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During neurorehabilitation, clinical measurements are widely adopted to evaluate

behavioral improvements after treatment. However, it is not able to identify or monitor

the change of central nervous system (CNS) of each individual patient. Resting-state

functional magnetic resonance imaging (rs-fMRI) has been widely used to investigate

brain functions in healthy controls (HCs) and patients with neurological diseases,

which could find functional changes following neurorehabilitation. In this paper, a

distance-based rehabilitation evaluation method based on rs-fMRI was proposed.

Specifically, we posit that in the functional connectivity (FC) space, patients and HCs

distribute separately. Linear support vector machines (SVM) were trained on the brain

networks to firstly separate patients from HCs. Second, the FC similarity between

patients and HCswasmeasured by the L2 distance of each subject’s feature vector to the

separating hyperplane. Finally, statistical analysis of the distance revealed rehabilitation

program induced improvements in patients and predicted rehabilitation outcomes. An

rs-fMRI dataset with 22 HCs and 18 spinal cord injury (SCI) patients was utilized

to validate our method. We built whole-brain networks using five atlases to test the

robustness of the method and search for features under different node resolutions.

The classifier successfully separated patients and HCs. Significant improvements

in FC after treatment were found for the patients for all five atlases using the

proposed method, which was consistent with clinical measurements. Furthermore,

distance obtained from individual patient’s longitudinal data showed a similar trend with

each one’s clinical scores, implying the possibility of individual rehabilitation outcome

tracking and prediction. Our method not only provides a novel perspective of applying

rs-fMRI to neurorehabilitation monitoring but also proves the potential in individualized

rehabilitation prediction.

Keywords: resting-state fMRI, functional connectivity, neurorehabilitation, support vector machine, spinal

cord injury

INTRODUCTION

Neurorehabilitation aims to help patients with central nervous system (CNS) disease regain certain
lost abilities and finally return to home and society. Spinal cord injury (SCI) is a common CNS
illness that highly influences patients’ daily life and brings heavy burden to the patient’s family
(1–6). Typically, a rehabilitation program lasts for weeks or months. One crucial problem is
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how to monitor the rehabilitation progress of each patient.
Currently, most clinics use clinical measurements such as the
International Standards for the Neurological Classification of
Spinal Cord Injury (7, 8), Fugl–Meyer Assessment, Wolf Motor
Function Test, and Action Research Arm Test (5, 9) to evaluate
how patients perform in several function-related tasks. The score
rating, however, reflects the behavioral improvements of patients.
We wonder if there is another way to monitor the changes in
CNS induced by treatment, specifically functional changes in the
brain. Since clinical scores can be viewed as a distance measuring
how similar patients perform as healthy subjects, is it possible to
calculate a distance between patients and healthy subjects from
neuroimaging data?

Resting-state functional magnetic resonance imaging (rs-
fMRI) is a potential tool for clinical applications (10). Functional
connectivity (FC), defined as temporal correlations between
spatially distinct brain regions (11), has been used to analyze
blood-oxygen level-dependent functional magnetic resonance
imaging (BOLD fMRI). Based on fMRI of healthy subjects,
several resting-state networks (RSNs), and intrinsic connectivity
networks (ICNs) have been identified (12–16).

Apart from researches on healthy brain functions, rs-fMRI
has also been applied to study diseases related to functional
changes, including Alzheimer’s disease, dementia, schizophrenia,
and depression [see (10) for a review]. Researchers found diseases
related to FC changes and brain abnormalities (17–19), which
may lead to the discovery of disease-specific biomarkers. Zeng
et al. (20) applied a multivariate pattern analysis on the whole-
brain resting-state FC patterns to identify major depressive
individuals from healthy controls (HCs). Previously, brain
connectivity changes in SCI patients were evaluated focusing on
the sensorimotor network using rs-fMRI (21–24). FC analyses
were also performed using network-based statistic (NBS) (25),
RSNs (26), and graph theory (27), as well as combining with
structural reorganizations (28). However, from these findings
of alterations in functional features, we can hardly tell whether
patients became healthier after treatment or predict how well
patients would recover.

In order to answer the above questions, we propose a
distance-based rehabilitation evaluation method. The distance
is calculated in a classification framework. One of the most
prevailing classifiers is the support vector machine (SVM). It
tries to find an optimal separating hyperplane that achieves
maximal margin between the two classes (29). Using fMRI data,
studies have demonstrated that SVM can successfully classify
cognitive states (30–32) and patients with depression (33, 34).
In these studies, features used to train the SVM include FC and
graph theory properties. Apart from non-linear kernel SVM,
the original linear SVM works well when using correlation
coefficients as features (33). Moreover, the SVM provides an ideal
framework to quantify the difference between samples of the
two classes, since the geometry interpretation of linear SVM is
simple and clear. However, the performance of linear SVM on
SCI patients is not fully investigated before.

Here, we used multi-session resting-state fMRI data of 18 SCI
patients and 22 HCs to validate our method. The rest of this
article is organized as follows: we elaborate our method in the

second section, describe the materials and data processing details
in the third section, and present the experiment results in the
fourth section, followed by discussion and conclusion in fifth and
sixth sections.

METHOD

The proposedmethod is summarized in Figure 1. Concretely, the
raw features, defined as FC between brain regions, are obtained
by building brain networks with brain atlas on the first scanning
sessions. A feature selection procedure eliminates insignificant
features and generates a set of indices of significant features. Each
subject is represented by a vector of these significant features
in the feature space. Linear SVMs were trained to separate
patients and HCs. The longitudinal fMRI data go through the
same network construction procedure, and features identified as
significant are taken out, forming the vector representation of
this session.

In order to evaluate treatment-related functional changes, we
posit that the feature vectors of HCs and patients are distributed
separately in the feature space. If patients were getting better,
they would become more and more similar to healthy subjects,
and the feature vector representing patients would move toward
HCs. Thus, it is possible to measure how well the patient has
become using the distance of feature vectors. If this distance had
a consistent trend, it would imply that the patient had recovered
after treatment.

Network Construction
The FC network, N, is built for each scan of each subjects using
brain atlas. After preprocessing, averaged time course is extracted
in each region and pairwise Pearson correlation coefficients,
nij, are calculated as the FC between two regions. Since the
method applies to tracking longitudinal changes of patients, the
parcellation of connectivity networks should not vary across
multiple sessions. Regions defined by atlas are stable compared
to data-driven approaches. In addition, different atlases could
provide a range of node definition resolution, as well as covering
whole brain or local regions of interests according to the
patient disease.

SVM Training
To select features for classification, we utilized a t-test
filter on the brain networks of patients and HCs. Formally,
let C = {c1, c2, · · · , cn} denote the set of HCs. Let
P =

{

p1, p2, · · · , pm
}

denote the set of patients. A
brain network is denoted by Ns, 1 =

{

nij
}

k×k
, where

s ∈ C or s ∈ P denotes the subject and the latter
one means the first scanning session. Patients might have
multiple scanning sessions, whereas HCs only have one.
We chose the first sessions,

{

Np1 , 1 , Np2 , 1 , . . . , Npm , 1

}

and
{

Nc1 , 1 , Nc2 , 1 , . . . , Ncn , 1

}

, to train the SVM. The correlation
coefficient nij was extracted from each network of HCs and
patients, forming two groups. Two-tailed two-sample t-test
(P < 0.05, uncorrected) was performed on the two groups
to decide whether this connection, nij, is significant. This
procedure was performed for every connection in the network.
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FIGURE 1 | Overview of the framework. Sig-Index, significant index; Sig-conns, significant connections.

All significant connections were extracted as features and the
index tuple

(

i, j
)

is put into the significant set Sig_set =
{

. . . ,
(

i, j
)

, . . .
}

. As a result, each subject was represented
as a feature vector v containing significant connections of
this subject.

Linear SVM classifiers were trained on the selected significant
connections to classify the patient group (labeled as +1) and
the healthy group (labeled as −1). Linear SVM tries to find an
optimal separating hyperplane that achieves the largest margin of
separation (29). The problem is defined as

min
w

1

2
‖w‖2 + C

∑

i

ξi

Subject to yi
(

wTvi + b
)

≥ 1− ξi and ξi ≥ 0
where w is the weight vector, ξi is the slack variable for sample

i, yi is the label of sample i (1 for patients, −1 for controls), vi is
the feature vector, and b is a bias constant.

Rehabilitation Evaluation
The SVM classifier trained on the first scanning session was
used on the follow-up data. The same features are extracted
from longitudinal sessions for patients, forming feature vectors.

For each patient, the feature vector v =
[

. . . , nij, . . .
]T

where
(

i, j
)

∈ Sig_set. We calculated the distance of feature vectors
to the separating hyperplane as a measurement of outcome
evaluation. Formally, the separating hyperplane of linear SVM is
determined by

h (v) = wTv+ b

Note that the predicted label is y = sgn
(

wTv+ b
)

. The
distance of a feature vector to the separating hyperplane can be
calculated as

d =
h (v)

‖w‖

Since patients are positive samples (labeled as +1), the above
formula gives a “signed distance.” Positive distance value
indicates that the sample point lies on the same side with patients
and vice versa. As a result, if the distance decreases, the sample
point would move toward HCs, indicating improvements of
the subject.

EXPERIMENT

Subjects
Forty subjects were engaged in this study, including 18
incomplete SCI patients and 22 HCs. The healthy subjects had
no history of neurological disorder. Patients presenting with all
of the following criteria were considered for study inclusion:
age 18–70, normal cognitive function, without brain lesions or
implantable devices, incomplete injury [C1-T12, ASIA C, or D
(7)], subacute SCI and chronic SCI (time since injury >1 month
and <12 months), and neurologic level above T12. Patients with
one or more of the following conditions were excluded from this
study: SCI relapse due to any reason, mental illness, seizures,
and having other severe cardiovascular or neurologic disease
(Table 1). All subjects provided their written informed consent
to participate according to the Declaration of Helsinki. The
study protocol was approved by the Ethics Committee of Beijing
Tsinghua Changgung Hospital of China (IRB No. 2015-002).

The SCI patients received standard care for SCI rehabilitation
at our institution. The rehabilitation protocol comprises 5 h of
therapy a day, 5 days per week, lasting for 2 weeks. The therapy
includes training in physical therapy for the lower extremities
for SCI patients, activity of daily living, and fitness training.
The rehabilitation outcomes, including motor function, sensory
function, and daily life ability, were evaluated by American
Spinal Injury Association (ASIA) criteria (7) and the Spinal Cord
Independence Measure (35). Clinical measurements used in this
study include lower limb movement score, sensory score, and
SCIM (Table 1).

Scanning
All SCI patients went through two MRI sessions, with an interval
of 2 weeks. In order to investigate the longitudinal rehabilitation
outcome, five patients received two more scanning (four sessions
in total). Healthy subjects were scanned only once. The time
of scanning (number of weeks passed) since the first session is
shown in Table 2.

The MRI scanning was performed at the Department of
Radiology, Beijing Tsinghua Changgung Hospital. A GE 3.0T
MR scanner (DISCOVERY MR750 model; General Electric
American, Waukesha, WI, USA) was used to acquire MRI
data. Participants were positioned supine and scanned using a
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TABLE 1 | Subject demographics.

SCI patients (n = 18)

Mean ± SD

Healthy controls (n = 22)

Mean ± SD

Statistic value P-value

Gender(male/female) 7/11 8/14 χ2 = 0.027 0.870

Age (years) 42.33 ± 16.65 37.18 ± 12.24 t = 1.097 0.279

Illness duration (months) 2.39 ± 1.53 – – –

AISA level C(4), D(14) – – –

Mean motion (first session, mm) 0.058± 0.038 0.038 ±0.033 t = 1.699 0.098

Mean motion (second session, mm) 0.050 ± 0.032 – t = 1.006 0.330*

Lower limb movement (before) 32.56 ± 8.36 – t = 6.253 <0.001*

Lower limb movement (after) 37.06 ± 7.74 - Wilcoxon stat = 0 <0.001*

Sensory (before) 161.44 ± 32.45 – t = 1.982 0.064*

Sensory (after) 163.00 ± 32.81 – Wilcoxon stat = 0 0.042*

SCIM (before) 52.72 ± 15.77 – t = 3.884 0.001*

SCIM (after) 59.00 ± 16.71 – Wilcoxon stat = 0 <0.001*

For clinical measurements, lower limb movement and sensory and SCIM scores before and after treatment were shown. Significant results were shown in bold (P < 0.05).

*Paired tests were performed on the first (before) and second (after) session (treatment) data.

TABLE 2 | Longitudinal scanning time since inclusion.

Subjects 1st session

(weeks)

2nd session

(weeks)

3rd session

(weeks)

4th session

(weeks)

HCs 0 – – –

SCI 1-13 0 2 – –

SCI 14 0 2 6 25

SCI 15 0 2 6 14

SCI 16 0 2 4 6

SCI 17 0 2 15 17

SCI 18 0 2 7 49

Numbers are weeks passed since the first scanning session. Healthy controls were only

scanned once. SCI subjects 1–13 have two sessions. Subjects 14–18 have four sessions.

HC, healthy control; SCI, spinal cord injury.

standard 32-channel head-coil. fMRI data of resting-state blood
oxygen level-dependent images are scanned using “Ax-BOLD-
rest” series with a gradient echo-planar imaging (EPI) sequence
[repetition time [TR] = 2000ms, echo time [TE] = 30ms, flip
angle [FA] = 90◦, pixel space = 3.5 mm2, slice thickness =

3.5mm, spacing between slices = 4mm, acquisition matrix =

[64, 0, 0, 64], equivalent to in-plane resolution = 64 × 64,
reconstruction diameter = 224mm, 34 axial slices, and 240
temporal positions]. T1-weighted images (T1) are scanned using
“Sag 3D T1BRAVO” series [TR= 8.21ms, TE= 3.18ms, FA= 8,
voxel space= 1mm3, spacing between slices= 1mm, acquisition
matrix = [0, 256, 256, 0], equivalent to 256 axial slices and 256
coronal slices]. The sagittal slice number depended on the head
size of each subject, ranging from 156 to 174mm, corresponding
to the 36 subjects in this study. The reconstruction diameter was
256mm. In this study, only the fMRI data were used.

Processing
We used DPARSFA (36) toolbox to preprocess fMRI data. The
first 10 time points were excluded to account for magnetization
saturation effect and let the subjects be familiar with the

environment. Head motion was corrected before normalizing
the image to a 2-mm-isotropic BOLD EPI template in the
Montreal Neurological Institute (MNI) 152 standard space.
Motion parameters were inspected and compared to investigate
for any inter-group differences. Similar to the criteria in (20)
and (37), no subject exhibited excessive head motion during
scan acquisition (>2.5mm translation and/or > 2 rotation).
Following the method used in (38), the mean motion between
patient and HC group showed no significant difference (Table 1).
The image was resampled to 3-mm isotropic voxels and spatially
smoothed by a Gaussian kernel with 6-mm full width at half
maximum (FWHM), followed by the removal of the linear trend
and nuisance covariates, including head motions, cerebral fluid,
and the global signal. Finally, the time course was filtered to keep
signals in 0.01–0.08 Hz.

The data analysis procedure, including network construction,
feature selection and SVM training and testing, was carried out
using an in-house python-based software. We adopted five brain
atlases to define nodes of networks. Firstly, the Brodmann atlas
(39) with 82 brain regions was used. Since the original Brodmann
atlas does not contain mapping for the cerebellum, which is
related to functional changes after SCI (25), we also combined
the cerebellum in the Automated Anatomical Labeling (AAL)
atlas (40) (26 areas) into the Brodmann atlas, creating a 108-
area parcellation (Brodmann_ce). The original AAL atlas was also
used. Two recently proposed atlases were included as well. The
AICHA atlas contains 384 brain regions in both hemispheres that
highlight homotopy and maximal intrinsic connectivity between
regions (41). The Brainnetome atlas was built using rs-fMRI and
diffusion MRI of the Human Connectome Project, including 246
regions (42). All experiments were repeated for the five atlases
and results were analyzed separately.

During SVM training, the parameter C controls the trade-off
of misclassification and accuracy. We adjusted C and repeated
the SVM training to investigate its influence on our method. The
value of C was selected from [0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000,
5000, 10,000].
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FIGURE 2 | LOOCV training diagram. Sig-conns, significant connections;

LOOCV, leave-one-out cross-validation.

Leave-one-out cross-validation (LOOCV) was applied to
estimate the training accuracy (Figure 2). In the training process,
one sample was left out as the test sample and the remaining
data were used for training. The trained classifier was then
used to classify the left-out sample. The accuracy was estimated
by calculating the ratio of correctly classified samples against
total sample amount. All SCI patients were used to test SVM
performances. Precision, sensitivity, and specificity were also
calculated. The definitions were as follows.

Precision =
TP

TP + FP

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

where TP stands for true positive (number of patients correctly
classified as patient), FP stands for false positive (number of
HCs incorrectly classified as patient), FN stands for false negative
(number of patients incorrectly classified as HCs), and TN
stands for true negative (number of HCs correctly classified as
HCs). In order to test the significance of LOOCV accuracy,
a permutation test was performed. The sample labels were
randomly permuted 1,000 times to obtain an empirical P-value
for the LOOCV accuracy.

For distance calculation in rehabilitation evaluation, we
adopted the same LOOCV framework as described in the SVM
training section. Specifically, during SVM training, one subject
was selected as the evaluation subject. SVMwas trained using the

remaining subjects and the separating hyperplane was identified.
Then, the distance of all sessions of the left-out evaluation
subject was calculated as described in the Method section. This
procedure was repeated for all subjects in order to obtain distance
for each session of each subject. Besides, the five subjects with
four MRI sessions were used to validate the proposed method in
longitudinal recovery prediction. The distance of all four sessions
was calculated and compared with clinical measurements. In
order to compare distance and clinical scores, the two values
were normalized to zero mean and unit variance according to the
following formula.

d∗ (i) = −1×
d (i) −mean

(

d
)

std
(

d
) , i = 1, 2, 3, 4

s∗ (i) =
s (i) −mean (s)

std (s)
, i = 1, 2, 3, 4

where d∗ is normalized distance, s∗ is normalized scores,mean (·)

stands for averaging, std (·) stands for standard deviation, and i
represents session.

Statistical Analysis
We performed intra-group analysis on distance and clinical
measurements for each atlas and each SVM training parameter
C separately. The statistical analysis was implemented using the
SciPy python package. Specifically, paired t-test was performed
on distance and clinical scores between the first and the second
session scanning in the patient group to check for rehabilitation
program induced improvements. Since the sample size is limited,
we performed Shapiro Normality test on distance values and
scores of both the first and the second session. Besides, we
repeated the above-described analysis using non-parametric
Wilcoxon signed-rank tests.

RESULTS

SVM Training and Testing
We trained an SVM classifier for each of the five atlases and
each selection of the parameter C, using t-test filters and the
LOOCV strategy. From our experiment, the training results were
similar for all selections of C, and the mean LOOCV results for
C = 1 are summarized in Table 3. All later reported results
were based on this parameter setting. After t-test filtering, the
percentage of significant connections for the SCI group was
around 0.07. For illustration purposes, we plotted the significant
connections using Circos1 (43). The graphs are shown in the
Appendix (Figure A1).

The LOOCV accuracies were above 0.9 for all atlases
and empirically significant when tested with a 1,000 times
permutation test (P < 0.001). Besides accuracy, the precision,
sensitivity, and specificity were also reported in the table. The
second session data were fed into the classifier as testing samples.
The accuracy, which is the same as sensitivity, was reported in
the last column in Table 3. In order to evaluate the influence
of feature selection, we also tried to train the classifier without

1http://circos.ca
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TABLE 3 | Training results.

Atlas Discover Accuracy P value Precision Sensitivity Specificity 2nd test

Feature selection Brod. 0.0711 0.900 <0.001 0.8889 0.8889 0.9091 0.6667

Brod.ce 0.0739 0.900 <0.001 0.8889 0.8889 0.9091 0.5556

AAL 0.0699 0.925 <0.001 0.9412 0.8889 0.9545 0.7222

AICHA 0.0669 1.000 <0.001 1.000 1.000 1.000 0.8333

BN 0.0765 1.000 <0.001 1.000 1.000 1.000 0.8333

Whole brain Brod. – 0.5250 0.3816 0.4667 0.3889 0.6364 –

Brod.ce – 0.5000 0.4645 0.4375 0.3889 0.5909 –

AAL – 0.4750 0.5455 0.4211 0.4444 0.5000 –

AICHA – 0.6000 0.1269 0.5833 0.3889 0.7727 –

BN – 0.5750 0.1888 0.5385 0.3889 0.7273 –

The training results were divided into with or without feature selection. The Discover column shows the ratio of significant connections to all possible connections. The last column shows

the test accuracy when using the second session data as test data. This testing was only performed for the training with feature selection. Brod, Brodmann atlas; Brod.ce, Brodmann

atlas with cerebellum; BN, Brainnetome atlas. Significant results were shown in bold.

TABLE 4 | Clustering results.

Atlas Brod. Brod.ce AAL AICHA BN

Accuracy 0.75 0.89 0.94 0.94 0.86

Num. error 9 4 2 2 5

K-means clustering results. Num. error represents the number of misclassified samples.

Abbreviations are the same as in Table 3.

feature selection. That is, all whole-brain connections were
used as features. Results for the whole-brain experiments are
also presented in Table 3. The whole-brain results degraded
drastically, with a non-significant (P > 0.05) accuracy around
0.5, which is similar to random guesses. This implies that the
classification algorithm fails to classify samples without feature
selection. Compared with the whole-brain result, the classifier
can still segregate the second session data with relatively good
accuracy (last column in Table 3).

We also used k-means algorithm on the selected significant
connections to cluster samples without labels. The number of
clusters was set to two and starting centroids were initialized
randomly for 50 times in order to avoid local maxima (Table 4).
The clustering accuracy was around 0.9 except for the Brodmann
atlas, which achieved a 0.75 accuracy. We also reported the
number of misclassified samples in Table 4. This result indicates
that the selected feature vectors are indeed distributed differently
in the feature space.

Distance Changes During Rehabilitation
We calculated distance for all scans of the patient group and
performed intra-group analysis on distance and clinical scores.
The Shapiro test was used to check the normality of distance
value distribution of the first and the second session. Most tests
showed no significant results. This indicated that distance values
are mostly normally distributed. The paired t-tests andWilcoxon
signed-rank test results for intra-group tests (first minus second),
based on SVM parameter C = 1, are shown in Table 5. Results
of the parametric and non-parametric tests were the same. The

distance of patient groupwas significantly decreased for all atlases
(P < 0.05).

The statistical tests were also repeated on clinical scores.
Shapiro tests on sensory scores of the first and the second
session rejected the null hypothesis. The intra-group paired t-
tests, combined with the Wilcoxon test results, indicated that
lower limb movement score and SCIM increased significantly (P
< 0.05) after treatment (Table 1).

We also calculated distance for the five subjects with
four session data and plotted the distance with each clinical
measurement. The results are shown in Figure 3. The score and
distance values were normalized to have zero mean and unit
variance and the distance values were reversed (that is, multiplied
by −1) so that an increase in distance also means an increase
in scores. It can be seen from the graph that all patients’ scores
show similar trend with distance, indicating the potential of using
distance to predict rehabilitation outcomes.

DISCUSSION

We proposed a novel distance-based neurorehabilitation
evaluation method and applied it to a dataset of SCI patients and
HCs, utilizing five whole-brain atlases to validate our method.
The testing results showed that the proposed method can reflect
rehabilitation-induced functional changes. The changes found
by distance in the multi-level brain networks built from five
atlases are consistent with clinical measurements. Moreover, all
of the rehabilitation outcome predictions for individual patients
had a consistent trend with clinical scores. To our knowledge,
this is the first time that rs-fMRI and linear SVM are applied
to evaluate the rehabilitation progress and predict outcomes of
SCI patients.

The prognostic value of resting-state FC was previously
assessed by correlating FC with clinical scores and behavioral
performance for groups of patients with stroke (44–47). Qin et al.
(48) utilized support vector classifier and principal component
analysis on resting-state FC to estimate the medication status
of major depression patients after antidepressant treatment
using a regression model. However, only a part of patients
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TABLE 5 | Intra-group distance t-test results.

Distance/Atlas Brod. Brod.ce AAL AICHA BN

HC −0.527 ± 0.424 −0.855 ± 0.597 −1.057 ± 0.708 −3.524 ± 1.308 −2.222 ± 1.145

Patients before 0.565 ± 0.473 0.820 ± 0.630 0.843 ± 0.605 3.540 ± 1.899 2.044 ± 1.273

Patients after 0.123 ± 0.426 0.085 ± 0.577 0.126 ± 0.604 0.877 ± 1.015 0.462 ± 0.773

t-test t 3.461 4.656 4.397 5.488 4.518

t-test p 0.003 <0.001 <0.001 <0.001 <0.001

Wilcoxon stat 15 5 9 2 10

Wilcoxon p 0.002 <0.001 <0.001 <0.001 0.001

Significant results were shown in bold. t-tests and Wilcoxon tests were performed within the patient group. t-test t: the t value for the t-test result. t-test p: the p value for the t-test

result. Same for the Wilcoxon test. Abbreviations are the same as in Table 3.

received second session MRI scanning and no longitudinal data
(>2 sessions) were collected. Besides, few studies investigated
outcome prediction of SCI patients after rehabilitation.

In our work, all patients received at least two sessions of MRI
scanning and five patients were scanned two more times. The
HCs, on the other hand, were only scanned once. In literature,
measures of FC were suggested to vary during aging (49, 50)
but were relative stable across time spans of 1–2 years (51).
In our work, longitudinal scanning was mostly collected within
6 months and the FC was assumed to be stable. The healthy
subject data were used to train a classifier and build up a healthy
baseline, in order tomeasure how different the patients were from
this baseline.

When building FC networks, we utilized brain atlas to define
nodes, since it provides an objective node definition and is
stable over different datasets. Unlike data-driven approaches,
such as group independent component analysis (ICA), nodes
defined by atlases do not change, which is preferable in
rehabilitation evaluation. The node definition can not only
alter the topological structure of the graph (network) but also
influence the functional relationships between nodes. Some
previous researches have noted the potential pitfalls of using
atlases to define nodes in brain networks (34, 52). In addition,
several studies found atlas-related differences in graph metrics
of resting-state networks (53), ROI homogeneity (54), and
structural networks (55). In this study, we obtained similar results
in most experiments for all five atlases, indicating that our
proposed method is not sensitive to the choice of node definition.
However, we note that whether a certain atlas is suitable for
whole-brain functional network classification or analyzing a
specific disease is unclear. Future studies focusing on the choice
of brain atlases could possibly facilitate the construction of multi-
level FC networks.

During classifier training, we used LOOCV to estimate the
accuracy and reported precision, sensitivity, and specificity along
with accuracy. The parameter C in SVM training could affect the
separating hyperplane. We repeated our experiments on a range
of C values and the results were consistent. Also, the distance
for each patient was calculated in a LOOCV framework. The
use of LOOCV could alleviate the problem of overfitting and
skewed dataset to some extent. The normality of distance values
and scores was checked by the Shapiro test. Most tests did not

reject the null hypothesis of normal distribution. Besides, we
repeated the statistical analysis using non-parametric tests, which
are supposed to workwell for small sample sizes and not normally
distributed data. Results obtained by the non-parametric tests
corroborated with t-tests.

In order to evaluate the classifier performance, the second
session data were used for testing. We observed a decreased
accuracy for all atlases. Unlike a diagnosis problem where
classification accuracy is critical, in our method, SVM is used
to locate the separating hyperplane and calculate distance. As
hypothesized, patients would become more similar to HCs
after treatment, resulting in a shifted feature vector toward
negative examples (HCs). This could be the cause of the
decrease in accuracy. Besides, the training results of whole-
brain features were not satisfying, indicating that feature
selection is necessary when applying machine learning method
to fMRI data.

We calculated distance of HCs at baseline and patient
at two sessions. The distance of patients was found to
decrease after treatment. According to our assumption, a
decreased distance represents a closer position of feature
vector to the negative samples, implying that the FC of
the subject is becoming similar to HCs. The significant
distance decline in the patient group indicated that the
FC of the patient group recovered after treatment. On the
other hand, the lower limb movement score and SCIM of
patients also improved significantly, corroborating findings given
by distance.

Unlike disease diagnosis, rehabilitation evaluation requires
not only identifying the difference between groups of subjects but
also reflecting the trend of multi-session data. The longitudinal
data of five subjects were utilized to investigate the rehabilitation
outcome prediction of our proposed method. All reversed
distance has a consistent increasing trend as clinical scores from
the first session to the fourth, indicating the improved function
in patients after treatment. However, individual discrepancies
exist. Among the five subjects, subject 16, whose last two
scanning times were not far from treatment (4 and 6 weeks
after inclusion), showed the most aligned variance in distance
and scores. The scanning time gaps for subjects 14, 15, and 17
were similar, and fluctuations and inconsistencies were observed
in the variation of distance. The scanning time of the last
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FIGURE 3 | Longitudinal results. The bold brown line stands for clinical scores whereas thinner lines with five different colors represent the distance calculated from

five different atlases.
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session of subject 18 was far away from the first session, which
may influence the distance calculated from fMRI data. In fact,
after 2 weeks’ treatment, subjects returned home and stopped
rehabilitation programs. Different self-exercising in these periods
may be the cause of fluctuations in distance. Nevertheless, all
subjects showed improved clinical scores in the fourth session
compared with the first session, which can also be identified
using distance. This proved that our method can reflect general
trends of functional changes after rehabilitation treatment, but
giving more precise prediction is still difficult. Future studies are
needed to recruit more subjects as well as unify the follow-up
revisit time gap.

There are several drawbacks in this study. Firstly, the
number of samples and scanning sessions is limited. The
correlation of longitudinal distance and scores only contained
four sessions. As a result, no meaningful statistical correlation
coefficient could be used to assess the consistency of distance
and scores. It is also intriguing to investigate how the distance
of longitudinal data of HCs would change in our method. At
the time, we are recruiting more subjects to expand the dataset.
More data collected during rehabilitation could further validate
our findings.

Second, the accuracy might be over-optimized, since labels of
samples were considered during feature selection. All data from
the first scanning session were fed into the t-test filter, which may
cause the classification algorithm to overfit the training dataset.
Also, the significant threshold was set to 0.05 without multiple
comparison correction. We chose to use a linear SVM instead
of kernel SVM to alleviate the overfitting problem. Besides, we
want to find a set of rich and consistent features that separates
patients fromHCs, instead of modifying the feature set whenever
new data arrives. The original uncorrected threshold could
reveal as many potential significant connections as possible.
As reported in the Results section, the empirical discovery
rate was higher than the significant level and were consistent
across brain atlases for each disease. Yet, the uncorrected
significant level indeed resulted in high dimensionality of the
feature space, introducing redundant features, and causing
possible pitfalls in the classifier training. On the other hand,
the t-test filter is a very simple feature selection method that
could be replaced by more sophisticated and robust method in
the future.

Third, we used SCI patients to validate our method, but how
it performs on patients with brain lesions remains unknown.
The traumatic, ischemic, or hemorrhagic lesions due to traumatic
brain injury, stroke, or other diseases could impact and alter FC.
The lesion location and type should be considered when building
brain networks and extracting features in such circumstances.
In addition to the whole-brain network, a local network built at
the lesion location and surrounding area could possibly capture
disease-specific features.

CONCLUSION

In this paper, we proposed a distance-based neurorehabilitation
evaluation method, using rs-fMRI and linear SVM

classifier, to investigate brain function changes following
rehabilitation program. We proved that the distance
results were consistent with clinical scores, indicating
potential value in neurorehabilitation evaluation and
outcome prediction. However, more robust feature
extraction and selection techniques are needed before
the method could be used in clinical practice. We hope
that this paper would give rise to more innovations to
tackle the problem of neurorehabilitation evaluation and
outcome prediction.
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APPENDIX

FIGURE A1 | Circos plot. The whole brain was separated into frontal, parietal, temporal and occipital lobe, with or without cerebellum. Each brain region was arranged

so that frontal regions appeared on the top of the graph. Only the most different 100 connections between the healthy control group and patient group (connections

with highest absolute t-values during t-test) were shown. (A) Brodmann atlas; (B) Brodmann_ce atlas; (C) AAL atlas; (D) AICHA atlas; (E) Brainnetome atlas.
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For illustration purposes, we plotted the significant connections
using Circos. The outer ring in the Circos plot represents brain
regions and is separated into frontal, parietal, temporal, and
occipital lobes, with or without cerebellum. Each tick in the ring
stands for a brain region. The ticks are arranged so that frontal
regions appear on the top of the graph. The lines inside Circos
plots represent connections between two regions.

In our study, during t-test filtering, each connection was tested
for significant difference between all patients andHCs at baseline.
Connections were sorted by absolute t value and the top 100
connections were plotted in the graph. A red line means that for
this connection, patients were significantly higher than HCs and
a blue line means the opposite. The same procedure was repeated
for all five atlases.
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