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Background: Migraine research is booming with the rapidly developing neuroimaging

tools. Structural and functional alterations of the migrainous brain were detected with

MRI. The outcome of a research study largely depends on the working hypothesis,

on the chosen measurement approach and also on the subject selection. Against all

evidence from the literature that migraine subtypes are different, most of the studies

handle migraine with and without aura as one disease.

Methods: Publications from PubMed database were searched for terms of “migraine

with aura,” “migraine without aura,” “interictal,” “MRI,” “diffusion weighted MRI,”

“functional MRI,” “compared to,” “atrophy” alone and in combination.

Conclusion: Only a few imaging studies compared the two subforms of the disease,

migraine with aura, and without aura, directly. Functional imaging investigations largely

agree that there is an increased activity/activation of the brain in migraine with aura

as compared to migraine without aura. We propose that this might be the signature

of cortical hyperexcitability. However, structural investigations are not equivocal. We

propose that variable contribution of parallel, competing mechanisms of maladaptive

plasticity and neurodegeneration might be the reason behind the variable results.

Keywords: DTI, functional MRI, microstructure, migraine with and without aura, pathomechanism

INTRODUCTION

Migraine is a heterogeneous disease affecting cca 10–20% of the population worldwide. It is
associated with significant disability, reduced quality of life, and consequently poses an enormous
financial burden to society (1). Since migraine ranks among the top disorders causing disability
(2). It is in the focus of neuroimaging, molecular, and pharmaceutical research. In 20% of the
cases, migraine headache is preceded or accompanied by reversible focal neurological symptoms,
such as visual, motor, sensory, or speech disturbances (3). The ICHD-3 classification (4) bases
the diagnosis of migraine on the patient’s medical history and physical examination. Accordingly,
migraine can be categorized into migraine with aura (MWA) and without aura (MWoA) as
subtypes of the disease (among other categories). Besides the similarities in the epidemiology,
clinical presentation, and the genetic evidence that MWA and MWoA largely overlap (5), the
question has been raised a few years ago: are MWA and MWoA separate entities (6–8) or rather
the two ends of a spectrum? Nevertheless, studying mixed groups of migraine patients should be
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avoided in further investigations if critical differences exist.
Nevertheless, studying mixed groups of migraine patients should
be avoided in further investigations if critical differences exist.

Since magnetic resonance imaging (MRI) makes it possible
to investigate the structure and function of the brain in vivo,
hundreds of papers were published in the last 20 years that
describe the migrainous brain using neuroimaging methodology.
The majority of these studies examined mixed patient groups or
compared only one subtype to healthy individuals.

This review article summarizes the most significant
neuroimaging results from studies comparing MWA patients to
MWoA. To identify relevant articles, we searched the PubMed
database for terms of “migraine with aura,” “migraine without
aura,” “interictal,” “MRI,” “diffusion weighted MRI” (DWI),
“functional MRI” (fMRI), “compared to,” “atrophy” alone and in
combination up to June 2019.

RESULTS FROM FUNCTIONAL
NEUROIMAGING

Brain activity during rest and task performance can be described
non-invasively by measuring the blood oxygen level dependent
(BOLD) signal with functional MRI. Traditional fMRI studies
compare signal differences in various phases of a task, but
recently, there has also been a growing interest in studying brain
activity patterns during rest. Interestingly, remote areas show
synchronous activity, which renders resting state activity into
functional networks (9, 10). Although fMRI parameters remain
basically the same, we are witnessing a rapid development in the
statistical analysis of fMRI scans.

Two publications confirmed brain activation differences
between MWA and MWoA in the interictal phase (11, 12).
Datta et al. (11) described higher BOLD response in migraine in
response to visual stimuli in a BOLD fMRI study. This higher
BOLD response was more robust in MWA than in MWoA
patients. Interestingly the resting perfusion parameters of the
two groups was not different, hence the authors discussed their
finding in the light of the existing evidences that it relates
to hyperresponsiveness of the visual cortex in MWA. On the
contrary, resting brain perfusion did not differ between patients
and controls or between MWA and MWoA patients (11). In a
considerably larger cohort Cucchiara et al. found similarly greater
BOLD amplitude in the visual cortex in MWA that positively
correlated with visual discomfort score. No such correlation was
found in MWoA (12).

Limited data are available on resting brain activity. Increased
expression of the visual resting functional network was found
in MWA compared to MWoA and controls (13). In our earlier
investigation we found higher amplitude of resting state activity
fluctuation in all identified resting state networks in the 0.08–
0.04Hz frequency range in MWA as compared to MWoA (14).
On the contrary, lower amplitudes were found in the default
mode network in MWoA compared to controls.

Reduced connectivity between the occipital lobe and anterior
insula was found in MWA but not in MWoA, and the
connectivity strength correlated with migraine severity in MWA

(15). Increased connectivity was found in the default mode
network in the pre-central gyrus, post-central gyrus, insular
cortex, angular gyrus, supramarginal gyrus in MWA compared
to MWoA (16).

RESULTS FROM STRUCTURAL
NEUROIMAGING

Cortical Thickness
Several investigations have shown that there are gray matter
alterations in migraine: the gray matter density of several
pain related cortical regions is reduced compared to healthy
individuals (17). It should be noted that similar brain
structural alterations were found in other chronic pain
conditions. Importantly, only a few investigations concentrated
on comparing the two subgroups of migraine.

Granziera et al. found increased cortical thickness and altered
microstructure in migraineurs in the white matter beneath
motion processing areas, namely motion processing visual areas
and V3A area, but there were no differences between MWA
and MWoA patients (18). In a similar cohort, voxel-based
morphometry (VBM) did not detect any differences between
the two patient groups (13). In a multicentre study involving
a considerably larger migraine population, MWoA patients
exhibited thinner cortex in the left central sulcus, in the left
occipito-temporal gyrus, in the right cuneus and the superior
parietal gyrus bilaterally. In some of these regions, the cortical
thickness correlated with the frequency of migraine attacks and
disease duration (19). Interestingly, a few of these regions were
not only thinner in MWoA as compared to controls, but also
when compared to MWA.

Diffusion Tensor Imaging
Among the structural abnormalities, whitematter microstructure
changes, as described by DWI, are receiving more and more
attention. DWI is sensitive to the diffusion of water molecules,
which in the brain is largely restricted by the membranes of
cellular and sub-cellular elements. By fitting a diffusion tensor
model it is possible to estimate diffusion parameters that reflect
the microscopic organization of the measured volume (20).

White matter microstructural changes in MWA were
reported, but studies are not congruent in calculated diffusion
parameters and results. DaSilva et al. presented lower fractional
anisotropy (FA) in the ventral trigemino-thalamic pathway
in MWA and lower FA was detected in the ventrolateral
periaqueductal gray matter (PAG) inMWoA (21). No correlation
was found with clinical parameters. While migraineurs showed
reduced FA subjacent to visual motion processing areas, no
differences in diffusion parameters were found between MWA
and MWoA (18). Similarly, tract-based-spatial statistics (TBSS)
and a pre-defined region-of-interest analysis from fMRI results
did not reveal microstructural white matter alterations between
the two subtypes (13, 22). On the other hand, we found extensive
white matter regions showing higher FA in MWA in a whole
brain TBSS analysis (8). Also, we found that clinical parameters,
such as disease duration and estimated lifetime attack number
were associated with lower axial diffusivity (AD) in the left
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superior longitudinal fascicle, the left corticospinal tract and with
the right superior longitudinal fascicle of MWA patients (8).

DISCUSSION

There are only few neurological disorders that were investigated
so extensively and the hypotheses for its pathophysiology went
through such evolution like migraine. In spite of this enormous
body of research, the “migraine puzzle” is still incomplete.
While migraine was thought to be a functional disease of
the brain, recent studies have shown that brain structure and
microstructure also exhibit profound alterations. Independent
MRI studies observed functional and structural differences
between MWA and MWoA in the interictal period. In summary,
it can be pointed out that studies concur in finding higher brain
activity/activation in MWA, but structural differences between
the two subtypes of the disease are not so well-established, and
results are ambiguous in the literature (Table 1).

In MWA, during the transient visual, sensory or language
symptoms a slow depolarization wave called cortical spreading
depression (CSD) spreads through the cortex (23). During
visual aura, BOLD signal changes develop in the occipital
cortex and progress slowly, reflecting underlying depolarization
waves (24). Apart from being the putative cause of the aura
symptoms, CSD has been associated with neuroinflammation,
possibly contributing further to the headache by activating
the meningeal nociceptors and the neurons in the spinal
trigeminal nucleus and trigeminal nucleus caudalis (25, 26).
Neurophysiological investigations showed that the two subtypes
of the disease differ considerably. The amplitudes of visual
evoked potentials (VEP) were higher in migraineurs (27–30).
Recent reports showed that hyperexcitability, as measured via
VEP is predominantly true for MWA (31, 32). The threshold
of transcranial magnetic stimulation (TMS) evoked phosphenes
is also lower in migraineurs and the prevalence of phosphenes
is higher (33). Interestingly, a recent metaanalysis pointed out
that, similarly to the VEP results, this kind of TMS measured
hyperexcitability is only true for patients experiencing aura
(34). Moreover, the perception of cross-modal interaction that
depends highly on cortical hyperexcitability differs between
healthy volunteers and migraineurs (35). The effect is more
pronounced inMWA.A possible backgroundmechanism behind
this hyperexcitability might be the altered neurochemical milieu,
the imbalance of the excitatory and inhibitory neurotransmitter
levels in migraineurs as detected by MR spectroscopy or other
neurochemical approaches [e.g., glutamate and GABA, see (36,
37) for a review]. However, no study investigated the differences
between MWA and MWoA. The above-mentioned functional
imaging studies also demonstrated higher activation/activity in
MWA. Considering that hyperexcitability comes along with
increased firing frequency (38) that has a higher energy demand,
it easily follows that BOLD fMRI studies find increased amplitude
of response or resting activity fluctuation. In consequence to
this increased activity, especially if it is regionally specific,
interregional connections might strengthen, that could be
measured as increased functional connectivity.

TABLE 1 | Structural and functional MRI studies comparing migraine without to

migraine with aura.

Method Subjects Main findings

BOLD fMRI; resting

ASL

Datta et al. (11)

25 MWA, 25

MwoA, 25 controls

Robust visual pathway activation was

in MWA. ASL showed no difference.

BOLD fMRI

Cucchiara et al. (12)

51 MWA, 45

MwoA, 45 controls

Greater visual cortex activation and

correlation with light sensitivity in

MWA.

RSN fMRI; DTI

Tedeschi et al. (13)

20 MWA, 20

MwoA, 20 controls

Increased component activity was in

lingual gyrus from visual network in

MWA. Structural analysis showed no

differences.

RSN fMRI; T1

Niddam et al. (15)

26 MWA, 26

MwoA, 26 controls

Reduced connectivity was between

visual cortex and insula in MWA. The

right parahippocampal region was

decreased in MWA.

RSN fMRI

Lo Buono (16)

14 MWA, 14

MwoA, 14 controls

Increased functional connectivity was

in angular gyrus, supramarginal

gyrus, pre-central gyrus, post-central

gyrus, insular cortex in MWA.

RSN fMRI

Faragó et al. (14)

18 MWA, 33

MwoA, 32 controls

Amplitude of RSN fluctuation is higher

in MWA: cingulate cortex, superior

parietal lobule, cerebellum and

bilateral frontal regions.

DTI

Tessitore et al. (22)

20 MWA, 20

MwoA, 20 controls

TBSS and VBM analyses detected no

differences.

DTI, T1

DaSilva et al. (21)

12 MWA, 12

MwoA, 12 controls

Trigeminothalamic tract and

periaqueductal gray area showed

difference in FA.

DTI

Granziera et al. (18)

12 MWA, 12

MwoA, 15 controls

White matter analysis and cortical

thickening showed no differences.

T1

Magon et al. (19)

38 MWA, 93

MwoA, 115

controls

MWoA showed thinner cortex: left

central sulcus, left occipito-temporal

gyrus, right cuneus, bilateral superior

parietal gyrus; MWoA showed thicker

cortex: inferior temporal gyrus.

DTI

Szabó et al. (8)

18 MWA, 25

MwoA, 28 controls

FA was higher in left parieto-occipital

white matter in MWA. Clinical

parameters correlated with white

matter integrity in MWA.

Nevertheless, one should not forget that fMRI ismeasuring the
indirect vascular response to neuronal activity/activation. Since
migraine is a neurovascular disease the identified differences in
any fMRI study might be due to the filtering effect of the altered
hemodynamic response function. In fact, altered vasomotor
reactivity was identified in MWA (39).

The results of structural investigations are far less equivocal
about the differences between the two subtypes of the disease.

A prominent reason behind the differences in the outcome
of the structural studies might be the pathomechanism itself.
Structural alterations could either be a (1) consequence or the (2)
cause of the disease. In case of the former, one might consider
two alternatives:

(a) The recurring painful attacks and hyperexcitability could
lead to maladaptive plasticity. Use-dependent plasticity
induced morphological changes are well-known in the gray
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and white matter (40–42). Repeated pain stimuli can also
increase gray matter density in pain processing regions
including the cingulate and the contralateral somatosensory
cortex (43). One might hypothesize that the increased firing
frequency due to hyperexcitability may induce similar use-
dependent plastic changes. And finally, plastic changes were
reported in animals after induction of CSD (44, 45). These
processes presumably appear in the form of increased FA and
thickened cortex (40–42).

(b) The underlying pathology might also cause degenerative
processes in migraine. CSD might well-contribute to the
noxious process (46), as it induces neuroinflammation
and cellular damage (47–49). The recurring painful
attacks and the cortical hyperexcitability might lead to
excessive glutamate release (50), which is also known
to induce excitotoxicity and cell death (51). CSD causes
upregulation of matrix-metalloproteases (MMP) (52)
and increased MMP activity was described in human
migraineurs (53). This can lead to the leakage of the
blood-brain barrier and inflammatory response and
neuronal damage (54). In line with these hypotheses,
increased ictal levels of S100B (a marker of glial damage)
and neuron specific enolase (a marker of neuronal
damage) were detected in migraineurs (55). These
degenerative processes could presumably appear in the
form of white matter disintegration (reduction of FA) and
cortical atrophy.

We propose that these parallel, competing mechanisms coexist,
but their relative contribution is different in MWA and
MWoA. However, one might see the two sub-forms of the
disease a spectrum, rather than two distinct entities and hence
homogenous patient groups cannot be reproducibly formed.

An alternative explanation for the structural alterations might
well-be that they are not consequential but rather causal factors
of the disease. Accordingly, the genetic background is different
between the two subtypes. Pisanu et al. demonstrated that genetic
risk factors calculated on migraine-associated single nucleotide
polymorphism differ between subgroups suggesting MWA and
MWoA have different genetic backgrounds that contribute to the
pathogenesis (56). Even so, we cannot exclude the possibility that
co-morbidities and epigenetics have an influence on migraine
pathogenesis (57, 58).

A number of findings showed that the clinical expression
of migraine is consistent with perivascular trigeminal activation
and release of neuropeptides [calcitonin gene-related peptide
(CGRP), substance P and pituitary adenylate cyclase-activating
polypeptide-38 (PACAP-38)] (59–66). It was also shown that
CSD is tightly connected to CGRP release (67). Several
aspects of the CGRP-related trigemino-vascular functions are
also abnormal in FHM1-mutant mice showing an overall
hyperexcitability phenotype (68). We showed that interictal
PACAP-38 concentrations were lower in migraineurs, which
approached normal levels during headache (69) and this
altered interictal PACAP-38 serum level correlated with the
microstructural integrity of pain related brain structures (70).
Whether neuropeptide concentrations are different in MWA and
MWoA is still to be investigated.

Whether CSD is the initiator of all the events of migraine
attack (activation of distinct brain stem nuclei, neuropeptide
release at the periphery, activation, and sensitization at the level
of trigeminal nociceptors) remains controversial: although that
there is evidence that CSD can induce activation trigeminal
nociception in animals (71), but migrainous aura can occur
without headache and the pain can start during the aura onset,
moreover most of the migraineurs do not experience aura
phenomenon at all, which suggests that CSD alone is insufficient
and non-essential for the attack. If the latter is true CSD is not the
cause, but the consequence or a part of the disease (72).

Importantly, several other reasons could be pointed out
behind the variable results of structural studies. For example,
the headache frequency is different in MWA and MWoA (73),
which means the studies should be strictly matched for clinical
parameters. The time since the last and until the next headache
should also be strictly monitored. Unfortunately, none of the
above mentioned studies are controlled for these factors.

Importantly, we have not considered white matter
hyperintensities in our review in details, but it has to be
pointed out that the prevalence of these lesions are also different
in the two subtypes of the diseases (74, 75). The etiology
of these lesions is not entirely clear yet, but thought to be
microinfarction with a numerous factors contributing to it.
Neurogenic inflammation, endothelial changes, thrombocyte
aggregation may play a role, and the induced oligaemia might be
deepened by the CSD (76).

CONCLUSION

Among primary headache disorders, migraine is a heterogeneous
disease with two major subtypes. Functional imaging studies
repeatedly confirmed various metrics of hyperexcitability. The
results of structural imaging studies are far from being equivocal.
We propose that variable contribution of parallel, competing
mechanisms of maladaptive plasticity and neurodegeneration
might be the reason behind the variable results. Therefore, in
further research projects MWA and MWoA should be handled
separately and groups should be strictly matched for clinical
parameters if the two subtypes are directly compared.
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