



# The Effect of Magnesium Intake on Stroke Incidence: A Systematic Review and Meta-Analysis With Trial Sequential Analysis

Binghao Zhao<sup>1,2</sup>, Lei Hu<sup>3</sup>, Yifei Dong<sup>4</sup>, Jingsong Xu<sup>4</sup>, Yiping Wei<sup>1</sup>, Dongliang Yu<sup>1</sup>, Jianjun Xu<sup>1</sup> and Wenxiong Zhang<sup>1\*</sup>

<sup>1</sup> Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China, <sup>2</sup> Departments of Neurosurgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China, <sup>3</sup> Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China, <sup>4</sup> Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China

#### **OPEN ACCESS**

#### Edited by:

Linxin Li, University of Oxford, United Kingdom

#### Reviewed by:

Lu Ma, West China Hospital, Sichuan University, China Sami Curtze, University of Helsinki, Finland

> \*Correspondence: Wenxiong Zhang zwx123dr@126.com

#### Specialty section:

This article was submitted to Stroke, a section of the journal Frontiers in Neurology

Received: 22 March 2019 Accepted: 23 July 2019 Published: 07 August 2019

#### Citation:

Zhao B, Hu L, Dong Y, Xu J, Wei Y, Yu D, Xu J and Zhang W (2019) The Effect of Magnesium Intake on Stroke Incidence: A Systematic Review and Meta-Analysis With Trial Sequential Analysis. Front. Neurol. 10:852. doi: 10.3389/fneur.2019.00852 **Background:** The effect of magnesium on stroke has been consistently discussed less, and the results of previous studies have been contradictory. We reviewed the latest literature and quantified robust evidence of the association between magnesium intake and stroke risk.

**Methods:** PubMed, EMBASE, the Cochrane Library, the Web of Science and ClinicalTrials.gov were searched through inception to January 15, 2019 for prospective cohort studies on magnesium intake and the incidence of stroke.

**Results:** Fifteen studies with low bias involving 18 cohorts were entered into this study. The summary relative risk (RR) was significantly reduced by 11% for total stroke (RR: 0.89 [95% CI, 0.83–0.94]; P < 0.001) and by 12% for ischemic stroke (RR: 0.88 [95% CI, 0.81–0.95]; P = 0.001), comparing the highest magnesium intake category to the lowest. After adjusting for calcium intake, the inverse association still existed for total stroke (RR: 0.89 ([95% CI, 0.80–0.99]; P = 0.040). There was an inverse but non-significant association for hemorrhagic stroke, subarachnoid hemorrhage and intracerebral hemorrhage. The quantitative associations for total and ischemic stroke were robust. Importantly, high-risk females who had a body mass index (BMI)  $\geq$ 25 kg/m<sup>2</sup> and who were subjected to a  $\geq$ 12 y follow-up exhibited a greater decrease in RRs as a result of magnesium intake. For each 100 mg/day increase in magnesium, the risk for total stroke was reduced by 2% and the risk for ischemic stroke was reduced by 2%.

**Conclusions:** Increasing magnesium intake may be a crucial component of stroke prevention that acts in a dose-dependent manner. However, the conclusion is limited by the observational nature of the studies examined, and further randomized controlled trials are still needed.

Keywords: magnesium, stroke, meta-analysis, trial sequential analysis, systematic review

# **KEY POINTS**

- 1. We conducted a quantitative analysis that suggested that magnesium intake has a strong inverse association with total stroke.
- 2. Magnesium-rich food consumption should be recommended in dietary guidelines for high-risk individuals.
- 3. Highlighting early management or intervention of stroke requires various efforts and strategies.
- 4. This study, which includes a considerable amount of evidence, assists with innovation of the global dietary pattern.
- 5. This can be regarded as the latest meta-analysis for the association between magnesium intake and total stroke and ischemic stroke.

## INTRODUCTION

Magnesium acts as a critical cofactor for hundreds of enzymes involved in glucose metabolism, protein production, and nucleic acid synthesis (1, 2). An intake deficiency has been reported to be associated with many diseases, such as Alzheimer's disease, asthma, attention deficit hyperactivity disorder, type 2 diabetes, hypertension, cardiovascular disease (e.g., stroke), migraine headaches, osteoporosis, and cancer (1, 2).

The American Heart Association (AHA)/American Stroke Association (ASA) (3) guidelines suggest following a Mediterranean diet to reduce sodium intake and increase potassium consumption. Despite the dietary pattern guidelines, the recommendations regarding other special nutrients, such as magnesium, have been limited, and most of the current investigations are concentrated on sodium, potassium or calcium. In past years, studies (1, 2, 4-16) of magnesium have emerged; however, the data on the topic are limited due to the challenge of conducting long-term follow-ups. Previous metaanalyses (14, 17-19) supported a mild benefit of magnesium intake for stroke patients, but these findings are insufficient to make specific recommendations and are not conclusive for dose-response patterns. We performed a more comprehensive meta-analysis with state-of-the-art statistical methods and new evidence (1) to estimate the effect of magnesium intake on stroke and to update the current evidence; (2) to apply trial sequential analysis (TSA) to determine whether current observational studies are conclusive; and (3) to establish a detailed dose-response relationship.

## **METHODS**

This study was performed according to the Cochrane Handbook and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (**Table S1**) (Registration information: PROSPERO CRD42018099363).

#### Search Strategy

PubMed, EMBASE, Cochrane Library, Web of Science, and ClinicalTrials.gov were rigorously reviewed through inception to January 15, 2019 for studies on magnesium intake and stroke, without language restrictions. We used the following key words: "magnesium," "Stroke," "Cerebrovascular Stroke," "Cohort Studies," and "Prospective Studies." The electronic searches were complemented by a manual search of the reference lists of retrieved studies.

## Selection Criteria

We chose eligible studies according to the "PICOS" principles, and eligible studies had to meet the following criteria:

- 1) Population: individuals with certain dietary/energy intake who had no current stroke. Their current life expectancy was sufficient for proper follow-up, and their essential data were available;
- 2) Exposure: magnesium, including dietary and total intake (dietary and supplementary magnesium);
- 3) Outcome: total stroke, ischemic stroke, and hemorrhagic stroke [including subarachnoid hemorrhage and intracerebral hemorrhage according to anatomical site or presumed etiology (20)]; and
- 4) Study design: prospective cohort studies.

The follow-up period of the included studies was no <1 y. We excluded studies involving populations with prevalent cancer, stroke at baseline, implausibly low or high energy intake, or missing information; reviews; basic studies; meta-analyses; etc.

#### **Data Extraction and Quality Assessments**

Two investigators (YW and JX) independently extracted the following information: the first author, publication year, period of cohort studies, duration of persistent exposure, basic characteristics of the enrolled participants (age, region, BMI, etc.), median magnesium intake for each quantile (tertile, quartile, or quintile), total stroke cases, subtypes of total stroke, dietary and cases assessments, and adjusted confounding covariates. The adjusted relative risk (RR) and hazard ratio (HR) of the main outcomes in fully adjusted models were specifically extracted. Discrepancies were resolved by a discussion with a third author (WZ).

Three authors (BZ, WZ, and DY) assessed study methodological quality using the Newcastle-Ottawa Scale (NOS) (21). On a 0–10 scale, each study was categorized as low (0-5), medium (6-7), or high (8-10) quality.

#### **Statistical Analysis**

Publications reporting data separately for men and women or based on different types of diseases were treated as independent cohorts. Multivariate RRs and the corresponding 95% confidence intervals (95% CIs) for stroke risk for the highest category vs. the lowest category of magnesium intake and other outcomes were estimated with the DerSimonian-Laird (D-L) random effects model because the assumptions involved accounted for the presence of within-study and between-study variability. The adjusted HRs in the primary studies were

Abbreviations: RR, Relative risk; CI, Confidence intervals; BMI, Body mass index; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; NOS, Newcastle-Ottawa Scale; CV, Cardiovascular; RCTs, Randomized controlled trials; DALYs, Disability-adjusted life-years; ASA, American Stroke Association; CHD, Coronary heart disease; BP, Blood pressure.

| A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Study<br>ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Decreases total stroke    | Increases total stroke | RR (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %<br>Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | Ascherio et al 1998<br>Iso et al 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | 2                      | 0.92 (0.58, 1.46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Song et al 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                        | 0.90 (0.65, 1.26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Larsson et al 2008<br>Weng et al 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | -                      | 0.91 (0.77, 1.07)<br>0.69 (0.45, 1.06)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.22<br>1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | Ohira et al 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | -                      | 0.89 (0.45, 1.06)<br>0.80 (0.75, 1.13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.95<br>8.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | Larsson et al 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +                         | ·                      | 1.02 (0.82, 1.27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Zhang et al (M) 2012<br>Zhang et al (F) 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | <u> </u>               | 1.03 (0.79, 1.35)<br>0.90 (0.69, 1.16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.98<br>5.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | Lin et al 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                        | 0.62 (0.40, 0.97)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Sluijs et al 2013<br>Sluijs et al 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                        | 0.76 (0.57, 1.01)<br>0.64 (0.44, 0.94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.37<br>2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | Adebamowo et al 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                        | 0.89 (0.71, 1.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Adebamowo et al (2) 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | -                      | 0.93 (0.79, 1.08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.63<br>2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | Bain et al (M) 2015<br>Bain et al (F) 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                        | 0.81 (0.53, 1.22)<br>0.82 (0.54, 1.24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Kokubo et al (M) 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                         | •                      | 1.07 (0.86, 1.33)<br>0.88 (0.67, 1.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Kokubo et al (F) 2017<br>Overall (I-squared = 0.0%, p<br>NOTE: Weights are from ran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                         | _                      | 0.88 (0.67, 1.14)<br>0.89 (0.83, 0.94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| в | NUTE: Weights are from ran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dom effects analysis      | 1 1.5                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | iso et al 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                        | 0.89 (0.70, 1.13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Song et al 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                         |                        | 0.81 (0.58, 1.13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Larsson et al 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                        | 1.02 (0.87, 1.19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Zhang et al (M) 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                        | 0.79 (0.60, 1.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Zhang et al (F) 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                        | 1.24 (0.96, 1.59)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Bain et al (F) 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        | 0.72 (0.50, 1.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Kokubo et al (M) 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                        | 0.98 (0.84, 1.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Kokubo et al (F) 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                        | 0.99 (0.83, 1.19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Overall (i-squared = 32.1%, p = 0.172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | ,                      | 0.95 (0.87, 1.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| c | NOTE: Weights are from random effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ts analysis               | 15                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ~ | Ascherio et al 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | <b>—</b>               | 1.23 (0.87, 1.74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Ascherio et al 1998<br>Iso et al 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                        | 0.98 (0.66, 1.45)<br>0.86 (0.68, 1.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.21<br>3.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | Song et al 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                        | 0.90 (0.65, 1.24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Larsson et al 2008<br>Larsson et al 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | •                      | 1.04 (0.94, 1.16) 1.07 (0.83, 1.37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.99<br>2.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | Ohira et al 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | • · · · ·              | 1.08 (0.85, 1.37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Larsson et al 2011<br>Larsson et al 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                         | _                      | 0.95 (0.80, 1.14)<br>0.97 (0.80, 1.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.99<br>5.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | Zhang et al (M) 2012<br>Zhang et al (M) 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                        | 0.96 (0.74, 1.25)<br>0.94 (0.72, 1.23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Zhang et al (F) 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                        | 0.93 (0.71, 1.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Zhang et al (F) 2012<br>Zhang et al (F) 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | •                      | 1.12 (0.87, 1.44)<br>0.90 (0.69, 1.16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.96<br>2.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | Lin et al 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del>~ · ·</del>          |                        | 0.65 (0.42, 1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Adebamowo et al 2015<br>Adebamowo et al 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | _                      | 1.01 (0.85, 1.21)<br>0.93 (0.76, 1.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.03<br>5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | Adebamowo et al (2) 20<br>Bain et al (M) 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                        |                        | 0.92 (0.80, 1.05) 0.87 (0.61, 1.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Bain et al (F) 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | -                      | 0.73 (0.50, 1.08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Kokubo et al (M) 2017<br>Kokubo et al (M) 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | _                      | 0.96 (0.81, 1.15)<br>0.96 (0.79, 1.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.12<br>4.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | Kokubo et al (F) 2017<br>Kokubo et al (F) 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | _                      | 0.90 (0.73, 1.11)<br>0.92 (0.73, 1.15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0%, p = 0.887)            |                        | 0.97 (0.92, 1.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Overall (I-squared = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n random effects analysis | 1 1.5                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D | Overall (I-squared = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D | Overall (I-squared = 0.1<br>NOTE: Weights are from<br>Ascherio et al 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .5                        |                        | 1.15 (0.76, 1.73)<br>0.91 (0.72, 1.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.00<br>9.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D | Overall (I-squared = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .5                        | _                      | 1.15 (0.76, 1.73)<br>0.91 (0.72, 1.14)<br>0.81 (0.58, 1.13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.00<br>9.61<br>4.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D | Overall (I-squared = 0.6<br>NOTE: Weights are from<br>Ascherio et al 1998<br>Iso et al 1999<br>Song et al 2005<br>Larsson et al 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5                        |                        | 0.91 (0.72, 1.14)<br>0.81 (0.58, 1.13)<br>1.11 (0.81, 1.53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.61<br>4.56<br>5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D | Overall (I-squared = 0.6<br>NOTE: Weights are from<br>Ascherio et al 1998<br>Iso et al 1999<br>Song et al 2005<br>Larsson et al 2008<br>Weng et al 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                        |                        | 0.91 (0.72, 1.14)<br>0.81 (0.58, 1.13)<br>1.11 (0.81, 1.53)<br>0.91 (0.57, 1.46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.61<br>4.56<br>5.02<br>2.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D | Overall (I-squared = 0.6<br>NOTE: Weights are from<br>Ascherio et al 1998<br>Iso et al 1999<br>Song et al 2005<br>Larsson et al 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                        | 0.91 (0.72, 1.14)<br>0.81 (0.58, 1.13)<br>1.11 (0.81, 1.53)<br>0.91 (0.57, 1.46)<br>0.96 (0.73, 1.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.61<br>4.56<br>5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D | Overall (I-squared = 0.0<br>NOTE: Weights are from<br>Ascherio et al 1999<br>Iso et al 1999<br>Song et al 2005<br>Larsson et al 2008<br>Weng et al 2008<br>Ohira et al 2009<br>Larsson et al 2009<br>Larsson et al 2019<br>Zhang et al 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                        | 0.91 (0.72, 1.14)<br>0.81 (0.58, 1.13)<br>1.11 (0.81, 1.53)<br>0.91 (0.57, 1.46)<br>0.96 (0.73, 1.25)<br>1.02 (0.82, 1.27)<br>1.03 (0.79, 1.35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.61<br>4.56<br>5.02<br>2.29<br>7.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D | Overall (I-squared = 0.1<br>NOTE: Weights are from<br>Ascherio et al 1998<br>Iso et al 1999<br>Song et al 2005<br>Larsson et al 2008<br>Weng et al 2008<br>Larsson et al 2009<br>Larsson et al 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        | 0.91 (0.72, 1.14)<br>0.81 (0.58, 1.13)<br>1.11 (0.81, 1.53)<br>0.91 (0.57, 1.46)<br>0.96 (0.73, 1.25)<br>1.02 (0.82, 1.27)<br>1.03 (0.79, 1.35)<br>0.88 (0.70, 1.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.61<br>4.56<br>5.02<br>2.29<br>7.02<br>10.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D | Overall (I-squared = 0.0<br>NOTE: Weights are from<br>Ascherio et al 1999<br>Iso et al 1999<br>Song et al 2005<br>Larsson et al 2008<br>Weng et al 2008<br>Ohira et al 2009<br>Larsson et al 2009<br>Larsson et al 2019<br>Zhang et al 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                        | 0.91 (0.72, 1.14)<br>0.81 (0.58, 1.13)<br>1.11 (0.81, 1.53)<br>0.91 (0.57, 1.46)<br>0.96 (0.73, 1.25)<br>1.02 (0.82, 1.27)<br>1.03 (0.79, 1.35)<br>0.88 (0.70, 1.10)<br>0.98 (0.80, 1.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.61<br>4.56<br>5.02<br>2.29<br>7.02<br>10.61<br>7.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| D | Overall (I-squared = 0.<br>NOTE: Weights are from<br>Ascherio et al 1998<br>Iso et al 1990<br>Sing et al 2005<br>Larsson et al 2008<br>Weng et al 2008<br>Unite et al 2009<br>Larsson et al 2019<br>Zhang et al (01) 2012<br>Skujis et al 2014<br>Adebaminou et al 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                        | 0.91 (0.72, 1.14)<br>0.81 (0.58, 1.13)<br>1.11 (0.81, 1.53)<br>0.91 (0.57, 1.46)<br>0.96 (0.73, 1.25)<br>1.02 (0.82, 1.27)<br>1.03 (0.79, 1.35)<br>0.88 (0.70, 1.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.61<br>4.56<br>5.02<br>2.29<br>7.02<br>10.61<br>7.07<br>9.93<br>12.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| D | Overall (I-squared = 0.<br>NOTE: Weights are from<br>Auchano et al 1998<br>Song et al 2005<br>Lansson et al 2008<br>Wing et al 2008<br>Otima et al 2008<br>Dunse of al 2011<br>Subje et al 2014<br>Addamence of al 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                        | 0.91 (0.72, 1.14)<br>0.81 (0.58, 1.13)<br>1.11 (0.81, 1.53)<br>0.91 (0.57, 1.46)<br>0.96 (0.73, 1.25)<br>1.03 (0.79, 1.35)<br>0.88 (0.70, 1.10)<br>0.96 (0.80, 1.20)<br>0.73 (0.50, 1.06)<br>0.88 (0.55, 1.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.61<br>4.56<br>5.02<br>2.29<br>7.02<br>10.61<br>7.07<br>9.93<br>12.35<br>3.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D | Overall (I-squared = 0.4<br>NOTE: Weights are from<br>More and the second second second second<br>Second second second second second second<br>Second second second second second second<br>Second second second second second second<br>Addemando set al 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                        | 0.91 (0.72, 1.14)<br>0.81 (0.58, 1.13)<br>1.11 (0.81, 1.53)<br>0.91 (0.57, 1.46)<br>0.96 (0.73, 1.25)<br>1.03 (0.79, 1.35)<br>0.88 (0.70, 1.10)<br>0.88 (0.80, 1.20)<br>0.73 (0.50, 1.06)<br>0.80 (0.55, 1.17)<br>0.86 (0.59, 1.26)<br>1.07 (0.86, 1.33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.81<br>4.56<br>5.02<br>2.29<br>7.02<br>10.61<br>7.07<br>9.93<br>12.35<br>3.59<br>3.56<br>3.53<br>10.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D | Overall (I-squared = 0.<br>NOTE: Weights are from<br>Auchano et al 1998<br>Song et al 2005<br>Lansson et al 2008<br>Wing et al 2008<br>Otima et al 2008<br>Dunse of al 2011<br>Subje et al 2014<br>Addamence of al 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                        | 0.91 (0.72, 1.14)<br>0.81 (0.58, 1.13)<br>1.11 (0.81, 1.53)<br>0.91 (0.57, 1.46)<br>0.96 (0.73, 1.25)<br>1.03 (0.79, 1.35)<br>0.88 (0.70, 1.10)<br>0.96 (0.80, 1.20)<br>0.73 (0.50, 1.06)<br>0.88 (0.55, 1.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.61<br>4.56<br>5.02<br>2.29<br>7.02<br>10.61<br>7.07<br>9.93<br>12.35<br>3.59<br>3.56<br>3.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | Overall (I-squared = 0.1<br>NOTE: Weights are from<br>Auchanio et al 1998<br>Song et al 2008<br>Using et al 2008<br>Danie et al 2019<br>Bain et al (M) 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015<br>Rokubo et al (I) 2017<br>Kokubo et al (I) 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5<br>                   |                        | 0.91 (0.72, 1.14)<br>0.81 (0.58, 1.13)<br>0.91 (0.58, 1.13)<br>0.91 (0.57, 1.46)<br>0.96 (0.73, 1.25)<br>1.02 (0.82, 1.27)<br>1.03 (0.79, 1.35)<br>0.88 (0.70, 1.10)<br>0.88 (0.80, 1.20)<br>0.73 (0.50, 1.00)<br>0.88 (0.55, 1.17)<br>0.88 (0.55, 1.17)<br>0.88 (0.67, 1.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.81<br>4.56<br>5.02<br>2.29<br>7.02<br>10.61<br>7.07<br>9.93<br>12.35<br>3.59<br>3.56<br>3.53<br>10.68<br>7.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E | Overall (I-squared = 0.1<br>NOTE: Weights are from<br>Aschario et al 1998<br>Song et al 2008<br>Lanson et al 2008<br>Units et al 2008<br>Lanson et al 2008<br>Lanson et al 2008<br>Lanson et al 2011<br>Zhang et al (II) 2012<br>Salage et al 2014<br>Addetamovo et al 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015<br>Rokubo et al (7) 2017<br>Overall (I-squared = 0.9%, R<br>NOTE: Weights are from ran<br>Addresor et al 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                        |                        | 0.91 (0.72, 1.14)<br>0.81 (0.54, 1.13)<br>1.11 (0.81, 1.53)<br>0.91 (0.57, 1.46)<br>0.96 (0.71, 1.25)<br>1.02 (0.82, 1.27)<br>1.03 (0.79, 1.35)<br>0.86 (0.70, 1.35)<br>0.86 (0.70, 1.35)<br>0.86 (0.60, 1.35)<br>0.72 (0.54, 1.14)<br>0.96 (0.58, 1.02)<br>0.86 (0.58, 1.02)<br>0.92 (0.58, 1.46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.61<br>4.56<br>5.02<br>2.29<br>7.02<br>10.61<br>7.07<br>9.93<br>12.35<br>3.59<br>3.56<br>3.53<br>10.68<br>7.18<br>100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | Overall (I-squared = 0.1<br>NOTE: Weights are from<br>Auchano et al 1998<br>Song et al 2008<br>Uning et al 2008<br>Uning et al 2008<br>Uning et al 2008<br>Uning et al 2008<br>During et al (0) 1012<br>Subje et al 2014<br>Addemove et al 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015<br>Kolutio et al (0) 2015<br>Overall (I-squared = 0.0%, c<br>NOTE: Weights are from ran<br>Control of the start of the start of the start of the<br>Address of the start of the start of the start of the<br>Address of the start of the start of the start of the<br>Address of the start of the start of the start of the<br>Address of the start of the start of the start of the<br>Address of the start of the start of the start of the start of the<br>Address of the start of the start of the start of the start of the<br>Address of the start of the start of the start of the start of the<br>Address of the start of the start of the start of the start of the<br>start of the start of the start of the start of the start of the<br>start of the start of                                                                                                                                                                                                                                                                                 | 15                        |                        | 0.91 (0.72, 1.14)<br>0.81 (0.84, 1.13)<br>1.11 (0.81, 1.53)<br>0.91 (0.87, 1.140)<br>0.93 (0.73, 1.25)<br>1.02 (0.82, 1.27)<br>1.03 (0.78, 1.25)<br>1.03 (0.78, 1.26)<br>0.98 (0.80, 1.26)<br>0.98 (0.80, 1.26)<br>0.98 (0.80, 1.26)<br>0.98 (0.85, 1.17)<br>0.86 (0.88, 1.26)<br>1.07 (0.88, 1.33)<br>0.86 (0.75, 1.14)<br>0.95 (0.88, 1.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.61<br>4.56<br>5.02<br>2.29<br>7.02<br>10.61<br>7.07<br>9.93<br>12.35<br>3.59<br>3.56<br>3.53<br>10.68<br>7.18<br>100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | Overall (I-squared = 0.1<br>NOTE: Weights are from<br>Aschario et al 1998<br>Song et al 2008<br>Lanson et al 2008<br>Units et al 2008<br>Lanson et al 2008<br>Lanson et al 2008<br>Lanson et al 2011<br>Zhang et al (II) 2012<br>Salage et al 2014<br>Addetamovo et al 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015<br>Bain et al (M) 2015<br>Rokubo et al (7) 2017<br>Overall (I-squared = 0.9%, R<br>NOTE: Weights are from ran<br>Addresor et al 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                        |                        | 0.91 (0.72, 1.14)<br>0.81 (0.84, 1.13)<br>1.11 (0.81, 1.53)<br>0.91 (0.57, 1.46)<br>0.91 (0.57, 1.46)<br>0.91 (0.57, 1.46)<br>0.92 (0.82, 1.27)<br>1.02 (0.72, 1.25)<br>1.02 (0.72, 1.25)<br>1.02 (0.72, 1.25)<br>0.88 (0.70, 1.10)<br>0.89 (0.55, 1.17)<br>0.89 (0.55, 1.17)<br>0.95 (0.88, 1.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.61<br>4.56<br>5.02<br>2.29<br>7.02<br>10.61<br>7.07<br>9.93<br>12.35<br>3.59<br>3.58<br>3.53<br>10.68<br>7.18<br>100.00<br>2.25<br>8.62<br>4.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | Overall (I-squared = 0.1<br>NOTE: Weights are from<br>Song et al 2008<br>Unseq et al 2008<br>Ban et al (M) 2012<br>Ban et al (M) 2012<br>Ban et al (M) 2015<br>Ban et al (M) 2015<br>Ban et al (M) 2015<br>Ban et al (M) 2015<br>Overatif (I-goards = 0.0%), f<br>NOTE: Weights are from and<br>Archero et al 1908<br>Ban et al (M) 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                        |                        | 0.91 (0.72, 1.14)<br>0.81 (0.84, 1.13)<br>1.11 (0.81, 1.53)<br>0.91 (0.87, 1.140)<br>0.93 (0.73, 1.25)<br>1.02 (0.82, 1.27)<br>1.03 (0.78, 1.25)<br>1.03 (0.78, 1.26)<br>0.98 (0.80, 1.26)<br>0.98 (0.80, 1.26)<br>0.98 (0.80, 1.26)<br>0.98 (0.85, 1.17)<br>0.86 (0.88, 1.26)<br>1.07 (0.88, 1.33)<br>0.86 (0.75, 1.14)<br>0.95 (0.88, 1.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.61<br>4.56<br>5.02<br>2.29<br>7.02<br>10.61<br>7.07<br>9.93<br>12.35<br>3.59<br>3.56<br>3.53<br>10.68<br>7.18<br>100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | Overall (I-squared = 0.<br>NOTE: Weights are from<br>Song et al 2005<br>Lanson et al 2008<br>Dhine et al 2009<br>Lanson et al 2009<br>Dhine et al 2001<br>Dhine et al 2005<br>Dhine et al 1998<br>Dhine et al 1998<br>Song et al 2005<br>Lineson et al 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                        |                        | 0.91 (0.72, 1.14)<br>0.61 (0.84, 1.13)<br>1.11 (0.61, 1.53)<br>1.11 (0.61, 1.53)<br>0.92 (0.67, 1.46)<br>0.96 (0.74, 1.25)<br>1.03 (0.77, 1.25)<br>1.03 (0.77, 1.25)<br>0.86 (0.96, 1.20)<br>0.86 (0.56, 1.17)<br>0.86 (0.96, 1.20)<br>0.86 (0.65, 1.17)<br>0.86 (0.96, 1.20)<br>0.86 (0.65, 1.14)<br>0.95 (0.88, 1.02)<br>0.95 (0.88, 1.14)<br>0.95 (0.88, 1.13)<br>0.95 (0.84, 1.13)<br>0.95 (0.94, 1   | 9.81<br>4.56<br>5.02<br>2.29<br>7.02<br>10.61<br>7.07<br>9.93<br>12.35<br>3.59<br>3.56<br>3.53<br>100.00<br>2.25<br>8.82<br>4.38<br>17.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | Overall (I-squared = 0.4<br>NOTE: Weights are for<br>Song et a 2005<br>Lanson et al 1998<br>Song et a 2005<br>Lanson et al 2008<br>Uning et al 2008<br>Uning et al 2008<br>Danie et al 2008<br>Lanson et al 2014<br>Addemove et al 2014<br>Addemove et al 2015<br>Bain et al (M) 2015<br>Kolubo et al (D) 2015<br>Overall (I-squared = 0.0%, p<br>NOTE: Weights are from ran<br>Comment (I-squared = 0                                                                                                                           | 15                        |                        | 0.91 (0.72, 1.14)<br>0.81 (0.54, 1.13)<br>1.11 (0.81, 1.53)<br>1.11 (0.81, 1.53)<br>1.11 (0.81, 1.53)<br>0.91 (0.57, 1.46)<br>0.98 (0.74, 1.13)<br>1.02 (0.08, 1.02)<br>1.02 (0.08, 1.02)<br>0.88 (0.67, 1.13)<br>0.88 (0.67, 1.13)<br>0.88 (0.67, 1.13)<br>0.88 (0.67, 1.13)<br>0.88 (0.61, 1.13)<br>0.88 (0.61, 1.13)<br>0.88 (0.61, 1.13)<br>0.89 (0.84, 1.13)<br>0.89 (0.74, 1   | 9.61<br>4.56<br>5.02<br>2.29<br>7.02<br>10.61<br>7.07<br>9.93<br>3.56<br>3.53<br>3.59<br>3.58<br>3.53<br>10.68<br>3.53<br>10.68<br>4.38<br>100.00<br>2.25<br>8.62<br>4.38<br>17.74<br>2.82<br>11.43<br>2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | Overall (I-squared = 0.1<br>NOTE: Weights are from<br>Song et al 2008<br>Une of al 1998<br>Song et al 2008<br>Unes of al 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                        |                        | 991 (0.72, 1.14)<br>691 (0.84, 1.13)<br>111 (0.81, 1.53)<br>110 (0.81, 1.53)<br>110 (0.81, 1.53)<br>110 (0.82, 1.27)<br>102 (0.82, 1.27)<br>102 (0.82, 1.27)<br>102 (0.82, 1.23)<br>0.86 (0.70, 1.10)<br>0.86 (0.70, 1.10)<br>0.86 (0.70, 1.10)<br>0.86 (0.88, 1.12)<br>0.86 (0.88, 1.12)<br>0.86 (0.88, 1.12)<br>0.86 (0.88, 1.13)<br>0.86 (0.88, 1.13)<br>0.86 (0.84, 1.13)<br>0.87 (0.85, 1.13)<br>0.8 | 9.61<br>4.56<br>5.02<br>7.02<br>7.02<br>10.61<br>7.07<br>9.03<br>12.35<br>3.59<br>3.56<br>3.56<br>3.53<br>10.68<br>7.18<br>100.00<br>2.25<br>8.62<br>4.33<br>17.74<br>2.62<br>2.43<br>5.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | Overall (I-squared = 0.4<br>NOTE: Weights are for<br>Song et a 2005<br>Lanson et al 1998<br>Song et a 2005<br>Lanson et al 2008<br>Uning et al 2008<br>Uning et al 2008<br>Danie et al 2008<br>Lanson et al 2014<br>Addemove et al 2014<br>Addemove et al 2015<br>Bain et al (M) 2015<br>Kolubo et al (D) 2015<br>Overall (I-squared = 0.0%, p<br>NOTE: Weights are from ran<br>Comment (I-squared = 0                                                                                                                           | 15                        |                        | 0.91 (0.72, 1.14)<br>0.81 (0.54, 1.13)<br>1.11 (0.81, 1.53)<br>1.11 (0.81, 1.53)<br>1.11 (0.81, 1.53)<br>0.91 (0.57, 1.46)<br>0.98 (0.74, 1.13)<br>1.02 (0.08, 1.02)<br>1.02 (0.08, 1.02)<br>0.88 (0.67, 1.13)<br>0.88 (0.67, 1.13)<br>0.88 (0.67, 1.13)<br>0.88 (0.67, 1.13)<br>0.88 (0.61, 1.13)<br>0.88 (0.61, 1.13)<br>0.88 (0.61, 1.13)<br>0.89 (0.84, 1.13)<br>0.89 (0.74, 1   | 9.61<br>4.56<br>5.02<br>2.29<br>7.02<br>10.61<br>7.07<br>9.93<br>3.56<br>3.53<br>3.59<br>3.58<br>3.53<br>10.68<br>3.53<br>10.68<br>4.38<br>100.00<br>2.25<br>8.62<br>4.38<br>17.74<br>2.82<br>11.43<br>2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | Overall (I-squared = 0.1<br>NOTE: Weights are from<br>Song et a 2005<br>Song et a 2005<br>Lanson et al 2009<br>Universe et al 2009<br>Universe et al 2009<br>Dhine et al 2019<br>Dhine et al 2015<br>Dhine et al 1999<br>Dhine et al 1990<br>Dhine et al 1990<br>Dhine et al 1990<br>Dhine et al 2009<br>Dhine | 15                        |                        | 0.91 (0.72, 1.14)<br>0.81 (0.54, 1.13)<br>11 (0.81, 1.23)<br>0.91 (0.57, 1.46)<br>0.96 (0.73, 1.26)<br>0.96 (0.73, 1.26)<br>0.88 (0.70, 1.16)<br>0.88 (0.70, 1.16)<br>0.88 (0.70, 1.16)<br>0.88 (0.70, 1.17)<br>0.88 (0.84, 1.27)<br>1.07 (0.54, 1.06)<br>0.88 (0.54, 1.20)<br>0.88 (0.54, 1.33)<br>0.88 (0.54, 1.34)<br>0.88 (0.54, 1.34)<br>0.88 (0.54, 1.34)<br>0.89 (0.54, 1.34)<br>0.89 (0.54, 1.34)<br>0.89 (0.74, 1.34)<br>0.89 (0.74, 1.34)<br>0.89 (0.74, 1.34)<br>0.89 (0.74, 1.34)<br>0.99 (0.74, 1.37)<br>0.99 (0.94, 0.97)<br>0.97 (0.74, 1.37)<br>0.97 (0.74, 1.3   | 9.61<br>4.56<br>5.02<br>7.02<br>10.61<br>9.93<br>12.35<br>3.59<br>3.59<br>3.53<br>10.68<br>3.53<br>10.68<br>3.53<br>10.68<br>4.38<br>4.38<br>4.38<br>4.38<br>4.38<br>4.38<br>4.38<br>4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | Overall (I-squared = 0.4<br>NOTE: Weights are for<br>Song et a 2005<br>Units et at 1998<br>Song et a 2005<br>Units et at 2008<br>Units et at 2008<br>Units et at 2008<br>Units et at 2008<br>Units et at 2008<br>Dans et at (JN) 2015<br>Bain et at (JN) 2015<br>Notific et at 2018<br>Achterio et at 2019<br>Achterio et at 2009<br>Units et at       | 15                        |                        | 991 (9.72, 114)<br>691 (9.64, 113)<br>111 (9.61, 153)<br>111 (9.61, 153)<br>1091 (9.57, 1140)<br>696 (9.73, 123)<br>109 (9.67, 1140)<br>1096 (9.67, 1140)<br>1096 (9.67, 1147)<br>1096 (9.68, 1127)<br>1096 (9.68, 1137)<br>1096 (9.68, 1137)<br>1097  | 9.61<br>4.56<br>502<br>2.29<br>7.02<br>9.03<br>10.61<br>7.07<br>9.03<br>3.56<br>3.53<br>10.68<br>7.18<br>100.00<br>2.25<br>8.62<br>4.38<br>17.74<br>4.38<br>4.38<br>17.74<br>11.43<br>2.45<br>5.87<br>6.52<br>2.33<br>9.33<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17. |
|   | Overall (I-squared = 0.1           NOTE: Weights are from 2005           Anchario et al 1998           Song et al 2008           Song et al 2008           Ummer of al 2008           Ummer of al 2008           Ummer of al 2008           Ummer of al 2008           Drains et al (0) 2012           Shaip et al (0) 2012           Bain et al (0) 2015           Bain et al (0) 2017           Overall (I-squared = 0.0%, f.           NOTE: Weights are from rate           Monton et al 7017           Overall (I-squared = 0.0%, f.           NOTE: Weights are 10.0%           Lines en et al 2008           Umm et al 2014           Arbehrons et al 2015           Subje et al 2014           Subje et al 2015           Bain et al (0) 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                        |                        | 9.91 (0.72, 1.14)<br>0.81 (0.84, 1.13)<br>1.11 (0.81, 1.53)<br>1.10 (0.81, 1.53)<br>1.02 (0.82, 1.27)<br>1.02 (0.82, 1.27)<br>1.02 (0.82, 1.27)<br>1.02 (0.82, 1.23)<br>0.86 (0.70, 1.10)<br>0.86 (0.70, 1.10)<br>0.86 (0.70, 1.10)<br>0.86 (0.84, 1.23)<br>0.86 (0.84, 1.23)<br>0.86 (0.84, 1.26)<br>0.86 (0.84, 1.26)<br>0.86 (0.84, 1.26)<br>0.86 (0.84, 1.26)<br>0.96 (0.84, 1.27)<br>0.96 (0.84, 1.26)<br>0.96 (0.94, 1   | 9.61<br>4.56<br>502<br>2.29<br>7.02<br>10.61<br>7.07<br>9.03<br>3.56<br>3.53<br>3.56<br>3.53<br>3.56<br>3.53<br>3.56<br>3.53<br>3.56<br>4.38<br>10.068<br>7.18<br>100.00<br>2.25<br>4.25<br>4.25<br>4.25<br>4.25<br>4.25<br>4.25<br>4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | Overall (I-squared = 0.4<br>NOTE: Weights are for<br>Song et a 2005<br>Units et at 1998<br>Song et a 2005<br>Units et at 2008<br>Units et at 2008<br>Units et at 2008<br>Units et at 2008<br>Units et at 2008<br>Dans et at (JN) 2015<br>Bain et at (JN) 2015<br>Notific et at 2018<br>Achterio et at 2019<br>Achterio et at 2009<br>Units et at       | 15<br>                    |                        | 991 (9.72, 114)<br>691 (9.64, 113)<br>111 (9.61, 153)<br>111 (9.61, 153)<br>1091 (9.57, 1140)<br>696 (9.73, 123)<br>109 (9.67, 1140)<br>1096 (9.67, 1140)<br>1096 (9.67, 1147)<br>1096 (9.68, 1127)<br>1096 (9.68, 1137)<br>1096 (9.68, 1137)<br>1097  | 9.81<br>4.56<br>502<br>2.29<br>7.02<br>9.83<br>12.35<br>12.35<br>3.56<br>3.53<br>10.68<br>7.18<br>100.00<br>2.25<br>8.62<br>4.38<br>17.74<br>1.43<br>2.45<br>4.38<br>17.74<br>1.43<br>2.45<br>4.38<br>17.74<br>1.43<br>2.45<br>4.56<br>2.33<br>1.77<br>4.56<br>2.25<br>2.33<br>1.77<br>4.56<br>2.25<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29<br>2.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



**FIGURE 1** | including 18 cohorts: reporting data separately for males and females (9, 15, 16) within an article were treated as independent studies. RR, relative risk.

considered approximate RRs. Fully adjusted effect sizes (ESs) were logarithmically transformed to stabilized variance, and the distribution was normalized.

Between-study heterogeneity was determined with the Cochran Q chi-square test and  $I^2$ . An  $I^2 > 50\%$  or a *P*-value for the Q test <0.1 was regarded as indicating significant heterogeneity. In addition, a sensitivity analysis was performed by omitting one study each time to obtain an understanding of the causes of the heterogeneity. We conducted post-subgroup analyses to determine the influence of other clinical factors (e.g., participant region, sex, mean BMI, etc.).

Publication bias was investigated by Egger's linear regression tests with P < 0.10 indicating significant bias. All analyses were performed using Stata version 14.0 (StataCorp, College Station, TX, USA); two-sided P < 0.05 was statistically significant, except where otherwise specified.

## **Trial Sequential Analysis**

Random errors stem from sparse data, and repetitive testing of accumulating data increases the risk of type 1 error (false positive). The risk of type 1 error can be reduced by TSA with TSA software (version 0.9 beta, http://www.ctu.dk/tools-andlinks) because this analysis combined the estimation of required information size (RIS) with an adjusted threshold for statistical significance (22). This method could reveal whether the evidence was abundant and conclusive in our meta-analysis. If the Z-curve crosses the TSA boundary or enters the futility area, a sufficient effect is reached, and further studies are not needed; if not, the evidence in our study would be insufficient. The TSA was performed for a 5% relative risk reduction for stroke outcome, a 10% reduction for subarachnoid and intracerebral hemorrhage outcome, and conservatively, according to the TSA manual, a 5% ( $\alpha = 0.05$ ; two-sided) total risk of type 1 error and 80% statistical power.

### **Dose-Response Analysis**

The methods used for the dose-response analyses of the main outcomes were proposed by Orsini et al. (23). The categories of magnesium intake, distributions of cases and person-years, RR and 95% CI were extracted. Once the number of cases and/or person-years was not available, variance-weighted least squares regression was used to pool the risk estimate. For most studies, the median intake for each quantile (tertile, quartile or quintile) of magnesium intake was assigned as the representative dose. For continuous intake reported as categorical data with a range in some studies, we assigned the midpoint category of the lower and upper bounds to the RR. When the highest category was openended, we assumed the range of the open-ended interval to be 1.5 times that of the adjacent interval; when the lowest category was open, we assumed the range the open-ended interval to be 1.5 times that of the range of the adjacent interval in the category. We determined generalized least squares regression models to calculate study-specific RR estimates per 50, 100, and 150 mg/day increase in magnesium intake if there was evidence for linear relationships. In addition, the non-linear relationships between magnesium intake and all types of stroke were evaluated using restricted cubic splines with four knots located at the 5th, 35th, 65th, and 95th percentiles of the distribution. The *P*-value for curve linearity or nonlinearity was calculated by testing the null hypothesis that the coefficient of the second spline is equal to zero.

All results were presented using two-stage dose-response model plots (including linear and non-linear relationships). The results of <50 mg/day,  $\geq$ 50 and <100 mg/day,  $\geq$ 100 and <150 mg/day, and  $\geq$ 150 mg/day increments were displayed in forest plots.

# RESULTS

#### **Study Selection and Characteristics**

Of 5,037 studies (4,948 from the mentioned databases and 89 from other available literature), 4,973 studies were excluded

during the initial screening, and 49 studies were excluded after full consideration (**Figure S1**).

The 15 (4-8) publications, involving 18 cohorts with 692,998 participants and 20,138 total stroke cases, were entered into our analysis (mean follow-up, 14.4 y; mean BMI, 24.9 kg/m<sup>2</sup>; most middle-aged). Regarding the subtypes of total stroke, 15 reports from 12 publications (1, 2, 5-11, 13, 14, 16) revealed the associations with ischemic stroke, and 10 cohorts from 8 publications (2, 5-7, 9, 13, 14, 16) revealed hemorrhagic stroke results. Of those eligible, 6 studies (1, 4-6, 13, 14) were conducted in North America (America), 5 (2, 7, 11, 12, 15) in Europe (Sweden, the Netherlands and the United Kingdom), and 4 (8-10, 16) in Asia (Taipei and Japan). Only male patients were considered in 3 studies (4, 7, 13), and only females were considered in 4 studies (2, 5, 6, 14); the other 8 studies (1, 8-12, 15, 16) enrolled male and female patients. Most of the eligible studies used the food frequency questionnaire (FFQ) or the semiquantitative FFQ (SFFQ) to assess each individual's diet. Seven studies (1, 6, 9–11, 15, 16) used dietary magnesium intake, and 8 studies (2, 4, 5, 7, 8, 12, 14) used total magnesium intake.



**FIGURE 2** Trial Sequential Analysis (TSA) of total stroke comparing the highest magnesium intake category to the lowest. The TSA illustrated that the cumulative Z-curve crossed both the conventional boundary for benefit and the trial sequential monitoring boundary for benefit, demonstrating that the results are robust and conclusive, and further studies are not required. A diversity required information size (RIS) of 396,204 was computed by  $\alpha = 0.05$  (two-sided); 80% statistical power, with a conservative relative risk reduction of 5%. X-axis, the number of patients; Y-axis, cumulative Z-score; Dark red lines, conventional boundaries (upper for benefit, Z-score = 1.96; lower for harm, Z-score = -1.96; two-sided P = 0.05); Sloping red lines with black, filled circle icons, trial sequential monitoring boundaries (two sides, computed accordingly); Sloping blue line with black, filled circle icons, Z-curve; Vertical red full line, RIS computed accordingly; Upper conventional boundary for benefit, area of benefit; Lower conventional boundary for harm, area of harm; Middle area, futility area; Red lines with black, filled circle icons in the futility area, futility boundaries.



Of note, the adjusted confounders were mostly alike; however, the adjusted dietary confounders, such as cereal fiber, potassium, and calcium, varied across the individual studies (no studies adjusted for sodium). All papers were written in English (**Table S2**). The average NOS score was 8.93; thus, all included studies were of high quality. Among all studies, the study by Sluijs et al. (11) was the only one to provide no assessment of outcomes (**Table S3**).

# Synthesis of Total Stroke, Ischemic Stroke, and Hemorrhagic Stroke

Fifteen publications on total stroke showed that the RR was reduced by 11% (RR, 0.89 [95% CI, 0.83–0.94]; P < 0.001) with no heterogeneity ( $I^2 = 0\%$ ; P = 0.529) in the highest category vs. the lowest category. For the dose-category-specific analyses, a trend of reduced RR was found in <50 mg/day increments (RR, 0.95 [95% CI, 0.87–1.05]; P = 0.331),  $\geq$ 50 and <100 mg/day (RR, 0.97 [95% CI, 0.92–1.01]; P = 0.108), and  $\geq$ 100 and <150 mg/day (RR, 0.95 [95% CI, 0.88–1.02]; P = 0.154), but the results were not significant. Regarding the  $\geq$ 150 mg/day increments, the risk decreased by 15% (RR, 0.85 [95% CI, 0.79–0.91]; P < 0.001) (**Figure 1**). Although the pooled ESs did not exceed the RIS, the TSA established sufficient and conclusive evidence. Therefore, further observational studies are not required and are less likely to affect the conclusion (**Figure 2, Figure S2**).

Iso et al. (5) provided results for ischemic stroke and ischemic stroke excluding non-atherogenic stroke. Thirteen publications

on ischemic stroke revealed that the estimated RR decreased by 12% (RR, 0.88 [95% CI, 0.81–0.95]; P = 0.001) with no significant heterogeneity ( $I^2 = 16.9\%$ ; P = 0.265). No significant association was observed in <50 mg/day increments (RR, 0.94 [95% CI, 0.85–1.04]; P = 0.232),  $\geq 50$  and <100 mg/day (RR, 0.98 [95% CI, 0.93–1.03]; P = 0.419), or  $\geq 100$  and <150 mg/day (RR, 0.95 [95% CI, 0.87–1.04]; P = 0.249). The risk was reduced by 16% in the  $\geq 150$  mg/day increment analysis (RR, 0.84 [95% CI, 0.78–0.91]; P < 0.001) (Figure S3). TSA exhibited conclusive results and revealed that the relationship could hardly be altered by further trials (Figure 3, Figure S4).

Eight studies found that the risk of hemorrhagic stroke was not significantly associated with magnesium intake (RR, 0.93 [95% CI, 0.82–1.06]; P = 0.282) nor were the <50 mg/day (RR, 1.00 [95% CI, 0.87–1.15]; P = 0.991),  $\geq$ 50 and <100 mg/day (RR, 0.95 [95% CI, 0.85–1.07]; P = 0.405),  $\geq$ 100 and <150 mg/day (RR, 0.91 [95% CI, 0.75–1.11]; P = 0.374), and  $\geq$ 150 mg/day magnesium increments (RR, 0.96 [95% CI, 0.80–1.15]; P = 0.681) (**Figure S5**). The results on hemorrhagic stroke are not conclusive, and we still require further studies (**Figures S6, S7**).

Three (2, 5, 7) studies disclosed that the RR of subarachnoid hemorrhage was not significantly reduced (RR, 0.99 [95% CI, 0.71–1.39]; P = 0.963). A non-significantly reduced RR was also detected in the <50 mg/day (P = 0.108),  $\geq$ 50 and <100 mg/day (P = 0.521),  $\geq$ 100 and <150 mg/day (P = 0.330), and

TABLE 1 | Subgroup analyses relating to magnesium intake and total stroke, ischemic stroke, hemorrhagic stroke.

| Group                                  | Total stroke   |                                |                    | Ischemic stroke |                |                  |                    | Hemorrhagic stroke |                |                  |                    |              |
|----------------------------------------|----------------|--------------------------------|--------------------|-----------------|----------------|------------------|--------------------|--------------------|----------------|------------------|--------------------|--------------|
|                                        | No. of studies | RR (95% CI)                    | l <sup>2</sup> (%) | P interation    | No. of studies | RR (95% CI)      | l <sup>2</sup> (%) | P interation       | No. of studies | RR (95% CI)      | l <sup>2</sup> (%) | P interation |
| Total                                  | 15             | 0.89 (0.83–0.94)               | 0                  |                 | 12             | 0.88 (0.81–0.95) | 16.9               |                    | 8              | 0.93 (0.82–1.06) | 46.1               |              |
| Participants region                    |                |                                |                    |                 |                |                  |                    |                    |                |                  |                    |              |
| Total                                  | 15             |                                |                    | 0.733           | 12             |                  |                    | 0.584              | 8              |                  |                    | 0.873        |
| North America                          | 6              | 0.87 (0.79–0.96)               | 0                  |                 | 5              | 0.85 (0.76–0.95) | 0                  |                    | 4              | 0.90 (0.71–1.15) | 0                  |              |
| Europe                                 | 5              | 0.87 (0.77–0.98)               | 14.8               |                 | 3              | 0.86 (0.78–0.95) | 0                  |                    | 2              | 0.99 (0.79–1.25) | 0                  |              |
| Asia                                   | 4              | 0.90 (0.78–1.05)               | 32.8               |                 | 4              | 0.93 (0.75–1.14) | 45.5               |                    | 2              | 0.89 (0.66–1.21) | 53.4               |              |
| Multiple nations                       | 0              | NA                             | NA                 |                 | 0              | NA               | NA                 |                    | 0              | NA               | NA                 |              |
| Sex <sup>a</sup>                       |                |                                |                    |                 |                |                  |                    |                    |                |                  |                    |              |
| Total                                  | 18             |                                |                    | 0.031           | 14             |                  |                    | 0.134              | 10             |                  |                    | 0.425        |
| Male                                   | 6              | 0.95(0.86-1.05)                | 0                  |                 | 4              | 0.99 (0.82-1.19) | 52.8               |                    | 4              | 0.97 (0.75–1.26) | 35.5               |              |
| Female                                 | 7              | 0.91 (0.83–0.99)               | 0                  |                 | 6              | 0.89 (0.79–1.00) | 0                  |                    | 6              | 0.88 (0.74–1.06) | 0                  |              |
| Both <sup>b</sup>                      | 5              | 0.74 (0.64–0.85)               | 0                  |                 | 4              | 0.76 (0.65–0.88) | 0                  |                    | 0              | NA               | NA                 |              |
| Mean BMI (kg/m <sup>2</sup> )          |                |                                |                    |                 |                |                  |                    |                    |                |                  |                    |              |
| Total                                  | 15             |                                |                    | 0.606           | 12             |                  |                    | 0.631              | 8              |                  |                    | 0.418        |
| ≥ 25                                   | 8              | 0.89 (0.82–0.96)               | 0                  |                 | 6              | 0.88 (0.81–0.96) | 0                  |                    | 5              | 0.97 (0.81–1.17) | 0                  |              |
| < 25                                   | 5              | 0.89 (0.78–1.01)               | 30                 |                 | 5              | 0.87 (0.73–1.03) | 44                 |                    | 3              | 0.88 (0.69–1.12) | 39.3               |              |
| Unknown                                | 2              | 0.80 (0.63-1.02)               | 0                  |                 | 1              | 0.76 (0.57-1.07) | NA                 |                    | 0              | NA               | NA                 |              |
| Follow-up duration (                   | y)             |                                |                    |                 |                |                  |                    |                    |                |                  |                    |              |
| Total                                  | 15             |                                |                    | 0.798           | 12             |                  |                    | 0.811              | 8              |                  |                    | 0.808        |
| ≥ 12                                   | 11             | 0.88 (0.82-0.94)               | 5.3                |                 | 10             | 0.87 (0.80-0.95) | 19.1               |                    | 7              | 0.93 (0.81–1.08) | 7.7                |              |
| < 12                                   | 4              | 0.90 (0.77-1.05)               | 0                  |                 | 2              | 0.86 (0.62-1.20) | 48.4               |                    | 1              | 0.88 (0.57–1.36) | NA                 |              |
| Dietary assessment                     |                |                                |                    |                 |                |                  |                    |                    |                |                  |                    |              |
| Total                                  | 15             |                                |                    | 0.578           | 12             |                  |                    | NA                 | 8              |                  |                    | NA           |
| FFQ/validated<br>FFQ                   | 14             | 0.89 (0.83–0.95)               | 3.8                |                 | 12             | 0.88 (0.81–0.95) | 16.9               |                    | 8              | 0.93 (0.82–1.06) | 0                  |              |
| SFFQ/validated<br>SFFQ                 | 0              | NA                             | NA                 |                 | 0              | NA               | NA                 |                    | 0              | NA               | NA                 |              |
| Other                                  | 1              | 0.81 (0.61–1.09)               | 0                  |                 | 0              | NA               | NA                 |                    | 0              | NA               | NA                 |              |
| Magnesium intake ty                    | pe             |                                |                    |                 |                |                  |                    |                    |                |                  |                    |              |
| Total                                  | 15             |                                |                    | 0.865           | 12             |                  |                    | 0.831              | 8              |                  |                    | 0.831        |
| Total magnesium<br>intake <sup>c</sup> | 8              | 0.89 (0.82–0.96)               | 0                  |                 | 6              | 0.87 (0.80–0.94) | 0                  |                    | 5              | 0.94 (0.79–1.12) | 0                  |              |
| Dietary<br>magnesium intake            | 7              | 0.88 (0.81–0.96)               | 0.44               |                 | 6              | 0.89 (0.77–1.03) | 35.4               |                    | 3              | 0.91 (0.70–1.18) | 39.4               |              |
| Difference between                     | op and botto   | m intake (mg/day) <sup>d</sup> |                    |                 |                |                  |                    |                    |                |                  |                    |              |
| Total                                  | 15             |                                |                    | 0.107           | 12             |                  |                    | 0.18               | 8              |                  |                    | 0.244        |
| ≥ 180                                  | 7              | 0.83 (0.76–0.91)               | 0                  |                 | 5              | 0.83 (0.76–0.91) | 0                  |                    | 6              | 1.07 (0.83–1.37) | 0                  |              |

(Continued)

Magnesium Intake Reduces Stroke Incidence

#### TABLE 1 | Continued

| Group                         |                  | Total stroke     |                    |              |                | Ischemic stroke  |                    |              |                | Hemorrhagic stroke |                    |              |  |
|-------------------------------|------------------|------------------|--------------------|--------------|----------------|------------------|--------------------|--------------|----------------|--------------------|--------------------|--------------|--|
| _                             | No. of studies   | RR (95% CI)      | l <sup>2</sup> (%) | P interation | No. of studies | RR (95% CI)      | l <sup>2</sup> (%) | P interation | No. of studies | RR (95% CI)        | l <sup>2</sup> (%) | P interation |  |
| < 180                         | 8                | 0.93 (0.86–1.00) | 0                  |              | 7              | 0.92 (0.81–1.03) | 26.2               |              | 2              | 0.89 (0.76–1.03)   | 0                  |              |  |
| Current CV events             | e                |                  |                    |              |                |                  |                    |              |                |                    |                    |              |  |
| Total                         | 15               |                  |                    | 0.074        | 12             |                  |                    | 0.393        | 8              |                    |                    | NA           |  |
| Yes                           | 12               | 0.90 (0.85–0.96) | 0                  |              | 11             | 0.88 (0.81–0.96) | 18.2               |              | 8              | 0.93 (0.82–1.06)   | 0                  |              |  |
| Unknown                       | 3                | 0.75 (0.63–0.90) | 0                  |              | 1              | 0.76 (0.57–1.01) | NA                 |              | 0              | NA                 | NA                 |              |  |
| Hypercholesterole             | mia <sup>f</sup> |                  |                    |              |                |                  |                    |              |                |                    |                    |              |  |
| Total                         | 15               |                  |                    | 0.48         | 12             |                  |                    | 0.565        | 8              |                    |                    | 0.651        |  |
| Yes                           | 7                | 0.91 (0.83–0.99) | 0                  |              | 6              | 0.90 (0.80-1.01) | 6.9                |              | 5              | 0.90 (0.76–1.08)   | 0                  |              |  |
| Unknown                       | 8                | 0.86 (0.79–0.95) | 13.1               |              | 6              | 0.86 (0.77–0.97) | 32.4               |              | 3              | 0.94 (0.72–1.22)   | 40.3               |              |  |
| Current diabetes <sup>g</sup> |                  |                  |                    |              |                |                  |                    |              |                |                    |                    |              |  |
| Total                         | 15               |                  |                    | 0.039        | 12             |                  |                    | 0.159        | 8              |                    |                    | NA           |  |
| Yes                           | 10               | 0.91 (0.82–0.97) | 0                  |              | 10             | 0.89 (0.82–0.97) | 13.5               |              | 8              | 0.93 (0.82–1.06)   | 0                  | 0            |  |
| Unknown                       | 5                | 0.75 (0.64–0.88) | 0                  |              | 2              | 0.72 (0.56–0.92) | 0                  |              | 0              | NA                 | NA                 | NA           |  |
| UNKNOWN                       | 5                | 0.75 (0.64–0.88) | 0                  |              | 2              | 0.72 (0.36-0.92) | 0                  |              | 0              | NA                 | INA                |              |  |

BMI, body mass index; FFQ, food frequency questionnaire; SFFQ, semi-quantitative food frequency questionnaire; CV events, cardiovascular events; RR, relative risk; NA, not available.

<sup>a</sup>Several studies reported stroke outcome of male and female participants in different cohorts.

<sup>b</sup>Male and female participants were in the same cohort.

<sup>c</sup> Total magnesium intake (milligrams per day) included the total amount of magnesium from both food (diet) and supplements.

<sup>d</sup>Subtract the lowest category intake from the highest.

<sup>e</sup>Grouped by whether participants with or without CV events. CV events include coronary heart disease, heart attack, heart failure, atrial fibrillation, and self-reported heart disease etc., hypertension (systolic blood pressure  $\geq$  140 mm Hg and/or disatolic blood pressure  $\geq$  90 mm Hg or on antihypertensive drugs use) in this part could be regarded as CV events. Stroke is not included.

<sup>f</sup> Grouped by whether participants with or without hypercholesterolemia. Hypercholesterolemia in this part means cholesterol concentration ≥ 240 mg/dL.

<sup>g</sup>Grouped by whether participants with or without diabetes.

August 2019 | Volume 10 | Article 852

TABLE 2 | The summary of relevant guidelines or advisories by influential colleges.

| Guidelines/advisories name                                                                                            | Year | Source/journal                                                | Recommendations                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diet and Lifestyle Recommendations Revision 2006                                                                      | 2006 | AHA/Circulation                                               | (1) Choose foods made with whole grains (such as whole wheat, oats/oatmeal, rye, barley, popcorn, brown rice, wild rice, buckwheat, triticale, bulgur (cracked wheat), millet, quinoa, and sorghum); (2) Increase intake of fruit and vegetables; (3) Available evidence is inadequate to recommend other dietary factors to reduce CVD risk.        |
| Guidelines for the Primary Prevention of Stroke                                                                       | 2011 | AHA, ASA/Stroke                                               | (1) Reduce sodium and increase potassium intake; (2) A DASH-style<br>diet and low fat diary is highly recommended; (3) Few randomized<br>controlled trials with clinical outcomes have been conducted.                                                                                                                                               |
| Guidelines for the Prevention of Stroke in Women                                                                      | 2014 | AHA, ASA/Stroke                                               | (1) Lifestyle factor such as a healthy diet reduces the risk of CVD and<br>mortality; (2) Lifestyle interventions focusing on diet are recommended<br>for primary stroke prevention among high risk individuals; (3) There are<br>few published trials of lifestyle interventions for secondary stroke<br>prevention.                                |
| Guidelines for the Primary Prevention of Stroke                                                                       | 2014 | AHA, ASA/Stroke                                               | (1) Reduce sodium and increase potassium intake; (2) A Mediterranean<br>diet supplemented with nuts may lower the risk of stroke; (3) There is<br>no conclusive evidence that vitamins or other nutrients (eg.<br>magnesium) prevent stroke.                                                                                                         |
| Dietary Guidelines for Americans 2015-2020 8th<br>Edition                                                             | 2015 | Office of Disease<br>Prevention and<br>Health<br>Promotion/NA | (1) Follow a healthy eating pattern across the lifespan; (2) Limit calories<br>from added sugars and saturated fats and reduce sodium intake; (3)<br>Nutritional needs should be met primarily from foods; (4) Role of<br>magnesium is not well discussed.                                                                                           |
| Scientific Reports of the 2015 Dietary Guidelines<br>Advisory Committee                                               | 2015 | Department of<br>Health and Human<br>Services/NA              | (1) Underconsumption of calcium, vitamin D, fiber, potassium, and iron<br>(premenopausal women and adolescent females) is linked to health<br>outcomes; (2) Nutrition and lifestyle interventions performed by<br>multi-disciplinary teams should be emphasized; (3) Magnesium intake<br>is always below national standards.                         |
| Medical Nutrition Education, Training, and<br>Competences to Advance Guideline-Based Diet<br>Counseling by Physicians | 2018 | AHA/Circulation                                               | (1) A prudent dietary pattern can advance population-wide<br>cardiovascular health;(2) Meta-analyses show fruits, vegetables, nuts<br>and seeds, fish, total diary, cheese intake will significantly reduce risk of<br>stroke; (3) Enhance physicians and individuals education and training in<br>nutrition will reduce health and economic burden. |

AHA, American Heart Association; ASA, American Stroke Association; CVD, cardiovascular disease; DASH, dietary approaches to stop hypertension.

 $\geq$ 150 mg/day (*P* = 0.630) increments (**Figure S8**). TSA suggested conclusive and robust results (**Figure S9**).

Three (2, 5, 7) studies restricted to intracerebral hemorrhage revealed a non-significantly reduced RR (RR, 0.92 [95% CI, 0.71–1.20]; P = 0.540). The dose-category-specific analyses revealed no significant association for the <50 mg/day (P = 0.108),  $\geq$ 50 and <100 mg/day (P = 0.974),  $\geq$ 100 and <150 mg/day (P = 0.767), or  $\geq$ 150 mg/day (P = 0.461) increments (**Figure S10**). Additionally, further studies are still required to draw robust conclusions (**Figure S11**).

#### **Sensitivity and Subgroup Analyses**

A sensitivity analysis conducted by omitting one study each time was not conducted because no heterogeneity was found. Only one study (2) on total stroke was adjusted for cereal fiber intake. After potassium intake adjustment, the RR was 0.92 [[95% CI, 0.82–1.02]; P = 0.097; n = 5 (10, 20–22, 24)] and the RR was 0.89 [[95% CI, 0.80–0.99]; P = 0.040; n = 5 (11, 20–22, 24)] after calcium intake adjustment. Overall, magnesium was still shown to have a mild inverse association with total stroke after adjusting for calcium intake.

In the comprehensive stratified analysis, most of the results regarding total stroke and ischemic stroke remained significant across the subgroups. Notably, individuals in North America and Europe received greater benefits than those in Asia. Magnesium intake was also shown to offer advantages to obese participants (mean BMI  $\geq~25~kg/m^2)$  (RR, 0.89 [95% CI, 0.82–0.96] for total stroke; 0.88 [95% CI, 0.81-0.96] for ischemic stroke) whose follow-ups were longer ( $\geq$ 12 y) (RR, 0.89 [95% CI, 0.83– 0.95] for total stroke; 0.88 [95% CI, 0.81-0.95] for ischemic stroke). Total and dietary magnesium intake were both associated with a significantly reduced risk of total stroke; however, total magnesium intake showed greater effects than dietary intake on ischemic stroke (RR, 0.87 [95% CI, 0.80–0.94]). Likewise, a ≥180 mg/day difference between the highest and the lowest intakes had greater benefits for ischemic stroke (RR, 0.83 [95% CI, 0.76-0.91]) than <180 mg/day. Interestingly, the female-specific RR for total stroke was significantly decreased by magnesium intake (RR, 0.91 [95% CI, 0.83-0.99], P<sub>interation</sub> = 0.031) and decreased relatively for ischemic stroke (RR, 0.89 [95% CI, 0.79-1.00]) compared with male RR. Although CV events (excluding stroke), hypercholesterolemia and diabetes were all risk factors for stroke, magnesium intake could still exhibit a trend of an



**FIGURE 4** [Two-stage dose-response effects on the relationships between magnesium intake and total stroke (A); ischemic stroke (B); hemorrhagic stroke (C). The solid line represents non-linear estimates of the association between Magnesium Intake and the risk of expected outcomes; the dashed lines are the 95% confidence intervals (95% Cls); the dotted line represents the linear estimates of the associations between magnesium intake and the risk of expected outcomes. The vertical axis is the relative risk (RR) scale without logarithmic transformation.

inverse association with total and ischemic stroke in individuals, even with those risk factors. We did not observe a significantly reduced risk of hemorrhagic stroke in the subgroup analyses. These results are outlined in **Table 1**.

# **Dose-Response Analysis**

Both linear and non-linear relationships were found for total stroke and for ischemic stroke (**Figure 4**). However, no dose-response relationship [non-linear (P = 0.345) or linear (P = 0.737)] was observed for hemorrhagic stroke (**Figure 4**). There was no evidence for a dose-response relationship between subarachnoid hemorrhage and intracerebral hemorrhage (**Figure S12**).

Related to a 100 mg/day increase in magnesium intake, for total stroke, the summary RR was 0.98 ([95% CI, 0.97–0.99]); for ischemic stroke, the RR was 0.98 ([95% CI, 0.97–0.99]). Overall, increased magnesium intake had a beneficial effect on these risk reductions.

# **Publication Bias**

No evidence of publication bias was observed for total stroke, ischemic stroke (Egger's test: P = 0.937) or hemorrhagic stroke (Egger's test: P = 0.809).

# DISCUSSION

In 2010, the AHA Goals and Metrics Committee issued the 2020 Impact Goals to improve the cardiovascular health of all Americans by 20% while reducing the number of deaths due to cardiovascular disease by 20% (24); a crucial part of these goals is a healthy diet. According to a survey, dietary supplements are an  $\sim$ \$30 billion industry in the US, and some vitamins and nutritional supplements, such as folic acid, vitamin D, ω-3 fatty acids, and  $\omega$ -3 polyunsaturated fatty acids, have been properly recommended for pregnant women, infants, children, and the elderly (25). The American Food and Nutrition Board's recommended dietary magnesium intake levels are 240 (9-13 y age)-420 mg/day (31-70 y age) for males and 240 (9-13 y age)-360 (14-18 y age), decreasing to 320 mg/day (31-70 y age), for females (26); an unfortunate problem is that people in developed countries seldom obtain adequate magnesium through their diets. As this comprehensive study showed a conclusive inverse association between magnesium intake and total stroke and ischemic stroke, there is a great necessity to correct magnesium intake deficiencies. The significance of magnesium intake (total and dietary) may be mentioned in guidelines for stroke prevention.

The 2015–2016 Dietary Guidelines for Americans suggest that all people follow a healthy eating pattern across the lifespan, and these dietary habits include consuming vegetables, fruits, whole grains, fat-free/low fat dairy, protein-rich foods, and oils (27). The 2014 Guidelines for the Primary Prevention of Stroke pinpointed that the Mediterranean and Dietary Approaches to Stop Hypertension (DASH) diets, which are rich in fruits and vegetables, would reduce stroke risk (3). Reducing the intake of sodium to a level below the current recommendations of 100 mmol per day will lower blood pressure; moreover, the DASH diet and making long-lasting dietary changes will bring individuals more long-term benefits (28). However, due to some confounders, there was no conclusive recommendation for magnesium intake (**Table 2**). In this study, we provided evidence for enhancing magnesium intake for stroke primary prevention. To the best of our knowledge, this is the first study to conduct a TSA. The conclusive results on total stroke and ischemic stroke required no further observational trials, thereby saving costs for public health administrations, especially on the present topic. Notably, we still warrant studies on hemorrhagic stroke and other randomized controlled trials (RCTs) on all discussed associations. In short, this topic involves a wide range of medical specialties: cardiology, neurology, neurosurgery, vascular surgery, intensive care, nutriology, and internal medicine. Future instructions may help to decrease the burden of stroke in large at-risk populations.

In terms of previous meta-analyses, based on 7 studies, Larsson et al. (17) found an 8% reduction in total stroke and a 9% reduction in ischemic stroke along with 100 mg/day increases in magnesium. However, the researchers failed to conduct a detailed subgroup analysis that included several confounders, such as dietary assessments and type of magnesium intake. The current study captured conclusive observational evidence and identified a robust inverse association between magnesium intake and total stroke. Compared to the group with the lowest intake of magnesium, Nie et al. (18) demonstrated an RR of 0.89 (95% CI: 0.82–0.97) for total stroke in the group with the highest intake. The essential subtypes of stroke were not available. Nie et al. (18) noted there was no significant inverse association in the male group or the European individuals group, a finding that was contradicted by the findings of our study. New evidence related to the two groups was entered into the present analysis, and the results significantly changed. A Mediterranean diet rich in magnesium is preferred by Western populations, including those in North America and Europe. The risk of coronary heart disease (CHD) was significantly reduced, particularly in males (16) compared to females. The reason females achieved more benefits in preventing total stroke is still unclear. This may be because females consumed more magnesium-rich diets in the primarily included studies, and studies have shown that individual blood pressure (BP) is well-controlled by magnesium in females (4, 7). When the follow-up period was prolonged, participants had a higher chance of turning to doctors for relief. Similar to stroke incidence, there were inverse associations between CHD and dietary magnesium or potassium intake. Previous cohort studies also illustrated that the intake of magnesium and calcium might lower CVD mortality (26), but the clear effects of magnesium and calcium on CVD requires further consideration. Fang et al. (19) investigated dietary magnesium intake in relation to type 2 diabetes and CVD risk and showed that stroke risk was reduced (RR, 0.88; 95% CI: 0.82-0.95) in a dose-dependent manner. The study only included dietary magnesium intake of the participants and ignored the subtypes of total stroke. From our perspective, current CVD status (excluding stroke) is a crucial confounder of the validated relationship and should have been addressed in the stratified analyses of the researchers. In the dose-response portion, when the highest or the lowest category was openended, Fang et al. (19) estimated the range of the category as the adjacent interval, which resulted in a summarized RR of 0.93 (95% CI: 0.89-0.87) per 100 mg/day increment. Current and previous meta-analyses did not support a beneficial role of magnesium in hemorrhagic stroke; however, patients with high serum magnesium levels might have fewer admission hematomas and better intracerebral hemorrhage prognoses (29).

The current study had several limitations. First, we did not ascertain the efficacy of magnesium supplements on stroke. Clinical trials on supplements have not demonstrated clear benefits for primary and secondary prevention of chronic diseases not related to nutrition deficiency, although they are highly taken by adults to maintain health (30). Second, the included NHS cohort and HPFS cohort have certain overlaps. Cohorts with varying follow-up periods with assessments from various investigators or at different time nodes may convey different characteristics of participants and results. We have shown that individuals with longer follow-ups ( $\geq 12$  y) show larger benefits in the subgroup analyses. Third, most primary studies used FFQs/validated FFQs, which could not characterize all the nutrients and therefore did not clarify plausible associations. Fourth, observational evidence might only reach a conclusion but could not prove causality.

Researchers need to consider the impact of non-ignorable confounders in future guidelines or studies. Magnesium intake is associated with higher intakes of other potentially protective nutrients (e.g., potassium, folate, vitamin C), dietary fiber, and antioxidants. In addition, it may also be associated with other potential lifestyle factors (smoking) and other risk factors for stroke (hypertension). Thus, confounding cannot be excluded as a potential explanation for the observed inverse association of interest, and therefore, randomized controlled trials and other types of studies are needed to confirm the observational findings.

# CONCLUSION

Our definitive study with TSA showed magnesium intake has inverse association with total and ischemic stroke in a dose-response pattern. Additionally, it may also have a mild but not significant inverse association with hemorrhage stroke, subarachnoid hemorrhage and intracerebral hemorrhage. Magnesium consumption, herein, may be recommended as an optimization for stroke prevention or management. Most importantly, the cost-effective alternative debated by physicians, policy makers and legislators has a possibility to not only improve population-wide cardiovascular health but also guide policy decisions and initiate reform in global dietary healthcare. As for other chronic disease, whether such crucial population-based diet strategy may reduce public health and economic burden to an unprecedentedly low degree needs further exploration.

# DATA AVAILABILITY

No datasets were generated or analyzed for this study.

# **AUTHOR CONTRIBUTIONS**

BZ had full access to all of the data in the manuscript and takes responsibility for the integrity of the data and the

accuracy of the data analysis. BZ and WZ: drafting of the manuscript. BZ, WZ, YD, JinX, LH, DY, and JiaX: critical revision of the manuscript for important intellectual content. BZ: statistical analysis. WZ, JiaX, and YW: supervision. All authors: concept and design, acquisition, analysis, or interpretation of data.

#### FUNDING

This study was supported by National Natural Science Foundation of China (NSFC), with no commercial entity involved, number of grants (81560345). The NSFC had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

#### ACKNOWLEDGMENTS

The authors thank Prof. Wenbin Ma, MD, Ph.D. (Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College) for his advice.

#### SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur. 2019.00852/full#supplementary-material

Figure S1 | Flow chart of the literature search and screening process.

### REFERENCES

- Ohira T, Peacock JM, Iso H, Chambless LE, Rosamond WD, Folsom AR. Serum and dietary magnesium and risk of ischemic stroke: the atherosclerosis risk in communities study. *Am J Epidemiol.* (2009) 169:1437– 44. doi: 10.1093/aje/kwp071
- Larsson SC, Virtamo J, Wolk A. Potassium, calcium, and magnesium intakes and risk of stroke in women. Am J Epidemiol. (2011) 174:35–43. doi: 10.1093/aje/kwr051
- Meschia JF, Bushnell C, Boden-Albala B, Braun LT, Bravata DM, Chaturvedi S, et al. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American heart association/American stroke association. *Stroke*. (2014) 45:3754–832. doi: 10.1161/STR.000000000000046
- Ascherio A, Rimm EB, Hernan MA, Giovannucci EL, Kawachi I, Stampfer MJ, et al. Intake of potassium, magnesium, calcium, and fiber and risk of stroke among US men. *Circulation*. (1998) 98:1198–204. doi: 10.1161/01.CIR.98.12.1198
- Iso H, Stampfer MJ, Manson JE, Rexrode K, Hennekens CH, Colditz GA, et al. Prospective study of calcium, potassium, and magnesium intake and risk of stroke in women. *Stroke*. (1999) 30:1772–9. doi: 10.1161/01.STR.30.9.1772
- Song Y, Manson JE, Cook NR, Albert CM, Buring JE, Liu S. Dietary magnesium intake and risk of cardiovascular disease among women. *Am J Cardiol.* (2005) 96:1135–41. doi: 10.1016/j.amjcard.2005. 06.045
- 7. Larsson SC, Virtanen MJ, Mars M, Männistö S, Pietinen P, Albanes D, et al. Magnesium, calcium, potassium, and sodium intakes and

Figure S2 | Trial Sequential Analysis (TSA) of total stroke with the included studies indicated.

**Figure S3** | Forest Plots of the Risk of Ischemic Stroke for Magnesium Intake (A) and for <50 mg/day (B),  $\geq 50 \text{ and } <100 \text{ mg/day}$  (C),  $\geq 100 \text{ and } <150 \text{ mg/day}$  (D), and  $\geq 150 \text{ mg/day}$  magnesium increments (E).

Figure S4 | Trial Sequential Analysis (TSA) for ischemic stroke with included studies indicated.

**Figure S5** | Forest plots of the risk of hemorrhagic stroke for magnesium intake (A) and for <50 mg/day (B),  $\ge50 \text{ and } <100 \text{ mg/day}$  (C),  $\ge100 \text{ and } <150 \text{ mg/day}$  (D), and  $\ge150 \text{ mg/day}$  magnesium increments (E).

Figure S6 | Trial sequential analysis of hemorrhagic stroke comparing the highest magnesium intake category to the lowest.

Figure S7 | Trial Sequential Analysis (TSA) for hemorrhagic stroke with the included studies indicated.

**Figure S8** | Forest plots of the risk of subarachnoid hemorrhage for magnesium intake (A) and for <50 mg/day (B),  $\geq$ 50 and <100 mg/day (C),  $\geq$ 100 and <150 mg/day (D) and  $\geq$ 150 mg/day magnesium ranges (E).

Figure S9 | Trial Sequential Analysis (TSA) of subarachnoid hemorrhage (A), and the TSA of subarachnoid hemorrhage with the included studies indicated (B).

**Figure S10** | Forest plots of the risk of intracerebral hemorrhage for magnesium intake (A) and for <50 mg/day (B),  $\ge50 \text{ and } <100 \text{ mg/day}$  (C),  $\ge100 \text{ and } <150 \text{ mg/day}$  (D), and  $\ge150 \text{ mg/day}$  magnesium ranges (E).

Figure S11 | Trial Sequential Analysis (TSA) of intracerebral hemorrhage (A), and the TSA of intracerebral hemorrhage with the included studies indicated (B).

Figure S12 | Two-stage dose-response effects on the relationships between magnesium intake and subarachnoid hemorrhage (A) and intracerebral hemorrhage (B).

Table S1 | PRISMA 2009 checklist.

 Table S2 | Characteristics of included eligible studies.

Table S3 | Methodological quality assessments of the studies included with the newcastle-ottawa scales.

risk of stroke in male smokers. Arch Intern Med. (2008) 168:459-65. doi: 10.1001/archinte.168.5.459

- Weng LC, Yeh WT, Bai CH, Chen HJ, Chuang SY, Chang HY, et al. Is ischemic stroke risk related to folate status or other nutrients correlated with folate intake? *Stroke*. (2008) 39:3152–8. doi: 10.1161/STROKEAHA.108.524934
- Zhang W, Iso H, Ohira T, Date C, Tamakoshi A. Associations of dietary magnesium intake with mortality from cardiovascular disease: the JACC study. *Atherosclerosis.* (2012) 221:587–95. doi: 10.1016/j.atherosclerosis.2012.01.034
- Lin PH, Yeh WT, Svetkey LP, Chuang SY, Chang YC, Wang C, et al. Dietary intakes consistent with the DASH dietary pattern reduce blood pressure increase with age and risk for stroke in a Chinese population. *Asia Pac J Clin Nutr.* (2013) 22:482–91. doi: 10.6133/apjcn.2013.22.3.05
- Sluijs I, Czernichow S, Beulens JWJ. Dietary electrolytes and risk of ischemic stroke. Eur J PrevCardiol. (2013) 20:S76.
- Sluijs I, Czernichow S, Beulens JW, Boer JM, van der Schouw YT, Verschuren WM, et al. Intakes of potassium, magnesium, and calcium and risk of stroke. *Stroke.* (2014) 45:1148–50. doi: 10.1161/STROKEAHA.113.004032
- Adebamowo SN, Spiegelman D, Flint AJ, Willett WC, Rexrode KM. Intakes of magnesium, potassium, and calcium and the risk of stroke among men. *Int J Stroke*. (2015) 10:1093–100. doi: 10.1111/ijs.12516
- Adebamowo SN, Spiegelman D, Willett WC, Rexrode KM. Association between intakes of magnesium, potassium, and calcium and risk of stroke: 2 cohorts of US women and updated meta-analyses. *Am J Clin Nutr.* (2015) 101:1269–77. doi: 10.3945/ajcn.114.100354
- Bain LK, Myint PK, Jennings A, Lentjes MA, Luben RN, Khaw KT, et al. The relationship between dietary magnesium intake, stroke and its major risk

factors, blood pressure and cholesterol, in the EPIC-Norfolk cohort. Int J Cardiol. (2015) 196:108–14. doi: 10.1016/j.ijcard.2015.05.166

- Kokubo Y, Saito I, Iso H, Yamagishi K, Yatsuya H, Ishihara J, et al. Dietary magnesium intake and risk of incident coronary heart disease in men: a prospective cohort study. *Clin Nutr.* (2018) 37:1602–8. doi: 10.1016/j.clnu.2017.08.006
- Larsson SC, Orsini N, Wolk A. Dietary magnesium intake and risk of stroke: a meta-analysis of prospective studies. *Am J Clin Nutr.* (2012) 95:362–6. doi: 10.3945/ajcn.111.022376
- Nie ZL, Wang ZM, Zhou B, Tang ZP, Wang SK. Magnesium intake and incidence of stroke: meta-analysis of cohort studies. *Nutr Metab Cardiovasc Dis.* (2013) 23:169–76. doi: 10.1016/j.numecd.2012.04.015
- Fang X, Han H, Li M, Liang C, Fan Z, Aaseth J, et al. Dose-response relationship between dietary magnesium intake and risk of type 2 diabetes mellitus: a systematic review and meta-regression Analysis of prospective cohort studies. *Nutrients*. (2016) 8:E739. doi: 10.3390/nu8110739
- Rannikmae K, Woodfield R, Anderson CS, Charidimou A, Chiewvit P, Greenberg SM, et al. Reliability of intracerebral hemorrhage classification systems: a systematic review. *Int J Stroke.* (2016) 11:626–36. doi: 10.1177/1747493016641962
- Wells GA, Shea BJ, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analysis. *Appl Eng Agric*. (2014) 18:727– 34. Available online at: http://www.ohri.ca/programs/clinical\_epidemiology/ oxford.htm
- Brok J, Thorlund K, Wetterslev J, Gluud C. Apparently conclusive metaanalyses may be inconclusive–Trial sequential analysis adjustment of random error risk due to repetitive testing of accumulating data in apparently conclusive neonatal meta-analyses. *Int J Epidemiol.* (2009) 38:287–98. doi: 10.1093/ije/dyn188
- Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose-response data. *Stata J.* (2006) 6:40–57. doi: 10.1177/1536867X0600600103
- 24. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, et al. Defining and setting National goals for cardiovascular health promotion and disease reduction. The American heart association's strategic

impact goal through 2020 and beyond. Circulation. (2010) 121:586-613. doi: 10.1161/CIRCULATIONAHA.109.192703

- Manson JE, Bassuk SS. Vitamin and mineral supplements: what clinicians need to know. JAMA. (2018) 319:859–60. doi: 10.1001/jama.2017.21012
- 26. Aspry KE, Van Horn L, Carson JAS, Wylie-Rosett J, Kushner RF, Lichtenstein AH, et al. Medical nutrition education, training, and competencies to advance guideline-based diet counseling by physicians: a science advisory from the American heart association. *Circulation*. (2018) 137:e821–41. doi: 10.1161/CIR.0000000000563
- US Department of Health and Human Services and US Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th ed. (2015). Available online at: https://health.gov/dietaryguidelines/2015/guidelines/
- Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. DASH-sodium collaborative research group. N Engl J Med. (2001) 344:3–10. doi: 10.1056/NEJM200101043440101
- 29. Goyal N, Tsivgoulis G, Malhotra K, Houck AL, Khorchid YM, Pandhi A, et al. Serum magnesium levels and outcomes in patients with acute spontaneous intracerebral hemorrhage. J Am Heart Assoc. (2018) 7:e008698. doi: 10.1161/JAHA.118.008698
- Jayedi A, Ghomashi F, Zargar MS, Shab-Bidar S. Dietary sodium, sodium-to-potassium ratio, and risk of stroke: a systematic review and non-linear dose-response meta-analysis. *Clin Nutr.* (2018) 38:1092–100. doi: 10.1016/j.clnu.2018.05.017

**Conflict of Interest Statement:** The authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

Copyright © 2019 Zhao, Hu, Dong, Xu, Wei, Yu, Xu and Zhang. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.