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The cerebral microcirculation holds a critical position to match the high metabolic

demand by neuronal activity. Functionally, microcirculation is virtually inseparable from

other nervous system cells under both physiological and pathological conditions.

For successful bench-to-bedside translation of neuroprotection research, the role of

microcirculation in acute and chronic neurodegenerative disorders appears to be

under-recognized, which may have contributed to clinical trial failures with some

neuroprotectants. Increasing data over the last decade suggest that microcirculatory

impairments such as endothelial or pericyte dysfunction, morphological irregularities

in capillaries or frequent dynamic stalls in blood cell flux resulting in excessive

heterogeneity in capillary transit may significantly compromise tissue oxygen availability.

We now know that ischemia-induced persistent abnormalities in capillary flow negatively

impact restoration of reperfusion after recanalization of occluded cerebral arteries.

Similarly, microcirculatory impairments can accompany or even precede neural loss in

animal models of several neurodegenerative disorders including Alzheimer’s disease.

Macrovessels are relatively easy to evaluate with radiological or experimental imaging

methods but they cannot faithfully reflect the downstream microcirculatory disturbances,

whichmay be quite heterogeneous across the tissue at microscopic scale and/or happen

fast and transiently. The complexity and size of the elements of microcirculation, therefore,

require utilization of cutting-edge imaging techniques with high spatiotemporal resolution

as well as multidisciplinary team effort to disclose microvascular-neurodegenerative

connection and to test treatment approaches to advance the field. Developments

in two photon microscopy, ultrafast ultrasound, and optical coherence tomography

provide valuable experimental tools to reveal those microscopic events with high

resolution. Here, we review the up-to-date advances in understanding of the primary

microcirculatory abnormalities that can result in neurodegenerative processes and the

combined neurovascular protection approaches that can prevent acute as well as

chronic neurodegeneration.
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INTRODUCTION

Cerebral microcirculation is a fundamental element for proper
cerebral functioning since it is the main transport and
distribution system for oxygen and nutrients that fuel the high
and continuously changing metabolic demand of the brain
tissue. The anatomical and physiological features of small vessels,
which mainly consist of vasculature <100µm in diameter
(1), where most of the metabolic exchange takes place, are
considerably different from large vessels and these differences
make them difficult to study experimentally and virtually
inaccessible in human beings. Over the last years, advances in
imaging technologies and modeling made such investigations
possible and increased the recognition of microcirculatory
pathologies in acute and chronic neurodegenerative conditions,
revealing novel mechanisms and potential therapeutic strategies.
In this review, the structural and functional principles of
cerebral microcirculation and its pathophysiological relevance
will be discussed.

CAPILLARY DYSFUNCTION

The Complexity of Microcirculation
The brain is a vascular organ as much as it is neuronal.
The anatomy of cerebral vasculature is unique and optimized
to provide continuous blood supply to the brain. Extensive
anastomoses between pial vessels on the surface ensure that extra
blood can be shuffled to the activated brain area demanding
more energy. As illustrated in Figure 1, progressive branching of
penetrating arteries into a high-density meshwork of capillaries
allows for adequate delivery of nutrients, such that there is a
capillary within 10–20µm of every neuron (4, 5). The density
of capillary mesh correlates with neuronal density and differs
between cortical layers or brain regions. Unlike simplified
illustrations, capillary networks have a complex structure,
branching in various directions, forming loops, and curls to
optimally match the tissue demand.

Tissue blood flow is provided by the pressure gradient across
the microcirculatory bed vascular resistance, which is largely
determined by the vascular diameter and blood viscosity (6). The
focal brain activity is highly variable; hence, regional metabolic
requirements change fast and continuously. This requires a
precise spatial and temporal control of the local blood flow.
Consequently, flow changes are tightly coupled to neuronal
activity through a set of mechanisms integrated within the
neurovascular unit (7, 8). This neurovascular coupling can be
mediated by both feed-forward (neuronal activity itself directly
regulates blood flow) or feed-back (the metabolic consequences
of increased activity regulates blood flow) mechanisms (8, 9).

Studying microcirculation is challenging in animals as well
as humans because of the structural and functional complexity
of the system. This has caused a delay in understanding role
of microcirculatory dysfunction in neurological disorders, which
is more relevant than previously thought. The microcirculatory
dynamics are fast and heterogeneous, so we need tools that can
acquire data with high spatial (in microns) and temporal (in
milliseconds) resolution. Most of the available information on

capillary flow and oxygenation is based on magnetic resonance
imaging (MRI) as well as direct in vivo microscopic imaging
that can be performed only in animals. Two-photon microscopy
(TPM) through a cranial window in rodents provides high
resolution angiogram of the capillary network and, red blood
cell (RBC) flux and speed estimation within individual capillaries
(12–14). Phosphorescence lifetime microscopy (PLIM) adds
assessment of the oxygen with subcapillary resolution both
in microvasculature and cerebral tissue (2, 15–22). Optical
coherence tomography (OCT), which is sensitive to motion
of scattering particles enable visualizing RBC flow label-free.
Unlike TPM that images a limited area, OCT-angiography allows
visualizing hundreds of capillaries simultaneously through the
cortical mantle (10, 23–26). In MRI, a voxel of 1 mm3 reflects
merely an average of many capillaries but MRI has the advantage
of imaging whole brain non-invasively (27).

Studies with these instruments have revealed that the increase
in capillary blood flow occurs slightly before or in synchrony with
upstream vessels, suggesting a direct role to the microcirculation
to coordinate functional hyperemia response (29–32). Under
resting state, most of the oxygen release into the tissue
occurs at the precapillary arteriole level, while distal capillaries
become an additional a site of oxygen extraction during
functional hyperemia (2). Especially during baseline conditions,
the capillary pO2 distribution is highly heterogeneous, some
capillaries have very low oxygen, while not necessarilymaking the
tissue around them critically hypoxic but particularly vulnerable
to fluctuations in blood flow and/or increase in metabolic
demand (2, 16).

Microcirculation Plays an Active Role in
Neurovascular Coupling
Models for blood flow simulation and oxygen transport /
extraction (34–38) suggest that capillary flow patterns are
important to determine tissue oxygen availability (37–39). While
cerebral capillaries are normally almost always perfused with
plasma during rest and activated conditions, the flow speeds
of RBCs, like spatial oxygen distribution, are heterogeneous at
baseline. This is caused by variability in capillary diameters,
pressure gradients, and non-Newtonian fluid characteristics of
blood, resulting in different RBC and plasma fractions in different
capillaries that can affect the flow patterns (40) (Figure 2C). In a
recent study, monitoring of capillaries frame-by-frame by OCT
angiography revealed frequent temporary stalls that lasted for few
seconds-minutes in individual capillaries (10) (Figure 2A). These
temporal flow fluctuations can be caused by RBCs or white blood
cells (WBCs) getting stuck or slowed down inside capillaries
(10, 11, 41) because of their relatively large size compared
to the capillary lumen (Figure 2B). They are more prevalent
in capillaries closer to the distal end of the microcirculation,
where pressure gradients are lower and RBCs are slower, and
also where endothelial adhesion molecules like intercellular cell
adhesion molecule-1 (ICAM-1) have higher expression (42).
During functional activation, RBC flow speeds increase to make
flow distribution in capillary bed more homogeneous and the
dynamic stalls diminish (10) (Figures 2D,E). This homogeneous
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FIGURE 1 | Morphological features of cerebral microcirculation. (A,B) Dense external coverage of the surface by pial arteries and veins which are interconnected via

anastomoses and collateral vessels then gives rise to a complex meshwork of capillaries, composed of segments about 60–70µm in length. (C) Penetrating arteries

(Continued)
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FIGURE 1 | originating from pial vasculature dive into the cortical tissue without forming any further anastomoses. Immediately surrounded by the cerebrospinal

fluid-filled spaces called perivascular spaces or Virchow-Robin spaces along their course, penetrating arteries then give rise an extensive tree of small vessels as they

branch into arterioles (30–100µm diameter), precapillary arterioles (10–30µm), and capillaries (<10µm), respectively. As arterioles turn into capillaries, the

perivascular space disappears, making the capillary wall adjacent to the parenchyma. (D) Capillaries branch out for 5–6 times on average (2) as they release oxygen

into the tissue, until they converge on postcapillary venules that drain into ascending veins. (A,B reproduced by permission from: PNAS, Meyer et al. (3) ©2008

National Academy of Sciences. (D) reprinted by permission from: Nature Communications, Sakadžić et al. (2) ©2014 Springer Nature).

transformation in oxygenation and flow speeds is essential for
optimum oxygen extraction. Because, in case of heterogeneous
flows, some capillaries have higher flow velocity compared to
the neighboring vessels and they act as thoroughfare channels,
shunting highly-oxygenated RBCs through the microcirculation
to leave little time for oxygen release (37). This is important
because it has been shown that increasing overall arterial blood
flow to a capillary bed with heterogeneous flow distribution
can paradoxically worsen oxygen availability to the tissue (38,
43, 44). For this reason, functional blood flow responses in
the brain need to be actively regulated at the capillary level
and not solely by dilating arterioles. This function is realized
by structural and metabolic collaboration between neurons,
endothelia, astrocytes and pericytes, the building blocks of the
neurovascular unit.

Endothelium is the common inner lining of all types of
vasculature, including capillaries. In the central nervous system
(CNS) tight junctions between endothelial cells form the critical
layer of the blood brain barrier (BBB) that controls material
passage into the parenchyma. In the healthy setting, endothelium
prevents paracellular plasma leakage by tight junctions and
there is a low level of transcytotic vesicle trafficking through
endothelial cells (45, 46). Oxygen and carbon dioxide, on
the other hand, can freely diffuse across the capillary wall
bidirectionally (46–48), allowing rapid gas exchange. The
endothelium, basal membrane, and astrocyte end feet together
form the capillary wall and the BBB (49). Degradation of BBB
either due to basal lamina changes, endothelial or astrocyte
damage is a common feature of many neurodegenerative
disorders which have microcirculatory pathologies. While there
is no smooth muscle layer in the capillary wall, there is
another contractile cell, the pericyte located at the periphery
of microvessel wall and embedded into the basal membrane
layers (50). Pericytes have a contractile apparatus, which is
similar to that of smooth muscle cells. Pericyte processes
concentrically surround the capillaries, enabling them to regulate
the capillary diameter (51, 52). Pericytes have also been shown to
contribute to BBB formation andmaintenance, to immunological
modulation, angiogenesis, and capillary reorganization (53–55).
Pericytes therefore are attractive candidates for capillary-level
control of neurovascular coupling. Indeed, pericyte relaxation
during functional activation has been shown to precede or
being closely coincident with functional hyperemia (30, 51).
The strong interactions between pericytes and endothelial
cells and astrocytes further underline their strategic role in
microcirculation (56, 57).

Astrocyte end-feet around microvessels are critical elements
for neuron-microvessel communication. Nearby neuronal
activity is sensed by astrocyte processes as extracellular adenosine

triphosphate (ATP) and glutamate increase around synapses.
Calcium signals triggered in astrocytes lead to cyclooxygenase
activation and release of vasodilatory prostaglandins from
end-feet surrounding the capillaries (58, 59). This is one of
the basic mechanisms for translation of neuronal activity to
vasoactive regulation. Other mechanisms involving metabolic
and paracrine interactions within elements of the tightly
integrated neurovascular unit are also present and contribution
of each varies between brain regions. For example, astrocyte
processes are also metabolically coupled to excitatory synapses;
they rapidly breakdown glycogen to release lactate as an energy
supply to neurons (60). An intriguing feature of the astrocyte
network is the gap junctions between end-feet integrated to the
capillary wall. Activity-induced calcium signaling can rapidly
propagate around microvasculature to provide a coordinated
response in a given area (59, 61–63). Capillary pericytes readily
respond to the local release of vasodilatory prostaglandins
(30). Endothelial cells, which are electrically coupled to other
endothelial cells and to smooth muscle cells via gap junctions
(64–67), have also been shown to propagate membrane
depolarizations and calcium waves along the vasculature,
releasing nitric oxide (NO) in consequence (68), adding to
the coordinated microvascular regulation. Interneurons are
also directly involved in vasoactive regulation. For example,
stimulation of GABAergic interneurons has been shown to
produce a biphasic blood flow response, hyperemia, followed
by vasoconstriction, similar to the somatosensory activation
response, by releasing NO and neuropeptide Y, respectively
(69–72). Interestingly, red blood cells within the capillary
lumen themselves can also take active role in capillary flow
regulation by releasing ATP in response to focal acidosis,
hypoxia, shear stress, or mechanical stimuli (73–76). The ATP
release can be initiated by opening of pannexin channels or
voltage-dependent anion channels in erythrocytes (75, 77).
ATP, by binding to purinergic receptors can trigger NO or
prostaglandin release from the endothelium (73) generating a
local vasodilatory response to match the oxygen demand in the
stagnated microenvironment (73).

The mechanisms of neurovascular regulation should be
recognized in the setting of an integrated vascular network,
where different levels of microcirculation may work in concert in
addition to a tight compartmentalization. For example, arterioles
appear to favor the vasoactive signals coming from interneurons
coding the activity in a larger cohort of neurons in contrast to
capillary regulation responding to very focal demand translated
by adjacent astrocytes (69, 78). Arterioles also respond to signals
coming up through the endothelia to accommodate the blood
volume demand by the downstreammicrocirculatory bed (58, 59,
61–63).
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FIGURE 2 | Irregularity and heterogeneity in capillary flow (A) OCT angiogram time-series identify capillary segments with stalling red blood cells. Individual segments

(arrowheads) with temporary interruptions of RBC flux simply lose OCT angiogram signal. Hollow arrowheads indicate a stalled capillary segment (10). (B) Two photon

microscopy time series with fluorescent labeled plasma can identify flowing and stalled capillaries based on the motion of unlabeled cells as seen in black (11). (C) A

single time-point two-photon angiogram of a set of capillary branches at ∼100µm below cortical surface shows heterogeneous distribution of RBC flux. Segments

with higher flow have thinner and denser RBC-bands whereas slower flow is indicated by thicker and more scarce bands. One segment (arrow) has no RBCs flowing

but is still filled with fluorescent labeled plasma. Scalebar: 20µm) (D) Matrix plot of individual stall events in a region of interest, acquired during a functional stimulation

experiment, with a frame period of 9 s. Every black points denotes a stall in a particular capillary. Green shades indicate whisker stimulation. (E) The frequency of

capillary stalls is dynamically modulated during functional stimulation; stall prevalence was significantly lower during functional hyperemia. *Statistical significance

(p < 0.05). (A,D,E reproduced by permission from: JCBFM, Erdener et al. (10); (B) reprinted by permission from: Nature Neuroscience, Cruz Hernandez et al. (11),
©2019 Springer Nature).

Microcirculatory Failure
Since oxygen availability in the tissue relies on the distribution
of capillary flow patterns and their heterogeneity, the absolute

quantitative level of cerebral blood flow (CBF) may not always
reflect accurate supply-demand match at microscopic level. In
routine clinical practice of cerebrovascular medicine, main focus
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is on the evaluation of adequate arterial flow and luminal
patency, as they can be easily imaged by widely available
radiological techniques. In the setting of a CBF drop, particularly
to ischemic levels (below ∼20 ml/100 g/min in humans)
(79), there is a prominent decrease in tissue oxygen tension
paralleled by a relative increase in oxygen extraction. However,
experimental and computer simulation data indicate that the
tissue oxygen availability may be compromised even in the
absence of a flow-limiting condition (37, 38). This arises from
“capillary dysfunction,” causing excessive flow heterogeneity in
the capillary bed and failing to homogenize in response to
increasing functional demand. This heterogeneity causes certain
capillary segments to transit oxygenated RBCs too fast for
enough oxygen to be released to tissue (36, 44). A classic
example of this phenomenon is the hyperperfusion syndrome
(38, 80, 81), a temporary excessive hyperemia after recanalization
of an occluded cerebral artery, which paradoxically results in
low tissue oxygenation (38). Very slow flux rates in some
capillaries may also lead to a reduced oxygen delivery due to
insufficient number of RBCs transiting. Any factor introducing
irregularity to the capillary flow, results in a higher standard
deviation in distribution of RBC velocities and/or transit times
across the microvascular bed, i.e., the capillary transit time
heterogeneity (CTH). However, it should be noted that increased
CTHmay passively increase with high mean transit time (MTT),
the average time that contrast bolus traverse between arterial
and venous ends (43). Importantly, the relative transit time
heterogeneity (CTH/MTT), i.e., the coefficient of variation of
transit times, can distinguish between true microcirculatory
heterogeneity and a passive increase in CTH with low CBF
and elevated MTT. The relationship between CBF, CTH, oxygen
extraction fraction (OEF), and tissue oxygen can be evaluated
with computational models (36, 82, 83). These models show that,
CTH is, counter intuitively; homogenized with very low flow
rates tomaximize O2 extraction in poorly perfused tissue (37, 82).
The detailed evaluation of mathematical models is beyond the
scope of this review and the reader is referred to excellent papers
on this subject (84, 85). MRI data can be used to prepare MTT,
CTH, and OEF maps with use of appropriate mathematical
models (27). These tools have been useful for evaluation of
capillary dysfunction in acute ischemic stroke and Alzheimer’s
disease patients (36, 38, 43, 82, 86).

The capillary dysfunction can arise from almost any
element within the neurovascular unit. A thin (0.5µm)
glycoprotein coating in the luminal side of the endothelium,
called glycocalyx, facilitates passage of blood cells (87–89).
Glycocalyx can degrade very fast with excessive inflammatory
stimuli like lipopolysaccharides, hyperglycemia, ischemia, and
oxidative stress (90). A degraded glycocalyx exposes underlying
endothelium to physical interaction with blood cells. This
usually results in a higher degree of cellular adhesion. Each
cellular plug, whether permanent or transient, can then increase
resistance in that particular segment, change pressure gradient,
flux, and hematocrit distribution in nearby capillary bed and
cause irregular hemodynamics. A relative increase in hematocrit
in other capillaries within the same network may increase the
tendency for plugging.

Endothelial cell dysfunction can significantly contribute
to dysregulated capillary flow. This dysfunction includes a
reduction in endothelium-derived nitric oxide availability.
Moreover, gap-junction uncoupling between endothelial cells
increases functional shunting by introducing irregularities to the
microvascular cross-sectional profiles, caused by desynchronized
regulation of smooth muscle or pericyte tone (91, 92). A
dysfunctional endothelium is also more prone to leukocyte
adhesion, as nitric oxide is a well-recognized modulator of
leukocyte adhesion (92–94). Leukocyte plugs and resultant flow
stalls in capillaries can unfavorably affect flow patterns and,
the release of leukocyte-derived oxygen radicals or cytokines
can damage the endothelium and overlying glycocalyx. BBB
breakdown may accompany a damaged and dysfunctional
endothelium. Endothelium, besides these barrier-forming and
material exchange functions, is also involved in immunological
regulation, leukocyte adhesion and regulation of thrombosis as
well as vascular tone (95).

Pericytes maintain the BBB, interact with immune cells (96)
and, since they are contractile, regulate capillary flow distribution
within the microvascular network. Both constriction or dilation
of capillaries mediated by pericytes can result in stalls in cellular
flow or functional shunts (32). Pericytes contract or constrict
with changes in oxygen tension, with exposure to reactive
oxygen radicals, noradrenaline, ATP and endothelin (28, 30, 53,
97), while glutamate, adenosine, lactate, nitric oxide, and C-
type natriuretic peptide cause relaxation (30, 97–99). Besides
active contractile changes, loss of pericytes themselves can cause
capillary dysfunction (100). Amyloid-beta has been shown to
cause pericyte degeneration (101, 102), which may be a possible
link between neurodegenerative disorders and microcirculatory
dysfunction. Hyperglycemia directly causes pericyte death or
migration, hence, leaky newly-formed microvessels are typical
features of diabetic retinopathy (99, 103). Pericytes have been
shown to migrate along or away from vasculature following
traumatic injury (104, 105). With pathological stimuli, pericyte
process coverage over capillary wall can decrease, further
disrupting microvascular physiology (106, 107).

Finally, the physicochemical properties of plasma or blood
cells themselves can introduce microcirculatory heterogeneity.
As noted above, RBCs andWBCs have large diameters compared
to capillaries therefore they need to squeeze through the
narrow capillary lumen, significantly making passage challenging
and vulnerable to disturbances (108). Even subtle capillary
constrictions can therefore dramatically affect RBC perfusion
distribution in a capillary network (36, 82). Changes in cell
count, size, stiffness, flexibility, and adhesion can affect the
capillary transit (8). In experimental models of polycythemia
vera and essential thrombocythemia, it has been shown that
individual capillaries are clogged by RBCs, and then platelets,
affecting the CBF (41). Rheological properties, like deformability
of RBCs can affect microcirculatory efficiency as seen in diabetes
(109). Blockade of capillaries by activated neutrophils are also
observed in cerebral ischemia (110–113). Dehydration and
elevated homocysteine can increase plasma viscosity and/or
hematocrit, causing formation of RBC aggregates, and capillary
plugs (38, 114). It should be noted that plasma may continue to
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flow though even when there is no cellular flow in a capillary,
unfavorably affecting tissue survival as plasma provides glucose
to the hypo-oxygenized tissue, promoting lactate production and
tissue acidosis (28, 115–117).

The tissue can tolerate a certain degree of capillary
dysfunction by regulating upstream arteriolar flow (either
increasing or decreasing) to optimize oxygen extraction (37,
44, 118–120). A reduction in resting CBF and suppression
of functional hemodynamic responses can be a part of this
compensation (37, 121). But after a certain degree of CTH,
usually accompanied by a higher level of capillary diameter
irregularities, glycocalyx damage, elevated blood viscosity,
leukocyte adhesion, and excessive red blood cell stalls, the
supplied oxygen cannot sustain neuronal homeostasis any
more (36). At this level of severe capillary dysfunction, where
CBF is close to the ischemic threshold, slight changes in
metabolic needs, systemic blood pressure, leukocyte count,
or blood viscosity may cause appearance of hypoxic/ischemic
neurological symptoms (36, 37). These events can also cause
irreversible morphological changes in microcirculation, like
capillary pruning, or appearance of string capillaries with no
functional lumen (122–124). It should be noted that all these
pathological events described above could occur in the absence
of a flow-limiting condition, like arterial occlusion, or stenosis.

MICROCIRCULATORY DYSFUNCTION IN
NEURODEGENERATION

Small Vessel Disease
Small vessel disease is a clinical and imaging phenomenon caused
by different etiologies and characterized by pathological changes
in vasculature with a diameter <100µm, including, arterioles,
venules, and capillaries (1, 125). It is a common cause of cognitive
impairment, gait problems and disability in the elderly (125).
Uncontrolled hypertension or diabetes are among the leading
risk factors for this chronic vasculopathy characterized with
concentric smooth muscle thickening, especially in penetrating
vessels as well as pericyte degeneration, basal membrane
thickening, endothelial, and astrocyte end-feet swelling in
capillaries (38, 126–129). Pro-inflammatory conditions in the
endothelium increases tendency to leukocyte adhesion and
activation in this pathologic setting (130–134). The slowly
progressive worsening ofmicrocirculatory structure and function
may result in neuronal loss, brain atrophy, and the white
matter changes detected as leukoaraiosis or diffuse white matter
hyperintensities with MRI (135, 136). While capillary-level
damage may insidiously progress over time, acute vascular
events, like spontaneous rupture, or thrombosis of already
damaged arteriolar branches (137–141), leading to stepwise
clinical deterioration (1). It is not surprising that either the
chronic progressive vasculopathy or acute ischemic events
superimposed on this is a primary cause of microcirculatory
dysfunction, the details of which are outlined in the next section.

Ischemic Stroke
Currently, the only approved treatment of an acute ischemic
stroke is prompt recanalization within few hours either by

mechanical thrombectomy or thrombolysis with intravenous
or intra-arterial tissue plasminogen activator. At the present,
this treatment approach only takes large vessel recanalization
into account. However, tissue reperfusion is usually incomplete,
hence oxygen extraction is not optimal even after complete
recanalization (38). In the ischemic brain, pericytes contract
in response to hypoxia and reactive oxygen species (28). This
luminal narrowing and irregularities can easily block cellular
passage, while plasma may continue to flow. Recanalization
of the artery does not resolve this microvascular dysfunction
as the capillary constrictions are sustained, leading to the no-
reflow phenomenon (142, 143) (Figures 3A–E). The quality
of capillary perfusion after recanalization is indeed a better
indicator of functional outcome than recanalization itself (144,
145). If the capillary flow patterns are extremely dysfunctional
and heterogeneous, the recanalization may in fact introduce
more functional shunting, paradoxically reducing the oxygen
availability (36, 38, 146).

In the ischemic brain, activated neutrophils can also
temporarily plug capillaries with their large size and stiff
cytoplasm, and can disturb the RBC transit (108). As a clinical
evidence, leukocytosis and a high neutrophil fraction are bad
prognostic factors in ischemic stroke (147–150). Stroke incidence
as well as stroke-related mortality is higher during acute
infections (36, 151). The dynamic microcirculatory dysfunction
may continue after stroke onset, potentially contributing to
infarct expansion over the subsequent days despite recanalization
(152–155). One essential way to prevent infarct growth appears
to reverse any capillary flow disturbance in addition to large
artery recanalization. It is also becoming clear that the definition
of ischemic tissue based solely on the level of CBF decrease is
insufficient and the capillary flow patternsmust also be taken into
account (36).

The ischemia-induced microvascular dysfunction progresses
in a graded fashion. With a temporary decrease in perfusion
pressure in a normal and compliant microvasculature, the
cells transiting the microvasculature slow down, since there is
less driving force due to lower pressure gradient. Accordingly,
MTT values increase. The CTH calculated based on the
standard deviation of transit times in multiple pathways
across the capillary bed proportionally increases as well.
Thereby, the relative transit heterogeneity (RTH=CTH/MTT)
remains unchanged and oxygen delivery to the tissue can
still be sufficient to match the demand. However, with
ongoing ischemia, structural irregularities, like constrictions,
and glycocalyx damage in capillaries emerge, making cellular
passage complicated (Figures 3F–L). This time, the increase in
CTH will be higher than what can be mathematically expected
from prolongation of MTTs. The disproportional increase in
CTH will yield to higher RTH values, pointing to a specific
dysfunction in microcirculation that can result in suboptimal
oxygen extraction for the ischemic tissue. The above simplified
progressive microcirculatory deterioration is the most likely
scenario taking place in the ischemic penumbra, corresponding
to a potentially salvageable tissue with timely and efficient
recanalization, whereas it can also undergo permanent damage
with increasing microvascular damage and oxygenation failure
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FIGURE 3 | Capillary dysfunction in ischemic stroke and flow-limiting conditions. (A,B) Differential interference contrast (DIC) microscopy images illustrate frequent

interruptions in the erythrocyte column in an ischemic capillary contrary to a continuous row of erythrocytes flowing through a non-ischemic capillary. Scale bar:

20µm. (C–E) The constricted segments colocalized with α-smooth muscle actin (α-SMA) immunoreactive pericytes. Scale bar: 10µm. (F–J) Very high frequency of

dynamic RBC flow stalls in ischemic penumbra shown with OCT angiogram time-series (Manuscript* in preparation). (K) Ideally, capillary flow should be homogeneous

across a capillary bed to optimize oxygen extraction. Arrows indicate direction of cell motion. (L) Pericyte contractions, and increased plugging of leukocytes and red

blood cells as a result of ischemia-induced capillary dysfunction, introduce severe heterogeneity into the microcirculation, resulting in redistributions of flow, and

pathological shunting. This can profoundly reduce the oxygen delivery into the tissue, even if the total plasma-perfused capillary count and absolute arterial input is the

same. Green arrows indicate constricted pericytes, red arrowheads indicate stagnant red blood cells, blue arrow indicates a plugged leukocyte. Deoxygenated RBCs

are darker and bluish in color. [A–E reproduced by permission from: Nature Medicine, Yemisci et al. (28)]. (*Manuscript by authors: Erdener SE, Tang J, Kilic K,

Postnov D, Giblin JT, Kura S, Chen A, Vayisoglu T, Sakadzic S, Schaffer CB and Boas DA).

(82). In the most severe form of ischemia, complete capillary
occlusions that do not allow even passage of plasma emerge.
This end-stage level of capillary dysfunction, paradoxically leads
to homogenization of capillary transit times measured from

remaining patent ones in the severely ischemic tissue that
is destined to infarct regardless of recanalization (82). This
low CTH probably reflects flow in maximally dilated flowing
capillaries and does not take into account the occluded ones.
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The phrasing may at first sound at odds with the capillary
flow homogenization during normal functional hyperemia that
provides optimal oxygen extraction (37). Although it may be a
similar neurovascular coupling effort for the tissue to optimize
blood flow using the capillaries left available (82), the absolute
amount of blood passing through the tissue this time is simply
very low, decreasing cerebral blood volume below the viability
threshold (156).

Chronic cerebral hypoperfusion, even if it doesn’t cause full-
blown ischemia, can have long-term effects on microcirculatory
structure. Experimental OCT data in mice with carotid artery
occlusion show a local micro-heterogeneity of capillary flow and
oxygen supply even at non-ischemic global blood flow levels
(49). The functional changes are accompanied by histological
signs of microglia and astrocyte activation along with capillary
dilatation, remodeling, increased tortuosity, and even amyloid-
beta accumulation (157–159). These structural pathologies can
further contribute to the progression of capillary dysfunction.
Recently, severity of carotid stenosis have been associated
with accumulation of cortical cerebral microinfarcts and poor
cognitive performance, even in patients who did not experience
acute ischemic stroke (160). Preoperative capillary transit time
heterogeneity measured by MRI, an indicator for capillary
dysfunction, predicts the functional independency (i.e., Modified
Rankin Scale) following endovascular treatment in patients with
symptomatic bilateral high-grade carotid stenosis (161).

Subarachnoid Hemorrhage
Subarachnoid hemorrhage shares many common
pathophysiological features with cerebral ischemia, because the
blood products in cerebrospinal fluid (CSF) can trigger arteriolar
and microvascular vasospasms (162). Hemoglobin breakdown
products and concomitant formation of reactive oxygen species
by iron released from hemoglobin (163) as well as release of
vasoconstrictive mediators like endothelin-1 and thromboxane
into the CSF may play roles in vasospasm (39, 164). Vasospasms
emerge usually a few days after the initial hemorrhage. Like in
cerebral ischemia, there is profound increase in capillary transit
time heterogeneity after subarachnoid hemorrhage, caused by
microarteriolar constrictions (165), reactive oxygen radicals,
astrocyte end-feet swelling, leukocyte increase, and activation
(39). There are numerous capillaries either without RBCs but
with plasma, or with stationary RBCs in them (166). Capillaries
with smaller diameters have been shown to have less probability
to be perfused with RBCs (167). Because of these disturbances
in microcirculation, attempts to relax the vasospasm in large
arteries are not very effective. The microcirculatory pathology
may begin even before gross vasospasm settles in. Within a few
minutes after experimental subarachnoid hemorrhage, there is
a heterogeneous slowing down of capillary flow with prominent
irregularities, even though there is some dilation in penetrating
vessels and precapillary arterioles (168, 169). Dilatory response
to CO2 is lost and an inverse neurovascular coupling response,
i.e., constriction instead of expected hyperemia with sensory
stimulation is observed 24 h after experimental subarachnoid
hemorrhage (170). Whether this flow suppression is an
outcome of pathologically high capillary heterogeneity or is a

compensatory CBF decrease to optimize oxygen extraction is
currently unknown (39).

Traumatic Brain Injury/Chronic Traumatic
Encephalopathy
Ischemic injury is a well-known histological hallmark of
traumatic contusion injuries (171). A reduction in global CBF
almost always accompanies a contusion or traumatic hematoma.
If the injury is severe, vasospasms in large vessels can emerge
similar to subarachnoid hemorrhage, causing multifocal infarcts.
Elevated intracranial pressure due to traumatic injury in animal
models caused severely disturbed capillary flow and limited
oxygen and solute extraction due to heterogeneity and shunts
in the capillary bed (37, 172). This can be partly explained by
a direct negative effect of increased intracranial pressure on
cerebral perfusion pressure. The decrease in CBF can last for
12 h and functional blood flow responses are usually suppressed
during this period (173, 174). Histologically, there is evidence of
astrocyte end-feet swelling, pericyte contraction, and increased
expression of smooth muscle actin (174). Also, pericytes have
been shown to detach from the vessel wall early after the
traumatic insult (105), which might contribute to blood-brain
dysfunction in capillary bed (175). Capillaries have been shown
to be the major site of vascular leakage in animal models after
cortical trauma (176). Increased inflammatory protein expression
and activation of leukocytes promote cellular adhesion, therefore
limiting RBC passage and causing functional capillary stalls
and shunts (108, 174). Leukocytosis, like in ischemic stroke,
is associated with poor outcome following traumatic brain
injury (172).

Interestingly, a gross contusion, hematoma, or intracranial
pressure increase is not necessary for microcirculatory
abnormalities to develop. A single mild concussion in mice
can also decrease CBF 30–40% up to 24 h, as measured
with diffuse correlation spectroscopy (177). With repetitive
injuries, the oligemic response can extend to 72 h (177). The
microcirculatory disturbances induced by mild injuries are
independent of increases in intracranial pressure (178). Instead,
cortical spreading depolarizations (CSD) multifocally triggered
after such insults correlate with neuronal injury and cerebral
microbleeds (172). CSDs are self-propagating waves of intense
neuroglial depolarization, followed by prolonged suppression
of neural activity. Whereas, CSDs associated with migraine
aura are benign, repetitive CSDs can cause tissue injury in the
setting of subarachnoid hemorrhage or cause infarct expansion
during cerebral ischemia, in the form of peri-infarct spreading
depolarizations (179–184). In a healthy brain, CSDs can initiate
a hyperemic response followed by a long-term oligemia but,
in an already ischemic brain, the hyperemia is reversed to
oligemia during the depolarization phase (185). CSD waves
cause sustained disturbances in capillary flow, causing massive,
and heterogeneous changes in erythrocyte velocities (186).
Pericytes contract during CSD in response to an increase
in cytoplasmic calcium (187). Neurovascular coupling can
disappear for hours, causing a supply-demand mismatch,
contributing to tissue injury (186, 187). The reduced (inverse)
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CBF response to increased metabolic load during massive
depolarization could help increase O2 extraction by slowing flux
rates (186).

Repetitive concussions are associated with chronic traumatic
encephalopathy (CTE), a cause of early onset dementia
and psychiatric disorders especially in boxers or American
football players and also in military veterans exposed to blast
injuries (188). Autopsy brain samples from CTE patients
and also rodent models have evidence of microcirculatory
pathology, characterized with swollen astrocytic end-feet and
processes forming tangles around capillaries, blood-brain barrier
breakdown, and perivascular deposition of hyperphosphorylated
tau especially in deep cortical regions (189–192). Even a
single blast exposure or concussive cortical impact in mice
has been shown to trigger a progressive tauopathy with
evidence of microvascular injury and neurodegeneration, which
started in the area of exposure first but spread distally over
months (193–195).

Alzheimer’s Disease
A reduction in CBF is observed early in Alzheimer’s disease
(AD) patients and this has been proposed as a predictor of
progression to overt AD from mild cognitive impairment (196–
198). Many vascular risk factors like coronary heart disease,
dyslipidemia, hypertension are associated with AD (199). The
underlying mechanisms and possible impact of the reduction in
CBF and microcirculatory abnormalities in the pathogenesis of
neurodegeneration are under investigation to better characterize
the cause-effect relationship. In mouse models, impaired cerebral
perfusion has been shown to stimulate amyloid-beta deposition.
Tau protein can also be hyperphosphorylated under hypoxic
conditions, even after brief and temporary episodes (200). After
global brain ischemia, expression of tau protein increases in CA1
area of hippocampus in mice, one of the most severely affected
areas in AD related to memory functions (201). Interestingly,
perivascular zones around penetrating arterioles, the bottlenecks
of the cerebral blood supply, are one of the initial areas showing
tau and amyloid beta deposition (202).

Electron microscopy has identified capillary wall damage,
basal membrane thickening and pericyte degeneration in autopsy
brains from AD patients (203). In MRI studies, cognitive
performance and level of cortical atrophy were found to be
associated with low CBF, high CTH, and low oxygen extraction
(86, 204). Similar dynamic abnormalities have also been found
in transgenic AD mice, with insufficient flow homogenization,
lower resting CBF, and reduced cortical oxygen availability (205).

A recent study using in vivo two photon microscopy in
transgenic mice with excessive amyloid deposition demonstrated
that an increased number of cortical capillaries had stalled
blood flow due to neutrophils adhered to vessel wall (11)
(Figures 4A–C). These stalls have also been found to correlate
with amyloid deposition and, targeting neutrophil adhesion
improved blood flow and cognitive performance (11).
Another longitudinal study tracked obstructed capillaries
and identified a VEGF-dependent pruning mechanism with
regression of endothelial cells, causing uncompensated
capillary loss (206). Perivascular macrophages, in response

to amyloid-beta, can release reactive oxygen species that can
aggravate microcirculatory dysfunction (207). Mouse models of
increased hyperphosphorylated tau expression revealed capillary
constrictions surrounded by swollen astrocyte processes (208),
formation of abnormal spiraling capillary morphologies with
impaired blood cell flux (33) (Figures 4D,E).

Transgenic mice with pericyte deficiency have been shown to
have impaired capillary perfusion and neurovascular coupling,
reduced oxygen supply, blood-brain barrier disruption, white
matter degeneration and, importantly, progressive AD-like
pathology (including progressive tauopathy and neuronal loss),
resulting in accelerated cognitive decline (31, 100, 209–
211). A recent study in AD patients showed reduced levels
of platelet-derived growth factor-B, a pericyte marker, in
precuneus, a cortical area affected in AD (101). We do
not know exactly how pericytes degenerate progressively in
those conditions, but there are some clues. For example,
external introduction or overexpression of amyloid-β can
damage pericytes directly (209, 212, 213) and conversely,
pericytes can themselves be a zone of production of amyloid-
β-associated proteins (214). Hypertension, dyslipidemia, and
ApoE4 isoforms, all independent risk factors for AD, can also
impair pericyte structure and function, that can potentially
initiate a neurodegenerative phenotype (215–220). Pathogenic
hyperphosphorylated tau, on the other hand, promotes BBB
injury directly (221); the possibility that this injurymay be related
to pericyte damage, however, remains to be investigated.

Other Chronic Neurodegenerative
Diseases
Accumulating evidence suggests that several other progressive
neurodegenerative conditions may also involve primary
microcirculatory pathologies, Like AD and CTE as discussed
above, other tauopathies such as corticobasal degeneration
(CBD), progressive supranuclear palsy (PSP) and amyotrophic
lateral sclerosis (ALS) exhibit possible microvascular
involvement (222).

In Parkinson’s disease, both experimental and clinical data
suggest microvascular involvement. Capillary loss and abnormal
fragmented capillaries or endothelial clusters can be detected in
substantia nigra, cerebral cortex and brain stem in pathological
brain samples (223). There are also compensatory new vessel
formations, which are possibly immature and leaky. In animal
models produced by MPTP treatment, decreased capillary
density or formation of abnormal endothelial clusters have been
reported as observed in autopsy brains (224).

CBD and PSP are two atypical and rapidly progressive
forms of parkinsonism. In postmortem brains of CBD and
PSP patients, prominent accumulation of hyperphosphorylated
tau in close proximity to vasculature, astrocytic proliferation,
and hypertrophy as well as reduced capillary diameter have
been detected (225, 226). These findings are difficult to test
experimentally since there are no established animal models
of these conditions. There are transgenic mouse models,
however, available for another tauopathy, ALS, with mutations
in superoxide-dismutase (SOD1) (227), tar DNA binding protein
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FIGURE 4 | Microcirculatory changes in experimental models of Alzheimer’s disease. (A) There is increased fraction of stalled capillaries in double-transgenic mice

overexpressing amyloid-beta (APP/SW1) due to increased plugging by leukocytes (Green: rhodamine-G labeled leukocyte, red: Texas-red labeled plasma). (B)

Vascular network tracings show distribution of stalled capillaries. (C) Although the fraction of stalled capillaries may seem small, computer simulations on capillary

networks show a prominent decrease in overall cerebral blood flow with gradual introduction of stalls. (D,E) In another model, 15 month-old mice overexpressing

pathological form of hyperphosphorylated tau (Tg4510) show abnormal capillary morphology, number and density (spiral shapes as shown with asterisks(*)). Scale bar

50µm (inset: 20µm) There is increased number of stagnant of leukocytes also in these capillaries (not shown here). (A–C reprinted by permission from: Nature

Neuroscience, Cruz Hernandez (11) ©2019 Springer Nature; (D,E) reproduced from Bennett et al. (33), by rights granted under a Creative Commons

BY-NC-ND license).

(TARDBP/TDP43) (228), fused in sarcoma (FUS) (229), or
C9orf72 (230) genes. SOD1 mouse model exhibits progressive
decrease in the anterior gray matter of the spinal cord, beginning
from the presymptomatic stage before neuronal degeneration,
and is accompanied by a reduction in capillary diameter and
density as well as slowing down of RBC flow (231). The flow-
metabolism coupling is also disrupted as glucose utilization
in contrast to the oxygen availability is increased especially
in early stages. These findings become more profound as
the disease progresses (232). At present, there is no reported
data on microvascular features of mice with other ALS-related
mutations, however, future studies might provide deeper insight.

In ALS patients, the cerebral blood flow is decreased especially
in the prefrontal cortex (233, 234) and a clinical picture of
frontotemporal dementia can accompany ALS (235). In ALS
patients, the blood-spinal cord barrier is also damaged and
extravasated hemoglobin and hemosiderin deposits can be
detected in perivascular areas (236). In ALS transgenic mice,
there is data showing capillary pericyte degeneration and blood-
spinal cord barrier leakage, which can precede motor neuron
degeneration (231, 237).

Finally in epilepsy, a group of disorders characterized with
chronic repetitive seizures, progressive neurodegeneration can
occur over time and also a single prolonged seizure can
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initiate such degeneration (238, 239). This has previously been
attributed to glutamate-induced excitotoxicity (240). Since there
is usually increased blood flow in seizure foci (241–243),
one would not readily suspect from impaired oxygenation as
a possible cause of neuronal loss. But as discussed above,
capillary dysfunction may occur in the setting of increased
cerebral blood flow (38). An elegant study with in vivo two-
photon microscopy, however, identified individual capillaries
with pericyte contractions and accompanying stalls in blood
flow in hippocampus of epileptic mice during seizures and those
abnormal capillary vasodynamics created an environment with
irregular capillary flow and possibly microscopic hypoxia, which
was associated with neurodegeneration in close proximity of
constricted capillaries (244).

POSSIBLE THERAPEUTIC APPROACHES
TO IMPROVE CAPILLARY FLOW AND
OXYGENATION

The above-discussed findings strongly suggest that, to slow down
or to reverse the acute and chronic neurodegeneration, the
microcirculatory structures and dynamics must also be taken
into account. Interventions to improve the microcirculation
need to have specific targets to homogenize capillary flow
and optimize oxygen and glucose extraction that would
meet the metabolic needs at all times. These approaches
should complement interventions for the macrovessels. Any
attempt to increase the cerebral blood flow without correcting
microcirculatory disturbances may aggravate heterogeneous
shunting and paradoxically worsen oxygen extraction (38).

Reactive Oxygen Species and Pericyte
Contraction
Various scavengers can target reactive oxygen species that
are responsible for vasospasms as well as capillary pericyte
contraction and endothelial dysfunction. One of these, N-
tert-Butyl-α-phenylnitrone (PBN), has been shown to improve
microcirculation in a mouse model of cerebral ischemia,
improving tissue injury and functional outcome (245). Since
NO depletion may be contributory to capillary constriction,
nitric oxide inhalation as well as nitrite infusion have been
suggested to improve microcirculation and tissue oxygenation in
various models of neurovascular disorders (246–252). Like nitric
oxide, adenosine is involved in active physiological regulation
of microvascular diameter and perfusion (58, 253). Adenosine
is endogenously released as a metabolic end product of
cerebral activity and external adenosine administration increases
capillary diameter by relaxing pericytes in both myocardial
and cerebral microcirculation, under ischemic conditions (99,
254–256). A major problem with nitric oxide donors and
adenosine-based therapies is their systemic side effects, including
systemic cardiovascular and respiratory changes (257–260).
Novel strategies that allow targeted cerebral delivery of such
potent drugs, like squalenoyl adenosine nanoassemblies (99),
or nanoparticulated nitric oxide donors (261), and also inhaled
nitric oxide that does not have systemic cardiovascular side

effects, can be highly useful to promote clinical translation of this
pharmacologic potential.

Capillary pericytes constrict in response to adrenergic
receptor activation and with endothelin, therefore their
antagonists could be considered as potential therapeutic targets
(51, 262). Pericyte constriction is calcium-dependent as it
involves actin machinery (30). Voltage-gated calcium channel
blockers have been shown to decrease pericyte constrictions
and also pericyte death, improving capillary transit time
homogenization (262, 263). Ca+2-activated chloride channels
can also potentiate pericyte depolarization and constriction and
can be another target (262, 264). Rho-kinase pathway inhibition
can reverse abnormal pericyte contractions (265, 266) and this
approach has been found to be neuroprotective in mouse models
of cerebral ischemia (267–269).

Glycocalyx Integrity
Shedding of glycocalyx can impair homogeneities in RBC
flux and increase endothelial-leukocyte adhesion. Glycocalyx
has been protected by anti-thrombin administration in a rat
sepsis model and this treatment decreased leukocyte adhesion,
improving microcirculatory blood flow in mesentery (270,
271). Avoiding hyperglycemia is also beneficial for glycocalyx
integrity (271). Similarly, a hydroxyethyl starch improved
lung microcirculation by preventing experimental glycocalyx
degradation by heparinase (90). Therefore, restoring glycocalyx
integrity can be another potential treatment approach.

Blood Viscosity and Hematology
Since increased leukocyte count, activation, and increase in
hematocrit (either due to higher RBC number or dehydration)
increase capillary clogging, stalls and heterogeneity, blood
viscosity, and endothelial adhesion could be one of the possible
targets. Phosphodiesterase inhibitors like pentoxifylline increase
RBC flexibility and decrease blood viscosity (272, 273) and they
can indeed improve microcirculatory profile while their direct
effects on augmenting NO activity might be another contributor
to this (274). Prevention of dehydration and concomitant
infections could also be beneficial for a regular and optimal
capillary flow (38). These two factors are among the most
common triggers of delirium and cognitive fluctuations in elderly
patients with dementia (275).

Decreasing leukocyte count has been reported to provide
a beneficial outcome in animal models of cerebral ischemia
(276). A monoclonal antibody against Ly6G surface proteins
on neutrophils has improved microcirculation by reversing
neutrophil-mediated capillary stalls in mice, increased
blood flow and behavioral scores acutely in mice, an
effect attributed to modulation of neutrophil adhesion in
capillaries (11). The same antibody has been found to be
beneficial in mice with subarachnoid hemorrhage (277)
and after stroke in hyperlipidemic mice (278). The exact
physiological role and endogenous receptor of Ly6G is
currently unknown (279) but these experimental data require
further investigations.

Other innovative approaches to modulate rheological
parameters of blood cells are continuously being developed.
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Drag-reducing polymers improved flexibility of RBCs, decreasing
cell stasis in capillaries, and plasma separation in capillary
branching points, improving capillary flow heterogeneity in
cerebral and myocardial ischemia models (280–282). Uptake of
plasma-derived extracellular vesicles by RBCs have recently been
shown to increase their deformability (283, 284).

CONCLUSION

Our review can help the recognition that many microvascular
pathogenetic mechanisms are shared across a variety of acute
and chronic neurological conditions and these mechanisms
are not simply by-standers but are actually role-players,
emerging in very early phases of neurodegenerative conditions.
With advancement of optical microscopy, MRI-based imaging
tools having higher spatiotemporal resolution as well as
computer models, the physiology and vulnerabilities of the
microcirculation will be better elucidated. Investigators in the
field should not be surprised to see the introduction of previously
unknown details, which will eventually lead to much better

neuroprotectants for many neurological disorders within the
next decades.
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18. Sakadzić S, Yuan S, Dilekoz E, Ruvinskaya S, Vinogradov SA, Ayata C, et al.
Simultaneous imaging of cerebral partial pressure of oxygen and blood flow
during functional activation and cortical spreading depression. Appl Opt.
(2009) 48:D169–77. doi: 10.1364/AO.48.00D169

19. Sinks LE, Robbins GP, Roussakis E, Troxler T, Hammer DA, Vinogradov SA.
Two-photon microscopy of oxygen: polymersomes as probe carrier vehicles.
J Phys Chem B. (2010) 114:14373–82. doi: 10.1021/jp100353v

20. Lecoq J, Parpaleix A, Roussakis E, Ducros M, Houssen YG, Vinogradov
SA, et al. Simultaneous two-photon imaging of oxygen and blood
flow in deep cerebral vessels. Nat Med. (2011) 17:893–8. doi: 10.1038/
nm.2394

21. Esipova TV, Barrett MJP, Erlebach E, Masunov AE, Weber B, Vinogradov
SA. Oxyphor 2P: a high-performance probe for deep-tissue longitudinal
oxygen imaging. Cell Metab. (2019) 29:736–44. doi: 10.1016/j.cmet.2018.
12.022
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