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Mastering detailed anatomy of the human deep brain in clinical neurosciences is

challenging. Although numerous pioneering works have gathered a large dataset of

structural and topographic information, it is still difficult to transfer this knowledge into

practice, even with advanced magnetic resonance imaging techniques. Thus, classical

histological atlases continue to be used to identify structures for stereotactic targeting in

functional neurosurgery. Physicians mainly use these atlases as a template co-registered

with the patient’s brain. However, it is possible to directly identify stereotactic targets on

MRI scans, enabling personalized targeting. In order to help clinicians directly identify

deep brain structures relevant to present and future medical applications, we built

a volumetric MRI atlas of the deep brain (MDBA) on a large scale (infra millimetric).

Twelve hypothalamic, 39 subthalamic, 36 telencephalic, and 32 thalamic structures were

identified, contoured, and labeled. Nineteen coronal, 18 axial, and 15 sagittal MRI plates

were created. Although primarily designed for direct labeling, the anatomic space was

also subdivided in twelfths of AC-PC distance, leading to proportional scaling in the

coronal, axial, and sagittal planes. This extensive work is now available to clinicians

and neuroscientists, offering another representation of the human deep brain ([https://

hal.archives-ouvertes.fr/] [hal-02116633]). The atlas may also be used by computer

scientists who are interested in deciphering the topography of this complex region.

Keywords: atlas, MRI, human, thalamus, hypothalamus, subthalamus, deep brain, stereotaxis

INTRODUCTION

The term “deep brain” (DB) describes the combination of subcortical structures including the
mesencephalon. It is anatomically a highly complex region with clinical importance in a number of
diseases. Several specialized atlases have been created to orient deep brain interventions. The atlases
of the human deep brain most used in clinical neurosurgery relies on histological studies (1–4).
They are both, anatomic books, and stereotactic atlases. They are co-registerable with patient brains
through landmarks; such as the widely used anterior (AC) and posterior (PC) white commissures.
Other proportional grid systems derived from landmarks, are also still largely used (5, 6). These
atlases provide probabilistic coordinates of structural related functional targets. Rigid registration
of an atlas to a patient’s brain MRI refines the quality of probabilistic targeting (7). This approach
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is called indirect stereotactic identification of structures (2),
because the structures of interest were not directly visible before
the existence of the MRI.

The deep brain geometry limited variability coupled with the
relative facility to construct proportional diagrams made the
indirect visualization approach used worldwide in stereotactic
and functional neurosurgery, including radiosurgery (8).Yet
an increasing number of surgical teams transitioned to use
both, MRI landmarks and/or directly visualization of targeted
structures for implantation of DB stimulation (DBS) (9–15). We
proposed direct targeting of pallidal structures visualized onMRI
without the use of AC-PC referencing (16), and since used this
approach routinely (17).

Recent advances of MRI technologies have resulted in a
dramatic increase in both, spatial resolution and contrast
resolution, consequently the ability to identify clinically relevant
structures in the deep brain. Our group begun to manually
segmenting the DB using ex vivo high field MRI in the early
2000’s (18). Because of its complex architecture, it took over 10
years to comprehensively label themajority of relevant structures.
We reported intermediate stages of this atlas over the years
(19–22). Herein we present a clinical MRI Deep Brain Atlas
(MDBA) built from a unique anatomic specimen offering for the
first time the most advanced version with detailed volumetric
representation. Though mainly developed to identify structures
of the deep brain onMRI for neurosurgical practices, it also offers
to neuroscientists another representation of the topographic
organization of the deep brain.

MATERIALS AND METHODS

Specimen, Raw Image Data, and Initial
Contouring of Structures
The brain specimen was obtained from a 65 year-old male
subject who died of non-neurological cause. It was studied
following our institutional rules and guidelines. After long term
fixation in 10% formaldehyde, a block measuring about 60-mm

FIGURE 1 | Principle of contouring and voxel objects (frontal view; coronal slices). (A) ventrocaudal medial nucleus of thalamus (pink). (B) retrolenticular-reticularoïd

zone (light beige). (C) smoothed surfaces of voxel objects, ventrocaudal medial nucleus of thalamus, retrolenticular-reticularoïd zone, red nucleus (red), and

hippocampal formation (light brown).

in each direction was scanned at 4.7 Tesla (Bruker, Ettlingen,
Germany) with a 3D T1-weighted spin echo sequence (about
14 h of acquisition), resulting in 250µm isotropic voxels (2563

matrix). The image data was initially manually contoured and
labeled using a neurosurgical software (Iplan, BrainLab, Munich,
Germany). MRI cartography and labeling relied on the analysis
of different signals and patterns of the deep brain structures (19).
The signal intensity of a voxel reflects the microarchitecture,
i.e., cell density, and anisotropy of bundles of axons (the higher
number of anisotropic bundles, the lower signal), as well as the
cells contents, notably the ferromagnetic load of neurons (the
higher ferromagnetic charge, the lower signal). In addition, at the
resolution available in our data set, the common separation of
brain tissue into white and gray matters is not binary in the deep
brain. For instance, at large scale (centimetric) the thalamus is
made of gray matter; at small scale (millimetric) the thalamus is
made of gray matter nuclei such as the ventromedial posterior
nucleus, of white fascicles such as the mammillothalamic fascicle,
and of mixed structures such as intralaminar nuclei or the
reticular nucleus crossed by numerous white matter fibers. The
cartography was performed structure by structure, starting from
the most readily identifiable ones, such as the subthalamic
nucleus. In parallel to the progressive mapping of the 4.7-Tesla
data set, the updated version was tested in clinical practice for
direct targeting in functional neurosurgery as an neuroanatomic
aid (23, 24). The different nuclei of the hypothalamus were
parcellated into different structures according to proportional
topography and structural connectivity (21, 25).

Building of the MRI Deep Brain Atlas
The objects, i.e., the anatomic structures, were exported as

surface (stl format) from the surgical software. Surfaces were

transformed in binary maps for voxel-based representation and

co-registered with a modified MRI data set (Thermo ScientificTM

AmiraTM, v 6.4, Hillsboro, OR, USA). The raw image data

set were realigned along AC-PC line, slices being resampled

accordingly; leading to a new image data set of 0.125 × 0.125
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× 0.256 mm3 voxels (512 × 512 × 256 matrix; 8-bit grayscale
ranging from 0 to 255). The resampled MRI images were cleaned
(removed of cerebrospinal-fluid spaces, vessels and nerves of
the subarachnoid space; Photoshop CC, Adobe, San Jose, CA,
USA,) and then filtered (unsharp masking and sigmoid intensity
remapping; 16-bit grayscale; Thermo ScientificTM AmiraTM, v 6.4,
Hillsboro, OR, USA). All imported objects were manually re-
segmented accounting to the new high geometric resolution and
highest contrast between adjacent structures using multi-objects
contouring tools (Thermo ScientificTM AmiraTM, v 6.4, Hillsboro,
OR, USA) (Figure 1A). Contours of unnamed structures were
identified and labeled during this process (Figure 1B). A unique
color (HSV color model) was attributed to each object. The
surface representation of voxel objects was smoothed with a
Gaussian filter (Thermo ScientificTM AmiraTM, v 6.4, Hillsboro,
OR, USA) (Figure 1C).

Labeling of Structures
The structures were labeled according to clinically known
classical names (1, 2, 26–37) and ontologies (38–40). These
structures were essentially nuclear, i.e., where neuronal bodies are
concentrated; in addition, small white matter fascicles embedded
were included (e.g., thalamic fascicle), but we did not label the
large capsule fascicles, namely the internal, external and extreme
capsules. Complementary information, such as homonyms and
French names were also added. Acronyms were created to
reduce the text size of labels on plates. Structures not precisely
identified or still unnamed were detailed and labeled according

to the location and the aspect on MRI. For instance: (i) the
retrolenticular reticularoid zone was observed laterally to the
area or zone of Wernicke, hence in a retrolenticular position,
Because of its reticular appearance (low signal intensity) it was
named reticularoid (Figure 2); (ii) the subthalamic tegmental
field covered the historical Forel’s H field, and was segregated
into anterior, dorsal, medial, lateral and central zones; (iii) the
area of reticular appearance, i.e., with an apparent low density
of cells, which is placed posteriorly and below the pallidum, was
named the posterior subpallidal area. The information is available
as Supplementary Table.

The structures were also specified according to four
subregions of the deep brain, although these subdivisions are
still not formally set (33, 40), namely the hypothalamus, the
thalamus, the subthalamus or prethalamus and the telencephalon
(Supplementary Table). The labeling was not fully extensive, as
we focused on structures identifiable on MRI for the thalamus,
subthalamus, and telencephalon, or inferred from diagrams
for the hypothalamus (e.g., the suprachiasmatic and supraoptic
nuclei were not separated).

MDBA Plates
For each MRI slice and related maps, structural (MRI slice)
and topographic (maps) data were distributed on a double page
or plate.

Topographic maps were created from cross sections of objects
intersecting with cutting planes (Thermo ScientificTM AmiraTM,
v 6.4, Hillsboro, OR, USA), displaying colored surface and

FIGURE 2 | (A) Contouring and labeling of the retrolenticular reticularoid zone (RLRZ; the voxel object is overlaid) on MRI slice (see MDBA plate 10); medial geniculate

body, M-GB; lateral geniculate body, L-GB; stria terminalis, STR-ter; caudate nucleus, CAU-nu. (B) Same region according to Riley (36); the RLRZ is visible (histologic

preparation) but not identified. (C) Same region according to Dejerine (26); the RLRZ is visible (artist drawing) but not identified.
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contours of structures overlaid on MRI slices (Figure 3). The
MRI slices were not scaled, as they were assumed to be used
for direct comparison with patient MRI datasets. Furthermore,
the aspect of signal of structures is very similar to that observed
in images routinely used in clinical practice, even if the latter
have a lower spatial resolution, which is supramillimetric. The
contours of structures were overlaid (white line) on each MRI
slice, facilitating the identification of structures on the patients’
individual imagery. The contrast of each MRI slice was enhanced
by automatic adjustment of tones (Photoshop CC, Adobe,
San Jose, CA, USA), in a slice by slice fashion, minimizing
heterogeneity of signals due to the presence of extremely high
(white) and low (black) values within the volume of acquisition
(a legacy of the original MRI acquisition).

The anatomic space, scaled in millimeters and oriented along
vertical and horizontal AC-PC plans, was subdivided in twelfth of
AC-PC distance according to Guiot et al. (5), Benabid et al. (6),
leading to proportional scaling in the coronal (C), axial (A), and
sagittal (S) planes (Figure 4). AC-PC distance was rounded to
27mm; 1/12th of AC-PC was rounded to 2.25mm; the midpoint
between AC and PC (MI) was rounded to 13.5mm. The height of
the thalamus was 18mm. The proportional grid system numbers
were used to name the slices and related maps. Hence, for one
unique location in a plane, both absolute (overlay of absolute
millimeter distance grid) and relative (overlay of proportional
distance grid) positions were available. Three particular sections
served as reference positions. The axial section going through
the AC-PC horizontal plane was named A0-AC-PC; sections
above that plane were named superior (AS), and below, inferior

(AI). The coronal section going through AC (perpendicular to
AC-PC horizontal plane) was named C0-AC. All plates in front
of AC were named CF, whereas the ones located posteriorly
(or rear) to AC were named CR; at the MI point, the coronal
section was named CR6-MI (the 6th coronal plane posterior to
AC); at PC, CR12-PC (the 12th coronal plane posterior to AC).
The sagittal section going through the vertical AC-PC plane was
named S0-ACPC.

On each plate whatever the orientation, one MRI slice and
related position graphs and maps, were arranged for localization
and comparison purposes. The relative position of any givenMRI
slice and related maps was overlaid on proportional grids on A0-
ACPC, CR6-MI, or S4, according to its orientation. Two related
maps of the MRI slice were displayed: the first is the map of
structures at the specific location with the contours and labels
(acronyms), on which is overlaid a millimetric grid (absolute
location); the second map is made of the same structures but
colored according to the four subregions, including the overlay
of a proportional grid as well. This second map was colored
using luminance gradients of the specific color of the subregion
as follows. The hypothalamus was colored in yellow, the thalamus
in blue, the subthalamus in brown, and the telencephalon
in green.

RESULTS

Twelve hypothalamic, 39 subthalamic, 36 telencephalic and
32 thalamic structures were identified, contoured and

FIGURE 3 | (A) Colored surfaces and acronyms, plate CR8 (millimeter scale), the ACPC line is depicted as a black circle. (B) Same plate, colors are specified

according to subregions (proportional and millimeter scales); thalamus (blue gradation), subthalamus (brown gradation) and telencephalon (green gradation). (C) Same

plate, MRI slice and white contours of structures (no scale).
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FIGURE 4 | Position of slices (colored lines: axial, red; coronal, blue; sagittal, green) on the axial ACPC plan (A0-ACPC; left row), coronal MI plan (CR6-MI;

intermediate row) and 9-mm lateral sagittal plan (S4; right row); proportional grid (purple) in 12th of ACPC distance; HT, thalamus height.

TABLE 1 | MDBA plates.

Coronal Axial Sagittal

Acronym Relative position (1/12th

of ACPC)

Location

(mm)

Acronym Relative position (1/12th

of ACPC)

location

(mm)

Acronym Relative position (1/12th

of ACPC)

Location

(mm)

CF2 2 in front of AC −4.5 AS8 8 above ACPC 18 S0-ACPC 0 of ACPC 0

CF1 1 in front of AC −2.2 AS7 7 above ACPC 15.5 S1 1 of ACPC 2.3

CO-AC 0 of AC 0 AS6 6 above ACPC 13.5 S2 2 of ACPC 4.5

CR1 1 rear to AC 2.2 AS5 5 above ACPC 11.3 S3 3 of ACPC 6.8

CR2 2 rear to AC 4.5 AS4 4 above ACPC 9 S4 4 of ACPC 9

CR3 3 rear to AC 6.7 AS3 3 above ACPC 6.8 S5 5 of ACPC 11.3

CR4 4 rear to AC 9 AS2 2 above ACPC 4.5 S6 6 of ACPC 13.5

CR5 5 rear to AC 11.2 AS1 1 above ACPC 2.3 S7 7 of ACPC 15.8

CR6-MI 6 rear to AC 13.5 A0-ACPC 0 of ACPC 0 S8 8 of ACPC 18

CR7 7 rear to AC 15.7 AI1 1 below ACPC −2.3 S9 9 of ACPC 20.3

CR8 8 rear to AC 18 AI2 2 below ACPC −4.5 S10 10 of ACPC 22.5

CR9 9 rear to AC 20.2 AI3 3 below ACPC −6.8 S11 11 of ACPC 24.8

CR10 10 rear to AC 22.5 AI4 4 below ACPC −9 S12 12 of ACPC 27

CR11 11 rear to AC 24.7 AI5 5 below ACPC −11.3 S13 13 of ACPC 29.3

CR12-

PC

12 rear to AC 27 AI6 6 below ACPC −13.5 S14 14 of ACPC 31.5

CR13 13 rear to AC 29.2 AI7 7 below ACPC −15.8

CR14 14 rear to AC 31.4 AI8 8 below ACPC −18

CR15 15 rear to AC 33.7 AI9 9 below ACPC −20.3

CR16 16 rear to AC 35.9

labeled (n = 119; Supplementary Table). Nineteen coronal,
18 axial, and 15 sagittal MRI plates were created (n =

52; Table 1). The acronyms were classified in alphabetic
order by subregion. The 52 plates generated for this
study can be found in the https://hal.archives-ouvertes.
fr/ [hal-02116633].

DISCUSSION

The MDBA with 119 structures and 52 plates provides an

extensive 3D MRI structural analysis of the human deep brain

mainly for clinical applications, but also researchers interested
in direct visual identification of neuroanatomical structures.
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The simple principle of cartography from reconstructed slices
of one anatomic specimen without destruction of tissue greatly
facilitates the 3D structural analysis, which is also dramatically
improved by high spatial resolution with infra millimetric voxels.
Although the result of parcellation according to T1-weighted
contrast harvested a lot of data, further approaches using
others MRI contrast, such as inversion-recovery sequences, or
multimodal imaging with DTI, should refine the information.

The large scale maps of MDBA with 250-µm side voxels is
compatible with the recent human DTI data sets with isotropic
voxels of 400µm (41) up to 60µm (42), as well as with high
resolution probabilistic atlases (43, 44) and could help in the
labeling process of the deep brain. Indeed the MDBA gives high
level of structural details of white and gray matter structures
substantially enhancing the current structural knowledge within
this region. Although it can be used both at the individual level
and in series, it is intrinsically a detailed data set of a unique
specimen which must interpreted in this strict context as a
topological descriptor of the deep brain architecture. Anyway
this topological descriptor, could be the support of advanced
probabilistic atlases enabling to integrate the variability, still not
mastered, of the deep brain, through large cohorts of subjects.

Our approach has shown that it is feasible to identify the
details of individual MRI anatomy. Whereas, the atlas-with
proportional scales is still largely used for stereotactic targeting,
nevertheless there must be kept in mind such unsolved issues
as inhomogeneity of ontologies, weak cross-correspondences
between atlases (45) and between set of slices within atlases
questions (20). On the other hand it can be assumed that
machine learning approaches (46) could significantly enhance
these anatomical uncertainties, therefore dramatically change
paradigms to solve these challenges. This is expected as the
learning databases are rapidly becoming stronger. For instance
the MDBA could be used in the work flow of learning methods
including decision-based approaches whether supervised or not
(47–49) to interpret the results. In the interim, the MDBA
can assist significantly those who are willing to better master
the deep brain architecture, which is particularly important for
clinicians implanting devices in the deep brain. In this latter
condition, practitioners can use the atlas like classical histological
atlases from the proportional grid plates, and at the same time
they can adjust or specify directly the targets from the MRI
plates. Furthermore, the MDBA is of considerable value to study
injured and deformed brains as indirect methods are unreliable
due to the hampered landmarks in the injured brain (50). The
MDBA also improves scientific knowledge of the deep brain

structural aspect as revealed by current MRI. In this sense, it fuels
the panoply of MRI-based brain atlases used for research and
clinical purposes, notably in computer science (see e.g., https://
en.wikibooks.org/wiki/SPM/Atlases). Furthermore, the MDBA
creates a link to pioneering data (see Supplementary Table),
which otherwise would remain into oblivion. Moreover, the
MDBA serves as a new tool in the continuous effort of mastering
the structural and functional anatomy of the human brain using
either direct or indirect methods of cartography. Last but not
least, it can also be used for teaching, learning and training
purposes, taking advantage of current publicly available free
website-based programs (https://www.openanatomy.org/).
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