducting an over-sampling process on the
training set before building the model and by setting a high
threshold of statistical significance for null hypothesis testing (p
< 10−6).

CONCLUSIONS

The signal characteristics of MM can be used as surrogate
markers of OeP to correctly classify obstructive and central
hypopneas as well as periods of NPB in patients being evaluated
for suspected OSAS. MM signal opens doors to automate the
more complex part of respiratory events scoring. It also opens
the possibility of scoring by less trained physicians and reduces
medical errors.
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