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Background:While in symptomatic forms of dystonia cerebral pathology is by definition

present, it is unclear so far whether disease is associated with microstructural cerebral

changes in idiopathic dystonia. Previous quantitative MRI (qMRI) studies assessing

cerebral tissue composition in idiopathic dystonia revealed conflicting results.

Objective: Using multimodal qMRI, the presented study aimed to investigate alterations

in different cerebral microstructural compartments associated with idiopathic cervical

dystonia in vivo.

Methods: Mapping of T1, T2, T
∗
2, and proton density (PD) was performed in 17 patients

with idiopathic cervical dystonia and 29 matched healthy control subjects. Statistical

comparisons of the parametric maps between groups were conducted for various

regions of interest (ROI), including major basal ganglia nuclei, the thalamus, white matter,

and the cerebellum, and voxel-wise for the whole brain.

Results: Neither whole brain voxel-wise statistics nor ROI-based analyses revealed

significant group differences for any qMRI parameter under investigation.

Conclusions: The negative findings of this qMRI study argue against the presence

of overt microstructural tissue change in patients with idiopathic cervical dystonia. The

results seem to support a common view that idiopathic cervical dystonia might primarily

resemble a functional network disease.

Keywords: idiopathic dystonia, quantitative MRI, relaxometry, proton density, movement disorders

INTRODUCTION

Idiopathic focal dystonias are movement disorders of unknown cause defined by presence of
sustained or intermittent muscle contractions causing abnormal, often repetitive movements,
postures or both, which affect a single body region (1). The most frequent forms include cervical
dystonia, blepharospasm, writer’s cramp, spasmodic dysphonia, oromandibular dystonia, and
Meige syndrome (1, 2). The clinical manifestations are similar to the acquired forms of focal
dystonia, which may be caused by a single or multiple macroscopic lesions of vascular, traumatic,
toxic, infectious, or neoplastic origin (1) in the putamen, caudate nucleus, globus pallidus (3), or
posterolateral thalamus (4).

While in symptomatic forms of dystonia cerebral pathology is by definition present, it is not
yet clear whether development of idiopathic dystonia is also driven by microstructural cerebral
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changes as most histopathological studies either found no overt
pathology, or have not yet been replicated (2). None of the
previous histopathological studies found any abnormality in the
basal ganglia (5–9).

Although histopathological studies are crucial for
understanding the cellular mechanism leading to manifestation
of dystonia, they are commonly restricted to a relatively small
sample size and/or analysis of a fraction of the cerebral tissue
due to methodological constraints. Non-invasive imaging
methods, especially magnetic resonance imaging (MRI), do
not share this limitation. However, previous imaging studies
in idiopathic dystonia have failed so far to provide a definitive
answer as to the presence and localization of morphological
abnormalities (10, 11). For instance, an increased gray matter
(GM) volume has been observed in the striatum and cerebral
cortex in some patient cohorts (12, 13), whereas other studies
have reported widespread decreases of GM volume (14–16).
Importantly, most previous studies are based on conventional
MRI techniques showing mixed signal contrasts, which cannot
be easily linked to the underlying microstructural tissue changes.
Inconsistencies among the studies may arise from hardware-
specific factors that affect conventional MRI techniques (10, 17).
Well-defined physical parameters unaffected by hardware-
specific bias, including T1, T2, and T∗

2 relaxation times, and
proton density (PD), can be obtained using quantitative MRI
(qMRI) (18). These qMRI parameters can be more directly
attributed to certain microstructural tissue properties, which
makes them promising candidates for investigations of patients
with neurological disorders in general.

In fact, the majority of previous qMRI studies in idiopathic
dystonia have employed diffusion tensor imaging (DTI) to probe
for changes in tissue microstructure via the measurement of
parameters that are related to the diffusion of water molecules
in tissue (19–23). In these studies, diffusion changes have been
reported for various brain regions such as the basal ganglia,
cerebellum, motor cortex, and white matter tracts. However,
findings are highly heterogeneous and also partly inconsistent
across studies (24, 25).

So far, only two previous studies have used MRI relaxometry
for the assessment of cerebral tissue composition in idiopathic
focal dystonia, both examining patients with idiopathic cervical
dystonia. The first study reported increased T2 relaxation times
in the putamen and globus pallidus, which were attributed to
focal cell loss and subsequent gliosis resulting in increased water
content (26). In contrast, themore recent study has demonstrated
decreased T∗

2 values in the globus pallidus, suggesting an
increased iron content associated with the disease (27). T2 and
T∗
2 likely reflect microstructural properties such as the iron and

myelin content, which affect both T2 and T∗
2 relaxation times

in a similar way (28–30). Thus, interpretation of the results
of the previous qMRI studies showing T2 increases in one
study and T∗

2 decreases in the other study in idiopathic focal
dystonia is challenging (26, 27). To our knowledge, there have
been no further studies employing MR-relaxometry in idiopathic
dystonias. Therefore, it remains unknown so far whether other
qMRI parameters, such as the T1 relaxation time or PD, are
also affected.

To address these issues, we used a multimodal qMRI
protocol employing T1, T2, T∗

2 , and PD mapping in order
to simultaneously assess multiple tissue characteristics that
are potentially affected in patients with idiopathic cervical
dystonia. The major goal of this study was to investigate
whether one or several of the brain tissue relaxation times
T1, T2, T

∗
2 , or the PD differ between patients with idiopathic

cervical dystonia and healthy subjects. To this end, group
comparisons of qMRI parameter maps were performed using
techniques for whole brain voxel-wise statistical analysis and,
additionally, using a region of interest (ROI)-based approach.
With respect to the latter, averaged T1, T2, and T∗

2 relaxation
times and PD were derived from the respective parameter
maps for several subcortical and cerebellar ROIs, which are
thought to be primarily involved in the pathophysiology of
the disease (2, 10).

MATERIALS AND METHODS

Participants
Twenty patients with idiopathic cervical dystonia were initially
recruited for this study. Datasets from three patients were
discarded due to movement artifacts, so the analysis comprised
17 patients (nine females). All patients received botulinum
toxin A as part of their regular treatment. The degree of
disability was rated using the Tsui Scale (31). Furthermore, 29
age- and gender-matched healthy subjects participated in the
study (15 females). The approval by the institutional ethics
committee (Ethik-Kommission des Fachbereichs Medizin der
Goethe-Universität Frankfurt am Main, Germany) was obtained
and all participants gave their written informed consent before
taking part in the study.

The MRI acquisition was performed on a 3-Tesla whole
body scanner (Magnetom TRIO MR scanner, Siemens Medical
Solutions, Erlangen, Germany), equipped with an 8-channel
phased-array head coil for signal reception and a body coil for
radio frequency (RF) transmission.

The following measures were taken to reduce movement
artifacts: Scans were conducted∼2 weeks after the last treatment
with botulinum toxin when satisfactory treatment effects were
already present in most patients. None of the examined patients
suffered from severe head tremor. Furthermore, the head was
comfortably bolstered in the coil to reduce movements.

Data Acquisition
T1, T2, T

∗
2 , and PD maps are the results of specific procedures

that measure actual tissue parameters for each single voxel
(for example using exponential fitting for T2 mapping) and
apply corrections for hardware effects such as transmit field
inhomogeneities, the receiver bias, and B0 inhomogeneities.
As opposed to conventional T1/T2(

∗)/PD-weighted images, the
respective qMRI maps represent “pure” T1/T2(

∗)/PD contrasts.
The value of each single voxel in the parameter maps represents
a physical quantity that can be used for statistical testing.

T1 and PD mapping were based on the variable flip angle
(VFA) method (32). The technique requires two spoiled gradient
echo (GE) datasets acquired at different excitation angles α1
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and α2, the smaller angle yielding stronger PD weighting,
the larger angle stronger T1 weighting. Acquisition parameters
were: scan duration: 9:48min, TE/TR/α1/α2 = 6.7 ms/16.4
ms/4◦/24◦, bandwidth (BW) = 222 Hz/Pixel, field-of-view
(FoV)= 256× 224× 160 mm3, resolution= 1× 1× 1 mm3. A
special readout scheme was used to increase the signal-to-noise
ratio (33), acquiring two gradient echoes with different degrees
of phase encoding after each excitation pulse.

Mapping of non-uniformities of the transmitted
radiofrequency (RF) field (B1) was performed as described
previously (34). The method is based on the acquisition of two
GE datasets, one of which is preceded by an RF pulse (nominal
angle: 45◦) which causes a B1-dependent reduction of the
longitudinal magnetization and therefore of the signal intensity.
The parameters were: scan duration: 0:53min, TE/TR/α =

5ms/11ms/11◦, BW = 260Hz/Pixel. FoV as above, resolution:
4× 4× 4 mm3.

Furthermore, two GE datasets with different TE were
recorded. These were required for correcting residual signal
losses induced by T∗

2 relaxation. The parameters were: scan
duration: 5min, TE1/TE2/TR/α = 4.3 ms/11 ms/1,336 ms/50◦,
BW= 292 Hz/Pixel. FoV as above, resolution= 2× 2× 2 mm3.

For T∗
2 and B0 mapping, eight multiple-echo GE datasets with

export of modulus and phase data were acquired: Scan duration:
5:46min, TE1−8 = [10, 16, 22, 28, 34, 40, 46, 52] ms, TR/α =

2,400 ms/30◦, BW= 299 Hz/Pixel, 40 slices, 2mm slice thickness
with 1mm inter-slice gap, FoV: 240 × 180 mm2, resolution =

1.25 × 1.25 mm2. The sequence was repeated with 50% and
25% resolution to correct for motion artifacts as explained in the
literature (35) (scan durations: 3:07 and 1:41 min).

T2 mapping was based on the acquisition of four fast spin echo
datasets with different TE: scan duration: 8:08min, TE= [17, 86,
103, 120]ms, TR= 8 s, BW= 100Hz/Pixel, FoV: 240× 180mm2,
matrix size: 192 × 144, 40 axial slices with a thickness of 2mm,
inter-slice gap of 1mm, spatial resolution: 1.25 × 1.25mm2,
turbo factor: 11, refocusing angle: 180◦.

Data Analysis
Data analyses were implemented with custom-written Perl, Bash,
andMATLAB scripts applying functions from FSL 5.0.7 (FMRIB,
Oxford, UK) (36), FreeSurfer 6.0.1 (Athinoula A. Martinos
Center for Biomedical Imaging, Boston, MA, USA) (37) and
MATLAB (MathWorks, Natick, MA, USA).

Calculation of T1, T2, T
∗

2, and PD Parameter Maps
The VFA method was used for mapping of T1 (32). Data were
corrected for B0 and B1 inhomogeneities and for the effect of
insufficient spoiling of transverse magnetization as described
previously (38). Beforehand, B0 maps were calculated from the
respective GE phase datasets that had been acquired at different
TE using FSL PRELUDE and FUGUE. B1 was obtained according
to a method described by Volz et al. (34).

Maps of T2 and T∗
2 relaxation times were calculated by voxel-

wise exponential fitting of the TE dependence of signal levels
in the respective datasets. Correction for movement artifacts
was included for T∗

2 mapping as described by Nöth et al. (35).
Furthermore, the T∗

2 maps were corrected for macroscopic B0

distortions according to a previous publication (39). The T2

maps were corrected for the effects of stimulated and secondary
echoes occurring in the fast spin echo datasets, using the method
described previously (40).

PD mapping was performed as described by Volz et al.
(41). Subsequently, the PD weighted GE-data were corrected
for B1 inhomogeneities and for T1 and T∗

2 effects. Furthermore,
a correction for inhomogeneities of the receive coil sensitivity
profile was performed via bias field correction (41).

For the purpose of subsequent normalization and tissue
segmentation, synthetic magnetization-prepared rapid gradient-
echo (MP-RAGE) datasets with mixed T1/PD-weighting were
derived from the T1 maps as described in the literature (42, 43),
calculating pseudo PD maps from the T1 values (44). The
following acquisition parameters were assumed: TR = 1,900ms,
TI = 900ms, FoV = 256 × 224 × 160 mm3, resolution: 1 × 1 ×
1 mm3, α = 9◦, echo spacing= 8.1ms, 192 phase encoding steps
inside the inner loop with symmetric k-space coverage.

Whole Brain Statistical Analysis
For whole brain voxel-wise statistical comparisons, data were
normalized into Montreal Neurological Institute (MNI) 152
space according to the following steps: T2 and T∗

2 maps were first
coregistered to the synthetic MP-RAGE data with FSL FLIRT.
Please note, that T1 and PD maps are already in the same
space as the synthetic anatomies. Synthetic MP-RAGE data were
normalized into MNI-space using FSL FNIRT after initialization
with FSL FLIRT. The resulting coregistration matrices were then
used to (co-)normalize the qMRI parameter maps.

For each qMRI parameter map (T1, T2, T
∗
2 , and PD), voxel-

wise statistical comparisons between groups were performed
with FSL “randomize” using unpaired t-tests and threshold-free
cluster enhancement for correction of multiple comparisons.
Voxels with the value zero in any dataset were excluded from
the analysis.

ROI-Based Statistics
For ROI-based statistics of qMRI parameters, tissue
segmentation of the synthetic MP-RAGE datasets (43) was
performed with the “recon-all” stream implemented in the
FreeSurfer toolbox. Masks of the putamen, pallidum, thalamus,
and caudate nucleus were extracted from the FreeSurfer results
for the right and the left hemisphere. As head movements are
represented bilaterally in the basal ganglia and in the motor
cortex (45), masks from both hemispheres were combined.
Furthermore, cerebellar WM/cortex masks with bihemispheric
coverage were extracted. To avoid partial voluming from
cerebrospinal fluid (CSF) compartments, voxels with T1 values
above 2,000ms were removed from all masks. For ROI-based
T2 and T∗

2 analyses, the masks were further coregistered to the
T2 and T∗

2 maps using inverted coregistration matrices from the
previous registration between the T2/T

∗
2 maps and the synthetic

MP-RAGE data. To reduce partial voluming effects related to this
coregistration, voxels with T2 values above an empirically defined
threshold of 200ms and voxels with T∗

2 values exceeding 100ms
were removed from the respective masks for each participant.
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FIGURE 1 | Regions of interest used for the evaluation of qMRI data

demonstrated for a representative subject in MNI 152 standard space (z = 8).

Blue: pallidum; red: putamen; green: caudate nucleus; violet: white matter;

yellow: thalamus.

Furthermore, a cerebral WM mask was created using the
segmentation tool FSL FAST. All voxels overlapping either with
subcortical or cerebellar masks were removed. To reduce partial
voluming, the WM mask was further eroded with a 3 × 3 × 3
mm3 kernel.

Averaged T1, T2, T
∗
2 , and PD values were derived from the

respective parameter maps for each bihemispheric ROI and
statistical comparisons between groups were performed using
non-parametric testing (Mann–Whitney–U, SPSS Statistics,
Version 22.0.0). qMRI data from subcortical ROIs were further
analyzed separately for each hemisphere. In addition, volumes of
deep GM and cerebellar regions measured with FreeSurfer were
also compared between groups.

RESULTS

The group of patients with cervical dystonia and the healthy
control subjects were not different in terms of age (dystonia:
51.0 ± 8.9 years, control subjects: 50.5 ± 10.4 years; unpaired
t-test: p = 0.86). The average Tsui score amounted to 5.2 ± 2.7
(range 1–10).

ROIs used for the extraction of qMRI values are presented in
Figure 1 for a representative subject in MNI 152 standard space
(z = 8). Figure 2 shows quantitative T1, T2, T

∗
2 , and PD maps of

the same subject presented in Figure 1.
Whole brain voxel-wise analysis did not unveil any significant

difference between patients with idiopathic cervical dystonia and
healthy subjects for any qMRI parameter (T1, T2, T

∗
2 , or PD).

qMRI results for the bilateral ROIs are demonstrated in
Figure 3 as boxplots (median, upper and lower quartiles and
90% CI) for both groups. For none of the qMRI parameters
any significant group difference was observed (T1: p ≥ 0.16,
T2: p ≥ 0.32; T∗

2 : p ≥ 0.11; PD: p ≥ 0.31). Evaluation of
subcortical ROIs for each hemisphere separately also yielded
only negative findings (Supplementary Table 1). There was no
group difference with respect to deep GM or cerebellar volumes
(Supplementary Table 2).

DISCUSSION

Using multimodal quantitative MRI, we did not observe
significant group differences with respect to cerebral T1, T2,
T∗
2 relaxation times, and PD between patients with idiopathic

cervical dystonia and healthy control subjects.
Previous conventional MRI studies have demonstrated subtle

differences in the volume in multiple brain structures in patients
with idiopathic dystonia. However, there is little agreement
among these studies (10): Increased (12, 13) and decreased GM
volume in various brain regions (14–16) or even a combination
of both (46–48) have been observed. The discrepancies between
these imaging studies seem to suggest that volume changes
in idiopathic dystonia are—if present at all—rather small and,
thus, difficult to detect in small cohorts. However, some of the
discrepancies may also be explained by the fact that conventional
MRI techniques rely on mixed signal contrasts (10) and are thus
affected by hardware-specific factors and artifacts.

In contrast to conventional MRI, qMRI techniques provide
tissue parameters that are unaffected by hardware effects. Thus,
in qMRI, a more direct link can be established between the
imaging parameters, such as PD, T1, T2, and T∗

2 , and the
underlying microstructural changes. PD mainly reflects the
tissue water content (49). The longitudinal relaxation time T1

also provides information about the water content (50, 51),
but is additionally related to iron content (51), the degree of
myelination (52), and the degree of gliosis and axonal damage
(53). T2 is primarily considered to be a marker of myelin
content, but is also affected by iron and water proportions (54).
T∗
2 provides the most direct information about the tissue iron

content (55).
Despite using quantitative parameters, our results differ

from the findings in the two previous qMRI studies using
T2 and T∗

2 mapping to investigate patients with cervical
dystonia. While the study by Schneider et al. (26) reported
a prolongation of T2 relaxation time in the putamen and
globus pallidus, another study observed decreased T∗

2 values
in the globus pallidus (27). Increased T2 relaxation times in
the basal ganglia nuclei were speculated to originate from cell
loss and gliosis and the T∗

2 decrease was interpreted as the
result of increased iron deposition exceeding the natural iron
increase associated with aging. Since the number of included
patients was similar in our study (17 patients) as compared to
the two previous studies [17 patients in (26) and 12 patients
in (27)], several possible reasons why previous results could
not be confirmed in this study, such as differences in patient
characteristics, should be considered. However, subjects included
in all three studies were of similar average age, i.e., 45.4
(27), 49.7 (26), and 51.0 years (present study). The average
disease duration in our study was 11.2 years, while it was 8.2
(27) and 6.4 years (26) in the previous studies. In summary,
the study populations were similar enough not to consider the
demographic differences as a significant factor that would explain
different study conclusions.

Several methodological differences can be identified that

might account for the inconsistent results. For instance, the

contribution of partial volume effects may vary across the
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FIGURE 2 | Quantitative T1, T2, T
*
2, and proton density maps shown for the same subject presented in Figure 1 (z = 8).

studies. This could especially affect studies utilizing acquisition
techniques with relatively lower spatial resolution, e.g., the
study by Schneider et al. (26) evaluating images with 5-
mm slice thickness and 7.5-mm gaps between slices. Further
systematic differences may arise from the method for ROI
selection. The ROIs were chosen manually in one previous
study (26), while an automated segmentation approach was
used by Aschermann et al. (27) and in our study. However,
even automated segmentation tools, such as FIRST in FSL (56)
or FreeSurfer (57), may yield different results as they employ
different algorithms and independent training datasets. Being
aware of the limitations of segmentation methods, efforts were
taken in the present study to minimize the partial volume
effects as described in the Materials and Methods section. Taken
together, using multimodal qMRI techniques with a high spatial
resolution and taking efforts to reduce partial volume effects,
no changes in qMRI parameters could be observed in the
present study.

The lack of significant group differences in qMRI parameters
observed in this study together with the heterogeneous findings
in previous conventional (10), DTI (19–23), and relaxometry
studies (26, 27) as well as the high variability of histological
findings (2, 5–9) raises the question of whether idiopathic

focal dystonias share a common site of microscopic pathology
at all. As a matter of fact, it has been previously suggested
that idiopathic focal dystonias may be considered as a
purely functional disorder (10, 11, 24, 58, 59). Network-wide
differences in brain activation that disappear with successful
symptomatic treatment have been observed in functional
MRI (60–62).

A previous histopathological study observed a reduced density
of Purkinje cells in cervical dystonia (9) suggesting that the
cerebellum might be a candidate region exhibiting common
histopathological changes, while the applied qMRI techniques
did not unveil cerebellar changes in the presented investigation.
Future combined histological and MRI studies might help to
explain this discrepancy and investigate the relationship between
histological findings and qMRI parameters more closely.

A limitation of this study is the relatively small sample size,
especially in the context of a negative result. However, 17 patients
with focal cervical dystonia have been included in the analysis
and this number lies in the range of previous qMRI studies in this
field. According to a standard power calculation, a sample size of
17 is sufficient to detect an effect of the size of the sample standard
deviation with a power of 0.83 (assuming a two-tailed t-test).
This renders the presence of a larger parameter change rather
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FIGURE 3 | Region of interest-based analysis of T1, T2, and T*2 relaxation times and proton density. qMRI values were averaged across bilateral ROIs and presented

as boxplots (median, upper, and lower quartile and 90% CI) for the patients with idiopathic cervical dystonia (DT) and healthy control subjects (HC). P-values for

between-group comparisons are inserted into the diagram below the corresponding boxplots. Ncl., nucleus; cerebel., cerebellum.

unlikely. In this context, it is also worth to consider inherent
accuracy limits of the method, which per se hamper the detection
of smaller parameter changes (i.e., those lying below the standard
deviation). For example, a scan-rescan variability of ∼3% was
observed for T1 measurements in Nöth et al. (42), and an even
higher variability can be assumed for T2 and T∗

2 measurements

(63, 64). Nevertheless, future studies would surely benefit from

larger sample sizes and a correlation of MRI with histologic
data in order to clarify some of the inconsistencies across the

existing studies.
In conclusion, assessment of patients with idiopathic cervical

dystonia with modern multimodal qMRI and segmentation
techniques did not unveil any changes in tissue composition.

The results seem to support the view that idiopathic cervical
dystonia might be primarily a functional network disease, albeit

the existence of tissue changes that lie below the accuracy of the
method cannot be ruled out at the moment.
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