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Current efficacious treatments for traumatic brain injury (TBI) are lacking. Establishment

of a protective gut microbiota population offers a compelling therapeutic avenue, as

brain injury induces disruptions in the composition of the gut microbiota, i.e., gut

dysbiosis, which has been shown to contribute to TBI-related neuropathology and

impaired behavioral outcomes. The gut microbiome is involved in the modulation of

a multitude of cellular and molecular processes fundamental to the progression of

TBI-induced pathologies including neuroinflammation, blood brain barrier permeability,

immune system response, microglial activation, and mitochondrial dysfunction, as well

as intestinal motility and permeability. Additionally, gut dysbiosis further aggravates

behavioral impairments in animal models of TBI and spinal cord injury, as well as

negatively affects health outcomes in murine stroke models. Recent studies indicate

that microbiota transplants and probiotics ameliorate neuroanatomical damage and

functional impairments in animal models of stroke and spinal cord injury. In addition,

probiotics have been shown to reduce the rate of infection and time spent in intensive

care of hospitalized patients suffering from brain trauma. Perturbations in the composition

of the gut microbiota and its metabolite profile may also serve as potential diagnostic

and theragnostic biomarkers for injury severity and progression. This review aims to

address the etiological role of the gut microbiome in the biochemical, neuroanatomical,

and behavioral/cognitive consequences of TBI, as well as explore the potential of

gut microbiome manipulation in the form of probiotics as an effective therapeutic to

ameliorate TBI-induced pathology and symptoms.
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BRIEF OVERVIEW OF TRAUMATIC BRAIN INJURY

Traumatic brain injury (TBI) is a major cause of death and disability in the United States and
represents one of the most prevalent injury types sustained by the worldwide population (1).
Reports spanning the last two decades underscore the human and financial burden of TBI in
the United States, with an annual incidence of ∼1.4 million cases (2), prevalence of ∼3.17
million with a long-term TBI-induced disability (3), and an annual economic burden of billions
of dollars (4). Importantly, these disabilities are a result of not only the mechanical damage
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sustained due to the initial injury (primary), but also the
subsequent cellular and molecular damage that exacerbates
in the following hours, days, weeks, and years post-injury
(secondary) (5, 6). The etiology of secondary injury is
multifaceted and may constitute altered cerebral blood flow,
excitotoxicity, inflammation, microglial activation, metabolic
anomalies, mitochondrial dysfunction, and oxidative stress
resulting in transient or lifelong behavioral and cognitive deficits
(5–9). TBI severity is categorized based on the Glasgow Coma
Scale (GCS), in which patients are scored on the basis of clinical
symptoms, and the resulting overall score classifies their injury as
mild (score: 13–15), moderate (score: 9–12), or severe (score:<9)
(10, 11). Overall, TBI complexity occurs on a spectrum ranging
from mild to severe, diffuse to focal, and single to repeated
exposures in brain vs. multi-organs, which leads to injury-specific
heterogeneous pathobiological responses that cannot be regarded
as a single condition (12).

Despite decades of rigorous preclinical research in which
much insight into the heterogeneous nature of brain injury
has been gained, efficacious therapeutics for TBI-induced
neuropathologies and behavioral/cognitive impairments
are lacking (13–15). Given the prevalence of TBI-related
disabilities, it is imperative to consider novel treatment
strategies. Restoration of the gut microbiome by gut eubiotic
therapeutics is one such compelling avenue, which is capable of
modulating the bi-directional relationship between TBI-induced
disruptions of the gut microbiome and the influence of this gut
dysbiosis on the pathophysiology of TBI-induced secondary
injury progression (16, 17).

MICROBIOTA-GUT-BRAIN AXIS (MGBA)

Gut microbiota refer to the bacteria, archaea, viruses, and
eukaryotic microbes that reside primarily within the colon,
but also within the stomach and small intestine (18). This
commensal bacterial community accounts for 0.2–1 kg of
an adult’s bodyweight (18, 19), outnumbering mammalian
cells by as much as 10:1, though more recent estimates
indicate a ratio of ∼1:1 (18), and contains ∼100 fold more
unique genes than the human genome (20). Bacteroidetes
and Firmicutes phyla compose the majority of the gut
microbiota, with Proteobacteria, Actinobacteria, Fusobacteria,
and Verrucomicrobia being present in fewer numbers. However,
gut microbiota composition differs among individuals as diet,
age, gender, environment, and genetics all influence bacterial
strains/populations (21–23). The activity and composition
of this microbial population is involved in a surprising
number of biological processes, including homeostasis of the
central nervous system (CNS) (24–26). This relationship is
referred to as the microbiota-gut-brain axis (MGBA) (27),
with communication between the gut microbiota and the
CNS occurring through a neuro-endocrino-immunological
network (28).

Perhaps the most direct route of communication within the
MGBA is among the gut microbiota, enteric nervous system
(ENS), and vagus nerve. Neuroactive compounds produced

by gut bacteria influence the activity of sensory neurons of
the ENS, which in turn modulates the afferent activity of
the vagus nerve (29). These compounds consist of bacterial
metabolites, neurotransmitters, neurotrophic factors, cytokines,
and endotoxins (30–32). Nervous system signaling originating
from the gastrointestinal tract is then integrated by the
nucleus of the solitary tract (33) and relayed to other brain
nuclei (34). Gut microbiota also play a fundamental role
in the development and functioning of the host immune
system (35). Homeostasis of host immune system function is
predicated upon proper gastrointestinal neuromuscular control,
maintenance of intestinal wall integrity, and intact ENS/vagus
nerve signaling (36, 37), aspects of gastrointestinal health that
are, in part, regulated by the gut microbiome. Perturbations
in the composition of the gut microbiota are known to lead
to a weakening of the intestinal-host barrier (38), allowing
gastrointestinal content to be released into the blood stream
and other parts of the body, a condition referred to as
“leaky gut” (39), which can lead to neuroinflammation. For
example, peripheral administration of the bacterial endotoxin
lipopolysaccharide induces cytokine expression within the
hypothalamus-pituitary-axis, resulting in regional neurotoxicity
and systemic inflammation (40, 41). Notably, the cross-talk
among the gut bacteria, ENS, and vagus nerve cohesively
regulates the host immune and inflammatory responses to
modulate CNS function (42, 43). Finally, cognitive and
behavioral changes (e.g., stress) have repeatedly been shown to
alter the composition of the gut microbiota, demonstrating both
feed-forward and feedback mechanisms within the MGBA (44).

Gut microbiome composition has been linked to a variety
of illness and disease states (45, 46), with research dating
back over seven decades establishing a relationship between the
metabolic products of gut bacteria and hepatic encephalopathy
(47, 48). More recent research has linked the gut microbiota to
inflammatory diseases (49) and several CNS-related disorders,
including autism (50, 51), depression (28, 52), and anxiety
(53, 54), as well as Alzheimer’s disease (55) and Parkinson’s
disorder (55, 56). However, it is difficult to prove causation and
directionality when discussing gut microbiome changes observed
in human neuropsychiatric and neurodegenerative conditions
(57). For these reasons, rodents are commonly used when
investigating the MGBA as they (1) possess similar, but not
identical, core intestinal bacterial populations to humans (58, 59)
and (2) can be maintained “germ free” (devoid of gut microbiota)
or gnotobiotic (gut microbiota of known composition).

Eubiotic therapeutics that alter the gut microbiome through
diet, microbiota transplants, antibiotics, and pre-/probiotics
influence both systemic and CNS-related processes. Microbiota
transplants have been shown to influence obesity levels in rodents
(60) and humans (61), as well as effectively treat recurrent
Clostridium difficile infection (62). Meanwhile, probiotics have
shown promise in the treatment of patients with ulcerative
colitis (63) and antibiotics are now commonly used to eliminate
the bacterial populations involved in hepatic encephalopathy
(64). Probiotics have also been shown to reduce anxiety- and
depressive-like symptoms in animals, with limited evidence
indicating similar results in humans (53). Furthermore, gut
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microbiome alterations have been shown to ameliorate autism-
like behaviors inmice (65), with probiotics having been suggested
as a therapeutic strategy for individuals with post-traumatic stress
disorder (66). Among other research findings [as reviewed by
(67)], this has led some researchers to suggest “psychobiotics” as a
new therapeutic approach for neurological and neuropsychiatric
illnesses (68, 69).

ROLE OF THE MGBA IN CNS INJURIES

Pertinent for TBI research is the bi-directional relationship that
exists between brain injury and the gut microbiome (Figure 1).
Research in brain and spinal cord injury (SCI) animal models
has demonstrated that CNS injury disrupts the motility and
permeability of the intestinal wall (70, 71) and perturbs the
composition of the gut microbiome (17, 72), leading to a host-
maladaptive state referred to as gut dysbiosis (73). Conversely,
gut dysbiosis influences the pathophysiology of traumatic CNS
injury (74, 75). For example, following SCI, significant changes
in the composition of the gut microbiota were observed, namely
a decrease in Bacteroidetes and increase in Firmicutes, with
post-injury changes in the gut microbiome persisting out to
1 month and predicting the degree of locomotor impairment
(76). A similar relationship was observed in a controlled
cortical impact (CCI) rodent model of moderate TBI, with
bacterial changes occurring as early as 2 h following injury,
persisting out to 7 days post-injury, and correlating with lesion
volume. However, the opposite alteration in gut microbiota was
observed with a decrease in Firmicutes and increase in bacterial
families within the Bacteroidetes and Proteobacteria phyla (77).
Furthermore, a recent study by Treangen et al. (78) reported
gut dysbiosis with significant decreases in Lactobacillus gasseri,
Ruminococcus flavefaciens, and Eubacterium ventriosum and
significant increases in Eubacterium sulci and Marvinbryantia
formatexigens at 24 h post-CCI in mice. L. gasseri displayed the
most drastic change with a 4-fold log decrease in abundance
as compared to baseline, though it should be noted that a
less pronounced decease was also observed following sham
procedures. As L. gasseri is a member of the phylum Firmicutes,
this work complements the findings of Nicholson et al., and
provides for a potential eubiotic target as L. gasseri inhabits the
human gut microbiome (79). Investigations into TBI-induced
gut dysbiosis in humans is limited, though a recent study in
severely injured patients with polytrauma reported a decrease in
Bacteroidales, Fusobacteriales, and Verrucomicrobiales, as well
as an increase in Clostridiales and Enterococcus within 72 h of
injury (80).

Gut dysbiosis also affects the integrity and permeability of
the blood brain barrier (BBB) (81). Coupled with TBI-induced
physical disruptions to the BBB (82), intestinal contents and
the associated upregulation of the pro-inflammatory immune
response more easily permeate the CNS, resulting in increased
microglial activity, neuroinflammation, and neuropathology (83,
84). Microglial maturation and function within the CNS have
been shown to be influenced by the gut microbiome in BBB-
intact animals (85, 86), a relationship expected to be enhanced

by increased BBB permeability. Therefore, it is likely that TBI-
induced gut dysbiosis is a contributing factor in increased
microglial activation following CNS injury (86). Post-injury
mitochondrial dysfunction in terms of energy production (i.e.,
ATP synthesis) observed in TBI (87, 88) may also be impacted by
gut dysbiosis, as studies have revealed a link between gut bacterial
metabolites and mitochondrial function (26, 89).

Importantly, experimenter-induced alterations in the
composition of the gut microbiota community regulate immune
system activity, neuropathology, and behavior following CNS
injury. In a gnotobiotic mouse model of ischemic stroke, an
expansion of Proteobacteria accompanied by a contraction
in Firmicutes and Bacteroidetes altered immune system
homeostasis by increasing peripheral neuroprotective anti-
inflammatory Treg cells and decreasing pro-inflammatory γδ

T cells, resulting in a reduction in ischemic brain injury (90).
However, the large-scale depletion of cultivatable gut microbiota
by a broad-spectrum antibiotic in a mouse model of focal
cerebral ischemia prior to injury resulted in decreased rates of
survival and an increase in the development of severe acute colitis
(74). Furthermore, if gut dysbiosis was experimentally induced
by a broad-spectrum antibiotic prior to SCI, both neurological
impairment and spinal cord pathology were exacerbated, likely
due to changes in immune system activity (76). These studies
demonstrate the complex relationships within the MGBA,
revealing that the bacterial populations present at the time of
injury influence the degree of neuropathology and functional
impairment following TBI. Such knowledge establishes the basis
for both the monitoring and manipulation of the gut microbiota
as a means to diagnose and ameliorate the pathophysiology and
symptomology of brain injuries.

GUT MICROBIOTA AS A POTENTIAL
DIAGNOSTIC AND THERAPEUTIC TARGET
FOR TBI

Monitoring the extent of gut dysbiosis may provide a diagnostic
tool for the identification of TBI severity, providing information
for treatment guidance. Fecal metabolomes have already been
used as biomarkers for several ailments including Crohn’s
disease and colorectal cancer (91, 92), and a recent study
by Houlden et al. (72) demonstrated a positive correlation
between the degree of gut dysbiosis and the severity of a
closed-head-impact rodent model. Importantly, the profile of gut
microbiota changes observed following TBI differed from those
following ischemic brain injury by 72 h post-injury, indicating
that different forms of brain injury uniquely impact the gut
microbiome (72).

Beyond monitoring, manipulation of the gut microbiome
via eubiotic therapies (e.g., microbiota transplants and
pre/probiotics) presents an exciting treatment target for
TBI (Figure 1). Several of the ailments associated with TBI-
induced pathology that affect the microbiota are improved
by the intake of probiotics, such as intestinal motility and
permeability, health of the intestinal cellular lining, intestinal
inflammation, and systemic immune response (93–95).
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FIGURE 1 | Effects of traumatic brain injury (TBI) and eubiotic therapies within the microbiota-gut-brain axis (MGBA). Brain injury induces disruptions within the MGBA

through multiple pathways [Represented in Red]. Resulting perturbations complete a bi-directional positive feedback mechanism that contributes to the secondary

injury characteristics of TBI. Resolution of gut dysbiosis by eubiotic therapeutics may act to break this cycle [Represented in Blue], thus reducing the impact of

secondary injury pathology and improving TBI biochemical, pathological, and behavioral outcomes.

Furthermore, perturbations in bacterial composition initially
appear 24–72 h following trauma (72, 80); a time period
corresponding to the pathophysiology of TBI-induced secondary
injury, representing an ideal treatment window. As substantial
alterations in the gut microbiome can occur 24–48 h following
dramatic changes in diet (96, 97), eubiotic therapies could
fundamentally shift the gut microbiome to a beneficial state
in time to mitigate aspects of TBI-associated secondary
injury. Preclinical studies support this concept as microbiota
transplants have been shown to reduce brain lesion size and
improve health outcomes in mouse models of ischemic stroke
(98) and restore microglial function (85). Probiotic derived
bacterial metabolites may also serve to modulate mitochondrial
homeostasis (99) as gut microbiota generate short-chain
fatty acid products such as butyrate, propionate, and acetate
(100). Together with dietary ketones, these gut microbiome
products serve as alternative energy sources for the injured
brain and may improve bioenergetics function following TBI
and SCI (101, 102). Additionally, gut microbiota-generated
butyrate serves as a histone deacetylation (HDAC) inhibitor,
offering additional benefits as HDACs play an important

role in neuroprotection following CNS injuries (103) and
enhance cognitive function in neuropsychiatric disorders (104).
Furthermore, the butyric acid-producing probiotic Clostridium
butyricum improved neurological deficits, reduced brain edema,
attenuated neurodegeneration, and ameliorated BBB impairment
(105), as well as improved spatial memory in mouse models
of weight-drop impact head injury and cerebral ischemia,
respectively (83). Probiotic supplements rich in lactobacilli
and bifidobacteria have also been shown to improve spatial
memory in a cognitively impaired mouse model (106) and one
explanation for these observed improvements is evidenced by
VSL#3 (a commercial, medical-grade probiotic rich in lactic
acid bacteria) rescuing hippocampal neurogenesis via Ly6Chi

monocytes in mice with antibiotic-induced gut dysbiosis (107).
Treatment with VSL#3 also decreases circulating levels of TNFα,
lessens cerebral monocyte infiltration, and reduces microglial
activation (108). In mice that received SCI, VSL#3 provided the
day of injury and extending for 35 days post-injury reduced
neuropathology, improved locomotor recovery, and triggered a
protective immune response through an increase in the number
of Treg cells (109).
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Importantly, human preclinical trials in brain injury
patients with GCSs of 5–12 (i.e., moderate to severe TBI)
indicate that manipulation of the gut microbiome through
lactobacilli-rich probiotic supplementation within the first
48 h of admission with continued treatment for between
5 and 21 days can reduce nosocomial infection rate (110),
decrease gastrointestinal dysfunction (111), lessen the incidence
of ventilator-associated pneumonia (111), and shorten the
time spent in intensive care (112). These observed benefits
are commonly attributed to probiotic-induced reductions in
systemic and central inflammation (113, 114). No studies exist
examining the behavioral/cognitive outcomes of probiotic
supplementation on TBI patients; however, probiotics have
been shown to improve behavior and cognition in individuals
with Alzheimer’s disease (115) and depression (116), as well
as healthy individuals (117). Probiotic supplementation for
patients with penetrating TBI may be additionally useful as the
long-term use of antibiotics is recommended for the reduction of
infection, morbidity, and mortality rates (118, 119). As discussed,
antibiotic-induced disruptions of the gut microbiome can lead
to worsened TBI-related outcomes, potentially guiding medical
practices toward adjunctive probiotic treatments to mitigate
or minimize complex downstream pathobiological responses
following TBI.

CONCLUSION

Provided the bi-directional relationship between the gut
microbiome and TBI-associated pathology, resolution
of gut dysbiosis represents a compelling therapeutic
target. Probiotics consisting of lactobacilli, bifidobacteria,

and other butyrate-producing gut bacteria appear most
beneficial, providing a eubiotic therapy that enhances MGBA

function through their anti-inflammatory and positive
mitochondrial energetic properties. However, recent work
revealed that antibiotic-induced microbiome perturbations
and probiotic colonization display strong inter-species and
inter-individual differences that may not have been apparent
in previous investigations (120, 121). Additionally, differing
courses/compositions of eubiotic treatments may need to be
considered based on the type and severity of CNS injury, as
these parameters produce dissimilar gut dysbiosis profiles (72).
Therefore, resolution of gut dysbiosis as a therapeutic option
requires investigations that yield information on the specific
changes that occur to the gut microbiota following different types
and severities of TBI, as well as optimal doses, treatment window,
duration of treatment, and efficacy of experimentally-induced
gut microbiome alterations across age and gender. Data that are
sorely lacking (17, 93). Ultimately, this information could be
used to develop a powerful diagnostic tool or eubiotic therapy to
alleviate trauma brought on by brain injury.
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