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Objective: To determine whether the rich-club organization, essential for information
transport in the human connectome, is an important biomarker of functional outcome
after acute ischemic stroke (AIS).

Methods: Consecutive AIS patients (N = 344) with acute brain magnetic resonance
imaging (MRI) (<48 h) were eligible for this study. Each patient underwent a clinical MRl
protocol, which included diffusion weighted imaging (DWI). All DWIs were registered to a
template on which rich-club regions have been defined. Using manual outlines of stroke
lesions, we automatically counted the number of affected rich-club regions and assessed
its effect on the National Institute of Health Stroke Scale (NIHSS) and modified Rankin
Scale (MRS; obtained at 90 days post-stroke) scores through ordinal regression.

Results: Of 344 patients (median age 65, inter-quartile range 54-76 years) with a median
DWI lesion volume (DWIv) of 3cc, 64% were male. We established that an increase
in number of rich-club regions affected by a stroke increases the odds of poor stroke
outcome, measured by NIHSS (OR: 1.77, 95%CI 1.41-2.21) and mRS (OR: 1.38, 95%CI
1.11-1.73). Additionally, we demonstrated that the OR exceeds traditional markers, such
as DWIv (ORynss 1.08, 95%CI 1.06-1.11; ORrs 1.05, 95%CI 1.03-1.07) and age
(ORNjHss 1.03, 95%CI 1.01-1.05; ORyrsg 1.05, 95%CI 1.03-1.07).

Conclusion: In this proof-of-concept study, the number of rich-club nodes affected by a
stroke lesion presents a translational biomarker of stroke outcome, which can be readily
assessed using standard clinical AIS imaging protocols and considered in functional
outcome prediction models beyond traditional factors.
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INTRODUCTION

Stroke is a leading cause of adult disability and death worldwide
(1, 2). With limited treatment options, early and effective
strategies to predict and prevent adverse post-stroke outcome
hold promise of improving stroke survivors quality of life
and reducing the economic burden on society (3). However,
determinants of stroke outcome are poorly understood (4, 5).

Recent studies indicate that structural aspects, such as
white matter microstructural integrity, are related to functional
outcome post-stroke (6). This reflects the role that structural
connectivity, defined by brain regions connected through white
matter tracts, has in maintaining brain function and suggests that
a disrupted brain network [connectome (7)] may contribute to
the observed symptoms of stroke. The rich-club organization is
an important aspect of the connectome (8). It describes a set of
brain regions considered to be information hubs (8), which form
a backbone for information transport, critical for physiological
connectivity (8-10) and susceptible to impairment (11-14).

Severity of symptoms and outcome in acute ischemic stroke
(AIS) are strongly linked to a patient’s age and lesion size
(15-17). Recently, the independent role of acute stroke lesion
topography in functional long-term post-stroke outcome has
been recognized (18-21). However, the mechanisms through
which lesion location with respect to the underlying connectome
before stroke affect outcome have not been investigated.

In this report, we establish the extent of ischemic injury to
the rich-club as an important determinant of functional outcome
in AIS patients and highlight the importance of the underlying
connectome with respect to acute lesion location.

MATERIALS AND METHODS
Data

The retrospective data are sourced from the Genes Affecting
Stroke Risk and Outcomes Study (GASROS) study. At time
of enrollment, informed written consent was obtained from
all participating patients or their surrogates. The use of
human patients in this study was approved by the Partners
Institutional Review Board. Between 2003 and 2011, patients
presenting within 12h of symptom onset to the Massachusetts
General Hospital Emergency Department (ED) with symptoms
of AIS and >18 years old, were eligible for enrollment.
Patients were scanned within 48h of admission. Patients
with confirmed acute diffusion weighted imaging (DWI)
lesions on brain magnetic resonance imaging (MRI) scans
were included.

Clinical Outcome Assessment

All patients were evaluated by an ED neurologist, at which
point stroke severity was assessed using the National Institute
of Health Stroke Scale (NIHSS) (22) scale (a surrogate for early
outcome). Clinical data were extracted from the medical record.
Patients and their caregivers were interviewed in person or
by telephone at 3-6 months after stroke to assess functional
outcome using modified Rankin Scale (23) (mRS). If the patient
(or surrogate) was not available in person/by phone at that

time, their chart was reviewed and mRS determined from
the neurology clinic follow-up visit data available within this
time window.

We identified a total of 624 AIS patients with manually
outlined lesions on each patient’s diffusion MRI. Of those, 155 did
not have both outcome scores recorded and 37 failed the quality
control after image registration. Of the remaining patients, 344
were identified with supratentorial DW1lesions and subsequently
used in this analysis (Table 1).

Neuroimage Analysis

All patient underwent the standard AIS protocol on a 1.5T
Signa scanner (GE Medical Systems), which included All
patient underwent the standard AIS protocol on a 1.5T
Signa scanner (GE Medical Systems), which included axial
FLAIR (repetition time 5,000ms, minimum echo time of
62 to 116 ms, inversion time 2,200 ms) and DWI sequences
(single-shot echo planar imaging; one to five By volumes, 6-
30 diffusion directions with b = 1,000 s/mm?, 1-3 averaged
volumes on which the lesions were outlined) within 48h of
admission. Median in-plane resolution was 0.94 x 0.94 mm?
(interquartile range (IQR): 0.86-1.72mm for both directions),
with a median through-plane resolution of 6.0 mm (IQR: 6.0-
6.0mm). DICOM images were first converted to Analyze
format for computer-assisted measurement of DWI volume
using MRIcro software (University of Nottingham School of
Psychology, Nottingham, UK; www.mricro.com). Acute lesion
volumes were outlined by research staff on an averaged
volume, using a semi-automated approach (24) with a minimum
intraclass correlation coeflicient of 0.92 by readers blinded to
both clinical data.

DWI sequences were non-linearly registered to an age
appropriate FLAIR template (25) in MNI space using Advanced
Normalization ToolS registration (26) (ANTS; SyN registration
with standard parameters). No additional preprocessing was
required. Registration quality was manually assessed by an expert
reader. All registered images were manually assessed for gross
image and image intensity artifacts potentially affecting the
regions comprising the rich-club, e.g., due to eddy currents
or incomplete brain extraction, and no additional scans were
excluded from further analysis. Manual lesion outlines were then
warped into template space using nearest neighbor interpolation,
by using the registration parameters generated in the non-linear
registration step.

TABLE 1 | Study cohort characterization.

n Age DWIv Ngrc mRS NIHSS  Male sex
[mean [mean [mean [mean [mean (%)
(sd)] (sd)] (sd)] (sd)] (sd)]
All 344  64.59 15.01 1.33 1.68 5.58 64
(15.76) (30.00) (1.27) (1.74) (6.21)

DWly, diffusion-weighted imaging volume; Mrs, modified Rankin scale score; NIHSS,
National Institutes of Health Stroke Scale score; Ngc, number of rich-club nodes involved;
SD, standard deviation.
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Rich-Club Template and Nrc

We utilized the Harvard-Oxford atlas, where we identified those
regions that are part of the rich-club as described by van den
Heuvel and Sporns (8). The rich-club consists of three bilateral
cortical (precuneus, superior frontal and superior parietal cortex)
and sub-cortical (hippocampus, putamen and thalamus) regions.
This provided us with 12 individually labeled regions (see
Figure 1). Overlaying the template and manual lesion outlines
allowed us to then identify and count all affected rich-club
regions. We then utilized the count of affected rich-club regions
(Ngc) in the proposed models.

Model Description and Statistical Analysis
Multicollinearity was assessed based on the variance inflation
factor (VIF), where VIF > 10 indicates multicollinearity between
variables (27). We then assessed the agreement between our
semi-automated approach in identifying the number of rich-
club regions and the manual assessment of an export neurologist
(MRE), based 20 randomly selected patients and by calculating
the intra-class correlation coefficient (ICC). Models have the
form “response ~ terms,’ where response is the dependent
variable and terms the series of independent variables utilized
in the model, connected by “+4.” Inclusion of interaction terms
between independent variables are indicated by “:”. As a baseline
model for comparison, we define each outcome measure (NIHSS
or mRS) as

outcome ~ Age:Sex + DWIv,

For age, sex and acute lesion volume (DWIv). This model
also includes an interaction term between age and sex, as
women commonly experience cerebrovascular incidences later in
life (28).

The model including the number of rich-club regions for both
NIHSS and mRS is given by

outcome ~ Age:Sex + DWIv: Npc,

With an interaction term between Ngc and DWIv. This follows
the intuition that the larger the acute lesion, the more likely

it is that a higher number of rich-club regions are affected. A
graphical representation of both models is shown in Figure 2.
Model parameters were estimated using ordinal regression based
on an implementation of the cumulative link model (logit) in
R (29). We assessed both models, with and without interaction
terms, based on Akaike Information Criterion (AIC), log-
likelihood statistics and x? test for comparison using ANOVA.
Statistical significance was set to p < 0.05.

To validate our findings, we utilized 5-fold cross-validation.
We divided our data set 100 times into five approximately
equal sized, disjoint folds (characteristics shown in Table 1) and
repeated the analysis using 4 of the 5 folds at a time. This was
repeated 5 times and allowed us to assess the stability of our
parameter estimates, reporting mean and standard deviation of
the significant parameter in at least 95%, i.e., 475 out of 500, of the
folds. After model fit, odds ratios were calculated by transforming
the determined model parameters using an exponential function.
Finally, we use the subset of subjects which had a stroke, but
no rich-club involvement, to demonstrate the specificity of the

e
AN

FIGURE 2 | Graphical representation of the models. Black variables and
associations indicate the baseline model, while the addition of the red variable
(Nrc) and the corresponding associations reflects the outcome model.
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FIGURE 1 | Areas comprising the rich-club in the human brain. A total of 6 bilateral rich-club regions were previously identified in healthy adults. Cortical regions (left)
include the precuneus, superior parietal and superior frontal cortex. Sub-cortical regions (right) are comprised of the hippocampus, thalamus and putamen.
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rich-club nodes with respect to outcome over a simple number
of region count (N-y.,) affected by the acute lesion. All analyses
were performed using the computing environment R (30-32).

RESULTS

We examined 344 AIS patients with supratentorial lesions and
clinical diffusion MRI. Clinical characteristics of the cohort
are presented in Table 1. Excluded patients with phenotypic
information were on average of 63.0 & 15.7 years old (p <
0.01), 63.0% male, with an average DWI lesion volume of 9.7 &
26.4 cm® (p < 0.001). Registering each patients diffusion scan
to the template allows for automatic count of the number of
rich-club regions (Nrc) affected by the stroke lesion for each
patient. Figure 3 shows the distribution of Ny¢ with respect to
post-stroke outcome of the individual patients.

Figure 4 shows the relation between each independent
variable and each dependent outcome variable. For both outcome
scores, we performed ordinal regressions for a baseline and rich-
club model. Analysis of VIF suggested no multicollinearities
(VIFye = 1.0; VIFsex = 1.0; VIFpwry = 1.95 VIFN, =1.9)
(27). Calculating ICC between manual and semi-automatic
assessment of Nrc suggested good agreement (ICC = 0.8). Using
ANOVA, we compared the baseline and rich-club models for
both outcomes. In both cases, models were significantly different
(p < 0.001), suggesting that the inclusion of the Nrc provides
additional information for outcome. Table 2 summarizes the
estimates for the model parameters of all models and both
outcome variables, as well as the statistical comparison using
ANOVA. These results suggest that the models including Nrc are
a better descriptor of the data compared to the baseline models
and models excluding interaction terms.

In our cohort, 85 patients had no rich-club involvement with
1-17 regions affected by the stroke lesion (Pearson correlation
between Ny, and DWIv: 0.69) and outcome between 0-6 for
mRS and 0-27 for NIHSS. Parameters of the model fit are shown
in Table 3, suggesting that Ny, only affects NIHSS and not mRS.
We subsequently assessed odds-ratios (OR) for both outcome
variables using the rich-club models (Figure 5). In case of NTHSS,
age, DWIv and Ng¢ showed to increase the odds of worse early
outcome (increase in NIHSS) with ORs [95% confidence interval
(CD)] of 1.03 (1.01-1.05) for age, 1.08 (1.06-1.11) for DW1v, and
1.77 (1.41-2.21) for Ngc. Similar results were found for mRS as
late outcome measures, with ORs (CI) of 1.05 (1.03-1.07) for
both age and DWIv and 1.38 (1.11-1.73) for Npc. Additionally,
the interaction term between Nrc and DWIv showed an odds
ratio of 0.99 (0.98-0.99) and 0.99 (0.99-1.00) for NIHSS and
mRS, respectively. The CI of sex and its interaction term with age
includes one.

We validated these results using 5-fold cross-validation 100
times. For both mRS and NIHSS, we validated the trends in our
results with ORs of 1.05 £ 0.00 for age (0/500 not significant),
1.05 £ 0.00 (0/500 not significant) for DWIv, and 1.39 4 0.07
(22/500 not significant) for Npc in case of mRS and ORs of 1.03 +
0.01 for age (5/500 not significant), 1.08 &= 0.01 for DWIv (0/500
not significant) and 1.77 & 0.10 (0/500 not significant) for Ng¢ in
case of NITHSS.

DISCUSSION

Here we showed that the interaction of the network topology and
stroke lesion location is an important biomarker for functional
stroke outcome. We demonstrated that the effect size of Nyc
exceeds other well-established clinical variables in the models of
outcome after ischemic stroke. This underpins the significance of
lesion location in clinical prognosis. Further, the novelty of our
findings is that outcome measures as used in stroke populations
are capturing a complex array of functions, which cannot be
solely explained by a single region’s function, but rather their
importance in terms of global connectivity.

The rich-club is considered to facilitate information transport,
which is highly reliant on the integrity of those regions (9).
We demonstrate that this relationship is important both for
early (NIHSS) and late (mRS) outcome. The mRS, although
clinically important, is a coarse measure of function with only
seven categories, making a more detailed assessment difficult,
as it combines different levels of disability in broad categories.
Importantly, an mRS score of 6 reflects death, which may have
other causes beyond brain involvement. Nonetheless, we showed
that the odds of having a worse outcome as measured by mRS
increases by 1.38 per each additional region belonging to the rich-
club being affected. In contrast, NIHSS is a more fine-grained
assessment of stroke outcome used clinically as a measure of
initial stroke severity. Considering that NIHSS shows an odds
ratio of 1.77 in our study, this measure might be a robust marker
of long-term outcome if collected at 3 months for longitudinal
comparison (delta NIHSS) in future studies, either in addition to
or instead of mRS. Moreover, we show that the number of rich-
club nodes in our analysis outperforms a simple count of the total
number of regions affected, which had no effect on outcome in
patients with no rich-club involvement.

There are several important limitations to our study. The
DWIv and Npc parameters used in our models are highly
correlated. Although there is no indication of multicollinearity
between these variables, high degree of correlations can lead
to increasing uncertainty in parameter estimation. Furthermore,
we are currently only investigating a simple count of the
regions being affected, regardless of the extent to which a
lesion overlaps with the regions of interest. Utilizing the
percentage of the regions being affected in more sophisticated
models can help elucidate the relationships determined in
this manuscript. However, Nrc allows a simple and direct
way to estimate the effect of the stroke lesion in the clinic,
whereas acute lesion volume and/or the percentage of the region
being affected can currently only be determined outside of the
emergency setting, severely limiting its practical application.
Another limitation is related to the individual steps of the
preprocessing and neuroimage analyses that could be further
refined. In this study, we did not correct for eddy currents.
Manual assessment suggested that eddy currents did not affect
the regions comprising the rich-club; however, they may lead
to increased noise in the data analysis. However, by not
correcting for these effects, we simulated the ability of assessing
the affected regions from the raw data, as they are available
to clinicians in the clinic, making this a clinically relevant
approach. By showing good agreement between manual and
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FIGURE 3 | Number of rich-club regions affected by the stroke lesion (Ngg) with corresponding early (NIHSS) and late (mRS) outcome assessment. (Left) Early
outcome assessment [NIHSS; range: (0-42)] shows a correlation of 0.42 (o < 0.001), as assessed using Spearman’s Rank Correlation coefficient. (Right) Late
outcome assessed using 90-day mRS [range: (0-6)] also demonstrates a significant correlation with Ngc (Spearman’s Rank Correlation coefficient: 0.27; p < 0.001).
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random jitter was applied to all data points in x-direction (MRS and NIHSS) and only for non-continuous variables in y (sex and Ngg).
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TABLE 2 | Model parameters for both outcomes for the baseline, and rich-club model with and without interaction terms.

Outcome Model Parameter estimation (ordinal regression) Model comparison (ANOVA)
Age Sex Age: DWIiv NRrc DWIiv:Ngc AlIC Log- P
Sex likelihood

mRS Baseline 0.05** + 0.01 0.53 £ 0.87 |-0.02 +0.01| 0.02*** + 0.00 - - 1068.1 —524.1 e
Rich-Club 0.05"* £ 0.01 0.78 £ 0.87 |—-0.02 +0.01| 0.05** 4+ 0.01 | 0.33* + 0.11| —0.01** £+ 0.00| 1058.1 -517.0 7
Rich-Club w/o 0.04"* + 0.01 |0.70"* + 0.21 - 0.02"* + 0.00 | 0.26"* + 0.11 - 1065.0 | —522.5 -
interaction terms

NIHSS Baseline 0.02* + 0.01 0.61 £0.82 | —-0.01 £0.01| 0.04™* £ 0.00 - - 1847.5 —892.8 e
Rich-Club 0.03** £+ 0.01 0.9 +£0.82 | -0.02£0.01| 0.08"* £0.01 [0.57** £ 0.11|-0.01** £ 0.00| 1806.8 -870.4 7
Rich-Club w/o 0.02** + 0.01 | —0.18 £ 0.2 - 0.083"* £ 0.00 |0.40"* £ 0.11 - 1834.8 —886.4 -
interaction terms

Model parameters are determined using ordinal regression [cumulative link models (link: logit)] and significance levels are reported (o < 0.01; **p < 0.005; ***p < 0.001). Baseline
and rich-club models for mRS and NIHSS are assessed based on ANOVA using Akaike Information Criterion (AIC), log-likelihood statistics and x? test for the comparison between
models. DWIv, diffusion-weighted imaging volume; mRS, modified Rankin scale score; NIHSS, National Institutes of Health Stroke Scale score; Nrc, number of rich-club nodes involved;
SD, standard deviation.

TABLE 3 | Model parameters for both outcomes using the total number of affected regions without rich-club involvement.

Age Sex Age:Sex DWIiv Notal DWIV:NTotal
mRS 0.07 4+ 0.02** 1.49 £ 2.01 —0.03 £+ 0.03 0.05 £ 0.12 0.10 £ 0.09 —0.00 £ 0.01
NIHSS 0.08 £+ 0.02** 4.40 + 2.07* —0.05 £ 0.03 0.30 £ 0.14* 0.25 £ 0.10 —0.03 £ 0.01*

Model parameters are determined using ordinal regression [cumulative link models (link: logit)] and significance levels are reported *p < 0.01; **p < 0.005. DWIv, diffusion-weighted
imaging volume; mRS, modified Rankin scale score; NIHSS, National Institutes of Health Stroke Scale score; Notar, number of non-rich-club regions involved; SD, standard deviation.

Model ® mRS e NIHSS

o OR: 1.05 ; Cl:

Age ; OR: 103 (&1 {103 108)

e SR 3881 2%
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FIGURE 5 | Odds ratios (OR) for models including Ngg on NIHSS (red) and mRS (red) as outcome measures. In both models age, DWIv and NRr¢ increase the odds
of a higher outcome score, reflecting worse outcome. Additionally, in case of NIHSS the 95% confidence interval (Cl) of the interaction term between Ngyg and DWIv
does not include one.

automated assessment, we further highlighted its translatability.
In addition, our presented models utilize interaction terms
between age and sex, as well as Npc and DWIv. While interaction
terms can be hard to interpret, the models including these
terms better capture the complexity of the observed data.
Moreover, rich-club regions comprise relatively large regions
within the brain, as determined by the Harvard-Oxford atlas.
In this study, we did not consider how large of a percentage
of a rich-club region is affected by the stroke but instead
considered the effect as a binary measure (affected vs. not
affected). Detailed atlas-based analyses, which subdivide these

regions, may present an opportunity to assess the affected
topology with higher accuracy; however, these have limited
application to the bedside care of acute stroke patients.
Additionally, others have demonstrated that the alterations
of network topology are associated with stroke outcome
(33-35). While we do not have data available to generate
connectomes in the acute setting due to clinical time constraints
in patient treatment, those assessments commonly include
effects due to the reorganization of the brain network and
cannot be used in the acute setting prior to the effects of
compensatory mechanisms.
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We acknowledge that a subset of the mRS scores (~10%) in
this cohort was derived from the neurological assessment data
recorded at the time of an ambulatory follow-up clinic visit,
and that NIHSS scores were recorded over a time period of
48h after admission. While a potential limitation, this “noise”
adds to the variability in outcome models and diminishes the
probability of discovering a significant association as seen in our
analyses. An additional limitation to consider is the potential
lack of generalizability of the findings generated in our cohort to
the larger stroke patient populations given the evolving nature
of stroke treatments such as thrombectomy. These treatments
are rapidly changing the landscape of stroke outcome science
and are available to growing numbers of AIS patients with
large-vessel occlusion (LVO), who represent ~10-15% of general
stroke population. The overall stroke severity in our cohort was
mild-to-moderate, which is typical of a mixed ischemic stroke
cohort; therefore, our findings can be most closely generalized
to the study of outcomes in the non-LVO stroke patient majority.
Furthermore, we developed a model that includes a limited set
of broadly validated clinical predictors of outcome (such as age
and sex) in addition to the imaging phenotypes. Future studies
that are statistically powered to address greater heterogeneity in
the effect of multiple clinical variables, including stroke subtypes,
NIHSS sub-items, and other clinical tests, on functional outcome
will be needed to develop comprehensive models.

The strengths of this novel, proof-of-the concept analysis
includes: (a) the availability of a large, hospital-based cohort
of AIS patients with systematic clinical and radiographic
approaches to evaluation and ascertainment of the critical data
points; (b) use of the validated semi-automated volumetric DWI
analysis; (c) outcome assessment using validated protocols by the
vascular neurology experts; and (d) the direct application of the
presented approach to the clinic.

Although our models demonstrate the importance of Npc
in stroke outcome, it should be noted that we are using
untransformed independent variables to infer the dependent
variable. This approach is justified by the complexity of the AIS
phenotype and the timeline of the outcome ascertainment. It has
been suggested that more complex models and additional clinical
parameters may provide a better estimate of outcome (36, 37).
However, rather than creating a prediction model, in this proof-
of-principle study, we aimed to assess whether and demonstrate
that Npc is an important biomarker that can be utilized in
a clinical setting. Detailed data sets with additional clinically
relevant phenotypes are necessary to generate prediction models
and should be the aim of future investigations.

As hypothesized, the number of affected rich-club regions
is associated with both stroke severity (NIHSS) and functional
stroke outcome (mRS). These results reinforce the relevance of
combining both connectomics approaches and clinical outcome
assessment in stroke. A crucial aspect is that the assessment,
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