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A decrease in glutamate in the medial prefrontal cortex (mPFC) has been extensively

found in animal models of chronic pain. Given that the mPFC is implicated in

emotional appraisal, cognition and extinction of fear, could a potential decrease in

glutamate be associated with increased pessimistic thinking, fear and worry symptoms

commonly found in people with chronic pain? To clarify this question, 19 chronic pain

subjects and 19 age- and gender-matched control subjects without pain underwent

magnetic resonance spectroscopy. Both groups also completed the Temperament and

Character, the Beck Depression and the State Anxiety Inventories to measure levels

of harm avoidance, depression, and anxiety, respectively. People with chronic pain

had significantly higher scores in harm avoidance, depression and anxiety compared

to control subjects without pain. High levels of harm avoidance are characterized by

excessive worry, pessimism, fear, doubt and fatigue. Individuals with chronic pain showed

a significant decrease in mPFC glutamate levels compared to control subjects without

pain. In people with chronic pain mPFC glutamate levels were significantly negatively

correlated with harm avoidance scores. This means that the lower the concentration of

glutamate in the mPFC, the greater the total scores of harm avoidance. High scores

are associated with fearfulness, pessimism, and fatigue-proneness. We suggest that

chronic pain, particularly the stress-induced release of glucocorticoids, induces changes

in glutamate transmission in the mPFC, thereby influencing cognitive, and emotional

processing. Thus, in people with chronic pain, regulation of fear, worry, negative thinking

and fatigue is impaired.
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INTRODUCTION

Brain morphological changes are known to occur in chronic
pain (1, 2). Although different types of chronic pain, e.g.,
nociceptive and neuropathic pain, differ in their pattern of
gray matter changes (3–5), they show a substantial overlap
in the medial prefrontal cortex (mPFC), where a decrease
in gray matter volume has been widely demonstrated (2, 6–
9). While a logical explanation for a decrease in mPFC gray
matter volume is neuronal loss, there is no evidence to confirm
this (10). Instead, we recently proposed that a decrease in
mPFC gray matter volume reflects many changes, including
vascular alterations caused by a change in metabolic activity, e.g.,
glutamate (10). In detail, a change in glutamate concentration
effects microvasculature through neurovascular signaling and
activation of pericytes which are contractile cells that line
capillaries, controlling their diameter size through contraction or
dilation (11).

An alteration in mPFC glutamate levels has been shown in
animal models of chronic pain but has never been reported in
humans with chronic pain (12–18). In animal models of chronic
pain, it has been suggested that during the acute stage of pain
there is an initial increase in glutamate, which is followed by a
decline during the progression from acute to chronic pain (13).
Thus, we would expect a decrease in mPFC glutamate in people
with chronic pain.

Another important question refers to the clinical impact of
such metabolic changes. Given that the mPFC is implicated in
emotional appraisal (19–21), cognition (19–22) and extinction
of fear (19–21), could a decrease in glutamate be associated
with the increased pessimistic thinking, fear and worry
symptoms commonly found in people with chronic pain? Indeed
spectroscopy studies have revealed that glutamate mediates the
behavioral sequelae associated with anxiety and stress (23) as well
as the sequelae of pain perception itself (24, 25).

While as many as 50% of people with chronic pain suffer
from anxiety and depression (26, 27), it is not known if
these state factors relate to a potential decrease in mPFC
glutamate. Unfortunately, no published studies have examined
mPFC glutamate levels in individuals with chronic pain. As
alterations in mPFC gray matter volume represent changes
in mPFC glutamate levels in people with chronic pain (10),
studies investigating the relationship between mPFC gray matter
volume and state anxiety and depression may provide evidence
about whether these state factors are related to decreased mPFC
glutamate in chronic pain sufferers.

Decreased mPFC gray matter volume has been reported
in anxiety disorders (28–30) and depression (31–34). To our
knowledge, there are two published studies which directly link
the decrease in mPFC gray matter volume to state anxiety and
depression symptoms in people with chronic pain (35, 36).
However, five other studies found no such relationship between
mPFC gray matter decrease and state anxiety and depression in
chronic pain sufferers (37–41). This suggests that there may be
other emotional, cognitive and behavioral factors that are linked
to a decrease in mPFC gray matter volume and hence, to a
potential decline in mPFC glutamate.

Evidence is accumulating that a high level of the temperament
“harm avoidance” is the most distinguishing multidimensional
trait of chronic pain sufferers (42–45). Elevated harm avoidance,
as per Cloninger’s Temperament and Character Inventory
(46), comprises cognitive, emotional, and behavioral factors
characterized by excessive worry, pessimism, fear, doubt,
apprehension and fatigue. In the chronic pain context, high
harm avoidance usually manifests as persistent, excessive fear
and worry about pain (47). Harm avoidance has previously been
linked directly to mPFCmetabolic and neuronal activity (48–52).
Hence, we suggest that a potential decrease in mPFC glutamate
may be associated with high levels of harm avoidance amongst
chronic pain sufferers.

We used magnetic resonance spectroscopy to determine:
(1) if individuals with chronic pain show a decrease in
mPFC glutamate and (2) if this decline in mPFC glutamate
is associated with negative affective state factors such as
depression and anxiety or multidimensional trait factors
such as harm avoidance. Metabolites including glutamate,
N-acetylaspartate, creatine, and myo-inositol were compared
between chronic pain subjects and age- and gender- matched
healthy controls. Both groups also completed the Beck
Depression Inventory, the State-Trait Anxiety Inventory
and the Temperament and Character Inventory which measure
depression, anxiety and harm avoidance, respectively. We
hypothesized that individuals with chronic pain would
demonstrate a decrease in glutamate within the mPFC
compared to age and gender matched individuals without
pain. Further, we hypothesized that a decline in glutamate
levels would be linked to higher levels of harm avoidance in
individuals with chronic pain. That is, the higher the reports
of multidimensional trait of harm avoidance, e.g., the higher
the ongoing fear and worry about pain, the lower the levels of
mPFC glutamate.

METHODS

Subjects
Nineteen subjects with chronic pain (9 males; mean [±
standard deviation (SD)] age 51 ± 13 years) and 19 age-
and gender- matched control subjects without pain (9 males;
mean [±SD] age 49 ± 14 years) were recruited for the study.
Five out of 19 chronic pain sufferers were diagnosed with
painful temporomandibular disorder (TMD) using the Research
Diagnostic Criteria for TMD (53). Two people with chronic pain
suffered from trigeminal neuropathy (TNP), one person suffered
from trigeminal post-herpetic neuralgia, and one individual
had atypical trigeminal neuralgia assessed by the Liverpool
Criteria (54). Ten people with chronic pain suffered from
neuropathic pain after spinal cord injury (SCI) as defined by
the International Association for the Study of Pain SCI pain
taxonomy (55) (Table 1).

TMD is mainly a nociceptive pain condition (56) affecting
the temporomandibular joint and mastication muscles. TMD is
primarily related to the trigeminal nerve; however, symptoms
can also occur around the neck, head and ears. TMD is
characterized by ongoing aching pain and tenderness (53). TNP
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TABLE 1 | Chronic pain subjects characteristics.

Subject Pain disorder Pain

type

Pain

site

Pain

duration (years)

Analgesic medication Pain diary

(VAS)

Scan pain

(VAS)

1 Trigeminal post-herpetic neuralgia NP Left 7.5 None 5.06 3.0

2 Myofascial pain NNP Bilateral 26 150 mg/day pregabalin,

3,990 mg/day paracetamol

6.36 5.3

3 Myofascial pain NNP Bilateral 48 None 3.97 4.3

4 Neuropathic pain after SCI NP Bilateral 13 None 8.77 1.4

5 Neuropathic pain after SCI NP Bilateral 1.3 900 mg/day pregabalin; 120

mg/day oxycodone

60 mg/day paracetamol

8.80 7.0

6 Neuropathic pain after SCI NP Bilateral 10.8 600 mg/day gabapentin 4.34 1.9

7 Myofascial pain NNP Bilateral 14 None 4.50 2.8

8 Myofascial pain NNP Bilateral 5.5 None 3.20 2.9

9 Myofascial pain NNP Bilateral 5 None 1.92 1.4

10 Trigeminal neuropathy NP Bilateral 9 None 3.02 6.4

11 Atypical trigeminal neuralgia NP Left 17 None 2.60 2.6

12 Neuropathic pain after SCI NP Bilateral 10.5 None 5.12 6.0

13 Neuropathic pain after SCI NP Bilateral 10 None 0.89 0.5

14 Neuropathic pain after SCI NP Bilateral 4.7 600 mg/day pregabalin 3.84 1.8

15 Neuropathic pain after SCI NP Bilateral 36.8 None 1.63 3.1

16 Trigeminal neuropathy NP Bilateral 10 None 0.56 0.6

17 Neuropathic pain after SCI NP Bilateral 27.5 None 4.77 3.6

18 Neuropathic pain after SCI NP Bilateral 34.5 None 2.80 2.8

19 Neuropathic pain after SCI NP Bilateral 23 None 1.73 2.2

Mean

(± SD)

16.5 ± 13 3.9 ± 2.3 3.1 ± 1.9

VAS, visual analog scale; SCI, spinal cord injury; NP, neuropathic pain; NNP, non-neuropathic pain.

is a neuropathic pain condition occurring in one or more
branches of the trigeminal nerve. It features continuous or long
periods of background aching and burning pain with episodic
sharp stabbing pain (54). Trigeminal post-herpetic neuralgia is a
unilateral neuropathic pain syndrome characterized by ongoing
deep aching or burning pain occurring in one or more branches
of the trigeminal nerve, caused by herpes zoster (57, 58). Atypical
trigeminal neuralgia is a unilateral neuropathic pain condition of
a branch or branches of the trigeminal nerve, featuring constant,
or long periods of mild, background burning pain with abrupt
onset sharp, stabbing pain (54). All SCI subjects had complete
thoracic injury with continuous shooting or burning pain in the
area of sensory loss which was minimum three segments below
the neurological level of injury. The International standards
for neurological classification of spinal cord injury (ISNCSCI)
examination (59) was used to assess the extent of spinal cord
damage. Specifically, we determined the most caudal level of the
spinal cord with normal sensory and motor function on both
sides of the body (neurological level of injury). When there was
no sensory or motor function in the sacral segments, we specified
the injury as complete. The Human Research Ethics Committees
of the University of New South Wales and University of
Sydney approved the research and all subjects gave their
informed written consent in accordance with the Declaration
of Helsinki.

Psychometric Measures
During the MRI scanning session, subjects rated their present
pain intensity (Table 1). A pain diary was also completed to
assess participant pain intensity during the week before the
scanning session. Subjects rated their pain three times daily
by making a vertical pen stroke on a 10 cm horizontal line
(0 cm reflecting no pain to 10 cm reflecting maximum pain
imaginable). The values were averaged to reflect the subject’s
chronic pain intensity. Each participant also completed the
revised Temperament and Character Inventory (TCI-R) (46) to
assess their level of harm avoidance. The TCI-R comprises 240
items and measures four temperament traits (Novelty Seeking,
Harm Avoidance, Reward Dependence, and Persistence) and
three character traits (Self-Directeness, Cooperativeness, and
Self-Transcendence). Percentile scores were determined from the
raw scores for harm avoidance using the following ranges: 84–
100%, very high; 67–83.3%, high; 34–66.7%, average; 17–33%,
low; 0–16.7%, very low. The State Anxiety Inventory (32, 60)
was also completed by each participant. This measure has 20
items with scores ranging from 20 to 80. A cut-off score of 39–
40 has been suggested to detect clinically significant symptoms
for state anxiety (61). State anxiety reflects a temporary condition
characterized by autonomic nervous system activation and
feelings of fear, nervousness and tension in response to a
perceived threat. Moreover, to assess depressive symptoms,
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the Beck Depression Inventory (62) was completed by each
participant. This is a valid and reliable measure of depression
in chronic pain patients (63), with scores ranging from 0–63.
The standard cut-off scores are as follows, 0–9 indicates minimal
depression, 10–18 indicates mild depression, 19–29 indicates
moderate depression, and 30–63 indicates severe depression (64).
All psychometric variables were continuous in nature.

Proton Magnetic Resonance Spectroscopy
(1H-MRS) Acquisition
Subjects lay supine head first on the bed of a 3T MRI scanner
(Achieva TX Philips Healthcare, Best, Netherlands) with their
head immobilized in a tight-fitting 32 channel head coil. One
high resolution T1-weighted volumetric image covering the
whole brain was acquired for each participant (turbo field echo;
echo time = 2.5ms, repetition time = 5,600ms, flip angle =

8◦, voxel size = 0.8 mm3). For voxel positioning, we used
multi-planar (axial, sagittal, coronal) reconstructions. In the right
mPFC (65), a voxel (20 × 30 × 30 mm3) was placed to collect
proton magnetic spectra (Figure 2A) using the PRESS sequence
(TR: 2,000ms, TE: 32ms, 1,024 acquisition points, bandwidth
of 2 kHz, 64 averages, water suppression technique “excitation”).
From the same voxel position, we also collected an unsuppressed
water spectrum with 8 averages. All voxel placements were
positioned based on anatomical and histological features. This
was done by reference to BioImage Suite by Yale University
(https://bioimagesuiteweb.github.io/webapp/) in the MNI2TAL
application, against a 1.5T high resolution (1mm) brain. Further
to this, the atlas of the Human Brain (65) was used to verify
final placement of the voxel to ensure that the target voxel was
placed within the mPFC and not within the anterior cingulate,
orbitofrontal, or dorsolateral prefrontal cortex. The voxel was
targeted to land on the Superior Frontal Gyrus, Medial Part or
the Superior Frontopolar Gyrus, both well within the mPFC.

1H-MRS Analysis
Java-based magnetic resonance user’s interface (jMRUI 4.1,
European Union project) was used for the analysis of the
MRS data in the time domain. First, the Hankel Lanczos
Singular Value Decomposition algorithm was employed to
remove the dominant water resonance. QUEST was then used
to quantify N-acetylaspartate (NAA), creatine (Cr), glutamate
(Glu), and myo-inositol (MI) resonances using a 32ms TE
metabolite basis set including NAA, Cr, Glu, MI, glutamine, and
glycerophosphorylcholine generated using the NMR-SCOPE tool
in jMRUI using coupling constant and chemical shift information
from Gasparovic et al. (66). Ratios were calculated for NAA,
Cr, Glu, and MI relative to H2O which was measured from the
unsuppressed water reference spectrum. H2O ratios have been
used because H2O provides a more robust reference compared
to Cr which can vary across the brain even in non-disease states
and particularly in healthy aging (67–70).

Spectral Quality Assessment and Voxel
Tissue Content Analysis
Variances were calculated from the peak areas and the standard
deviations of the fit for each metabolite in each subject to assess

the goodness of fit. Average linewidths and signal to noise ratios
(SNR) were also examined. Signal-to-noise ratios were measured
using the peak amplitudes of NAA in the water suppressed
spectrum compared to the peak amplitude of the noise from a
signal free section of the spectrum around 10 ppm in each subject.
Spectroscopy region of interests (ROIs) were assessed for relative
fraction of cerebrospinal fluid, gray and white matter using a tool
for partial volume estimation of Philips data (66).

Statistical Methods
All data was analyzed using SPSS statistical software (version
25). The Shapiro-Wilk test was used to assess the normal
distribution of all data. Data identified as parametric was
analyzed with two-tailed independent t-tests to assess for
between group comparisons. Two-tailed Pearson correlations
were also used to determine any significant correlations between
parametric data variables. A stepwise sequential regressionmodel
[including Akaike’s Information Criterion with small-sample
correction (AICc) fit and forward selection with harm avoidance
as the outcome and NAA and glutamate as predictors] was
used to assess the influence of NAA and glutamate on harm
avoidance. During the study, a significance level of p < 0.05
was employed, with the Bonferroni-Holm correction used for
multiple comparisons and respective cumulative α error.

RESULTS

On average (mean ± SD), chronic pain subjects had on-going
pain intensity of 3.9 ± 2.3 (diary pain), pain intensity during
scanning of 3.1± 1.9 (scan pain), and an average pain duration of
16.5 ± 13 years. Table 1 shows the individual and mean chronic
pain participant characteristics. Seventeen out of 19 chronic pain
subjects had bilateral pain and two had left-sided pain. Fourteen
out of 19 chronic pain subjects had neuropathic pain and five had
non-neuropathic pain (myofascial pain). Ten out of 19 chronic
pain sufferers had neuropathic pain after SCI and nine had
orofacial pain (Table 1). There was no significant difference in
age for chronic pain subjects compared to controls without pain
(mean [±SD] age: chronic pain subjects: 51± 13; control subjects
without pain: 49± 14; p= 0.68, computed test statistic (t)= 0.43,
degrees of freedom (df )= 36).

Psychometric Measures
Chronic pain subjects had significantly higher scores in harm
avoidance compared to the age and gender matched control
group without pain (mean [±SD] harm avoidance: chronic pain
subjects: 74 ± 22; control subjects without pain: 34 ± 23; p <

0.001, t = 5.32, df = 36; Figure 1A). In addition, chronic pain
subjects had high values in harm avoidance when compared to
a standard community sample of 300 normal adult individuals
(71). In contrast, the control group had average levels of harm
avoidance compared to the standard community sample (71).
There was no significant difference in harm avoidance levels
between subjects with neuropathic pain (n = 14) and subjects
with non-neuropathic pain (myofascial pain, n = 5) (mean
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FIGURE 1 | (A) A plot of mean (±SD) levels of harm avoidance in people with chronic pain and pain-free controls. Percentile scores (red) derived from a standard

community sample of 300 normal adult individuals; 84–100%, very high; 67–83.3%, high; 34–66.7%, average; 17–33%, low; 0–16.7%, very low (71). (B) A plot of

mean (±SD) depression scores in people with chronic pain and pain-free controls. Cut-off scores (red) of 0–9 indicate minimal depression, 10–18 indicate mild

depression, and 19–29 indicate moderate depression (64). (C) A plot of mean (±SD) anxiety scores in people with chronic pain and pain-free controls. A cut-off score

(red) of 39–40 has been suggested to detect clinically significant symptoms for state anxiety (61).

FIGURE 2 | (A) Sagittal slice showing location from which proton spectroscopy was performed in the right medial prefrontal cortex in people with chronic pain and

pain-free controls. Slice location in Montreal Neurological Institute space is indicated at the lower left of the image. (B) A plot of mean (±SD) Glu/ H2O ratios in the

medial prefrontal cortex in people with chronic pain and pain-free controls. (C) A plot of mean (±SD) NAA/H2O ratios in the medial prefrontal cortex in people with

chronic pain and pain-free controls. (D) A plot of Glu/ H2O ratios in people with chronic pain against NAA/ H2O ratios in the medial prefrontal cortex.

[±SD] harm avoidance: neuropathic pain subjects: 69± 23; non-
neuropathic pain subjects: 86± 17; p= 0.14, t =−1.77, df= 9).

Chronic pain subjects had significantly higher depression
scores when compared to the age and gender matched control
group without pain (mean [±SD] depression scores: chronic pain
subjects: 12 ± 7; control subjects without pain: 3 ± 4; p < 0.001,
t = 4.50, df = 26; Figure 1B). There was no significant difference
in depression scores between subjects with neuropathic pain (n=
14) and subjects with non-neuropathic pain (myofascial pain, n
= 5) (mean [±SD] depression scores: neuropathic pain subjects:
11 ± 7; non-neuropathic pain subjects: 14 ± 8; p = 0.33, t =
−1.01, df = 17).

Finally, chronic pain subjects had significantly higher scores
in state anxiety when compared to the age and gender matched
control group without pain (mean [±SD] state anxiety score:

chronic pain subjects: 31 ± 12; control subjects without pain:
25 ± 5; p = 0.041, t = 2.20, df = 36; Figure 1C). There was
no significant difference in anxiety scores between subjects with
neuropathic pain (n = 14) and subjects with non-neuropathic
pain (myofascial pain, n = 5) (mean [±SD] anxiety scores:
neuropathic pain subjects: 28± 8; non-neuropathic pain subjects:
39± 16; p= 0.17, t =−1.60, df = 5).

Differences in mPFC Resonance Levels
Between Chronic Pain and Control
Subjects
The mPFC voxel from which 1H-MRS spectra was acquired
is shown in Figure 2A. Chronic pain subjects had significantly
lower mPFC glutamate levels compared with age and gender
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matched healthy control subjects (mean [±SD] Glu/H2O ratio:
chronic pain subjects: 0.18 ± 0.04; control subjects without
pain: 0.22 ± 0.05; p = 0.013, t = −2.65, df = 35; Figure 2B).
There was no significant difference in mPFC glutamate levels
between subjects with neuropathic pain (n = 14) and subjects
with non-neuropathic pain (myofascial pain, n = 5) (mean
[±SD] Glu/H2O ratio: neuropathic pain subjects: 0.18 ± 0.04;
non-neuropathic pain subjects: 0.19 ± 0.03; p = 0.46, t =

−0.75, df = 17).
Chronic pain subjects had significantly lower mPFC NAA

levels compared with control subjects without pain (mean [±SD]
NAA/H2O ratio: chronic pain subjects: 0.17 ± 0.05; control
subjects without pain: 0.21 ± 0.05; p = 0.048, t = −2.05, df
= 36; Figure 2C). There was no significant difference in mPFC
NAA levels between subjects with neuropathic pain (n = 14)
and subjects with non-neuropathic pain (myofascial pain, n= 5)
(mean [±SD] NAA/H2O ratio: neuropathic pain subjects: 0.17±
0.06; non-neuropathic pain subjects: 0.17 ± 0.04; p = 0.82, t =
0.24, df = 17).

Finally, chronic pain subjects had similar mPFC MI and Cr
levels compared with control subjects (mean [±SD] MI/H2O
ratio: chronic pain subjects: 0.20± 0.04; control subjects without
pain: 0.20 ± 0.08; p = 0.61, t = −0.52, df = 36; mean [±SD]
Cr/H2O ratio: chronic pain subjects: 0.22± 0.04; control subjects
without pain: 0.24± 0.06; p= 0.36, t =−0.92, df = 36).

Relationship Between mPFC Resonances
and Psychometric Measures
In the chronic pain group, Glu/H2O ratios were negatively
correlated to levels of harm avoidance (R = −0.5, p = 0.03), that
is the greater the reduction in medial prefrontal cortex glutamate
levels, the higher the levels in harm avoidance (Figure 3A). In
contrast, no significant correlation between Glu/H2O ratios and
levels of harm avoidance was found in controls without pain
(R = −0.188, p = 0.46). Furthermore, in chronic pain subjects
Glu/H2O ratios were not correlated to either diary pain (R= 0.03,
p= 0.90), scan pain (R= 0.4, p= 0.87), pain duration (R= 0.34,
p= 0.16), state depression (R=−0.20, p= 0.42), or state anxiety
(R=−0.27, p= 0.27). In control subjects without pain, Glu/H2O
ratios were also not correlated to either state anxiety (R=−0.13,
p= 0.62) or state depression (R=−0.40, p= 0.10).

In chronic pain subjects, NAA/H2O ratios were negatively
correlated to levels of harm avoidance (R = −0.7, p = 0.001);
that is, the greater the reduction in medial prefrontal cortex NAA
levels, the higher the levels of harm avoidance (Figure 3B). In
contrast, no significant correlation between NAA/H2O ratios and
levels of harm avoidance was found in controls without pain
(R = −0.01, p = 0.96). Furthermore, in chronic pain subjects
NAA/H2O ratios were not correlated to either diary pain (R =

0.09, p= 0.18), scan pain (R=−1.25, p= 0.61), pain duration (R
= 0.44, p = 0.06), state depression (R = 0.09, p = 0.72), or state
anxiety (R = −0.04, p = 0.88). In control subjects without pain,
NAA/H2O ratios were also not correlated to either state anxiety
(R= 0.42, p= 0.07) or state depression (R= 0.22, p= 0.36).

In chronic pain subjects, MI/H2O ratios were not correlated
to levels of harm avoidance (R= 0.48, p= 0.85), diary pain (R=

−0.07, p= 0.77), scan pain (R=−0.10, p= 0.65), pain duration
(R = 0.10, p = 0.97), state depression (R = −0.13, p = 0.60),
or state anxiety (R = −0.19, p = 0.44). In controls without pain
MI/H2O ratios were also not correlated to either state anxiety (R
= −0.39, p = 0.10), state depression (R = −0.02, p = 0.94), or
harm avoidance (R= 0.015, p= 0.952).

In chronic pain subjects, Cr/H2O ratios were not correlated to
levels of harm avoidance (R = −0.35, p = 0.14), diary pain (R =

−0.07, p= 0.77), scan pain (R=−0.10, p= 0.65), pain duration
(R = 0.35, p = 0.14), state depression (R = 0.02, p = 0.94), or
state anxiety (R = −0.20, p = 0.41). In control subjects without
pain, MI/H2O ratios were also not correlated to levels of harm
avoidance (R = −0.25, p = 0.30), state anxiety (R = −0.23, p =

0.36), or state depression (R=−0.12, p= 0.66).
In both chronic pain subjects and control subjects, Glu/H2O

ratios were positively correlated to NAA/H2O ratios (chronic
pain subjects: R = 0.74, p < 0.001, Figure 2D; control subjects:
R = 0.61, p = 0.008). Furthermore, in chronic pain subjects,
the relationship of NAA to harm avoidance remained significant
when we accounted for glutamate in a sequential regression
model [p = 0.009, R2 = 0.49 (AICc = 165.6)]. In contrast,
the relationship of glutamate to harm avoidance was no longer
significant whenwe accounted for NAA in a sequential regression
model [p= 0.88, R2 = 0.049 (AICc= 169.7)].

1H-MRS Partial Volume Makeup
There was no significant difference in the fraction of
cerebrospinal fluid, gray, and white matter within the mPFC
voxel between chronic pain and control subjects (gray matter
percentage within the mPFC voxel: chronic pain subjects: 0.23
± 0.16 mean [±SD]; control subjects: 0.24 ± 0.19 mean [±SD];
t = −0.07, df = 35, p = 0.94; white matter fraction within the
mPFC voxel: chronic pain subjects: 0.06 ± 0.05 mean [±SD];
control subjects: 0.18 ± 0.26, t = −1.92 mean [±SD], df =

19.41, p = 0.07; mean [±SD]; cerebrospinal fluid fraction
within the mPFC voxel: chronic pain subjects: 0.70 ± 0.15 mean
[±SD]; control subjects: 0.58 ± 0.34 mean [±SD]; t = 1.42,
df = 25.17, p= 0.17).

Spectral Quality Assessment
According to the consensus on clinical proton MRS of the
brain (72) the linewidths, SNR and variances of the metabolites
were all well within acceptable limits for data quality. Line
widths for all spectra were <10Hz after automatic shimming
(pencil beam auto second order option). Furthermore, there
was no significant difference in each metabolite’s mean variance
(%) between chronic pain and control subjects [NAA variance
mean ± SD: chronic pain subjects: 8.2 ± 4.8% (minimum 3.5;
maximum 19.0); control subjects: 7.0 ± 2.0% (minimum 4.2;
maximum 11.0); t= 0.97, df = 25, p= 0.34; Glu variancemean±
SD: chronic pain subjects: 15.0± 5.8% (minimum 3.8; maximum
19.8); control subjects: 15.4 ± 5.2% (minimum 3.4; maximum
19.9); t = −0.24, df = 35, p = 0.81; MI variance mean ± SD:
chronic pain subjects: 7.6 ± 2.6% (minimum 3.4; maximum
12.0); control subjects: 8.1 ± 4.6% (minimum 4.2; maximum
19.4); t=−39, df = 35, p= 0.70; Cr variancemean± SD: chronic
pain subjects: 5.0 ± 2.0% (minimum 2.4; maximum 9.1); control
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FIGURE 3 | (A) A plot of Glu/ H2O ratios in the medial prefrontal cortex in people with chronic pain against levels of harm avoidance. (B) A plot of NAA/H2O ratios in

the medial prefrontal cortex in people with chronic pain against levels of harm avoidance.

subjects: 5.2 ± 2.1% (minimum 2.6; maximum 11.0); t = −0.37,
df = 35, p = 0.72]. There was also no significant difference in
mean SNR ratios between chronic pain and control subjects [SNR
ratios mean ± SD: chronic pain subjects: 30 ± 14.7 (minimum
7.7; maximum 54); control subjects: 24 ± 12.1 (minimum 3.5;
maximum 54); t= 1.39, df= 35, p= 0.17].

DISCUSSION

This study demonstrates that chronic pain is associated with
a significant reduction in glutamate in the mPFC. Glutamate
is known as the major excitatory neurotransmitter in the
brain (73). Furthermore, the study revealed that people with
chronic pain show a decrease in NAA, a marker of neuronal
integrity (74), in the mPFC, compared to age- and gender-
matched individuals without pain. Additionally, in chronic pain
subjects, both metabolites glutamate and NAA were significantly
negatively correlated to harm avoidance. That is, the higher the
multidimensional trait of harm avoidance, e.g., the higher the
ongoing fear and worry about pain, the lower the levels of mPFC
glutamate and NAA. In contrast, no significant relationship
between either metabolite and harm avoidance was found in
healthy subjects. Moreover, no significant relationship was found
between either metabolite and state anxiety and depression in
healthy or chronic pain subjects. Finally, we found a significant
positive relationship between glutamate and NAA.

NAA is well-known to be a marker of both neuronal loss
and mitochondrial activity (69). In our study, we argue that the
decline in mPFC NAA represents a decrease in mitochondrial
activity rather than neuronal loss because (1) we also found a
reduction in mPFC glutamate which declines with decreased
mitochondrial activity in a linear manner (69, 75, 76) and (2)
we found a significant positive correlation between NAA and
glutamate. In line with this argument, evidence is arising that a
reduction in NAA is related to glutamate dysfunction (77, 78).
The positive association between NAA and glutamate may reflect

NAA’s involvement in facilitating energy metabolism in neuronal
mitochondria from glutamate (78). Furthermore, multimodal
brain imaging studies point away from neuronal loss as the
likely explanation for mPFC gray matter volume decline in
people with chronic pain (79). Indeed, we recently suggested
that in individuals with chronic pain, a decrease in mPFC gray
matter volume does not represent neuronal loss but rather a
dysregulation in glutamate metabolism (10).

Our study revealed no significant difference between the
fraction of gray matter within the mPFC voxel between control
and chronic pain subjects. This could be explained by the
variance (>30%) in the amount of gray matter across the age
range from 23 to 68 studied here, being greater than the reported
changes in mPFC gray matter [12%, (80)] and whole brain gray
matter volume [5.4%, (81)] in chronic pain subjects compared
to healthy control subjects. Hence, the chances of finding a
difference in gray matter within the mPFC box between both
groups studied here is minimal.

The mPFC is rich in glutamatergic cells and innervation
(82, 83). Both increased (12, 14, 16, 18) and reduced mPFC
glutamate (13, 15, 17) have been shown in the animal model of
chronic pain. Furthermore, reduced glutamate has been found in
the anterior cingulate cortex in individuals with both acute and
chronic pain (25, 84–86). Guida et al. suggested that an initial
glutamate increase during the acute phase of pain is followed by a
decline during its progression to chronicity (13). This suggestion
aligns with findings, as we presented here, of a decrease in
mPFC glutamate in people with long-term, chronic pain. The
interesting question to ask is which cellular mechanisms underlie
this decrease in mPFC glutamate in people with chronic pain.
It is well-known that the mPFC is specifically vulnerable to the
effects of stress (87–89). It is also well-established that acute
pain can be perceived as an acute stressor which can evoke a
physiological stress response, e.g., release of glucocorticoids such
as cortisol (73, 90). In acute pain, the stress-induced release of
glucocorticoids rapidly increases glutamate release in the mPFC
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(91, 92). In particular, acute stress induces a rise of readily
releasable glutamate vesicles in the mPFC (73). In contrast, the
effects of chronic stress, and hence chronic pain, on glutamate
release are mostly unknown (73). It is thought that chronic
pain results in sustained mPFC glial cell changes (93–95), which
alter glutamate neurotransmission in the mPFC (73, 96, 97). In
particular, high levels of glucocorticoids result in glia activation
(97) leading to the production of cytokines, which downregulate
glutamate function (98). The downregulation of mPFC glutamate
function may reflect a decrease in mPFC glutamate, as measured
by magnetic resonance spectroscopy in our study.

The sequential regression model used in our study (including
harm avoidance as outcome and NAA and glutamate as
predictors) revealed that NAA may be key in the relationship
between glutamate and harm avoidance. This is not surprising as
it has been proposed that NAAmay act as a reservoir of glutamate
(77). Particularly, Clark et al. suggested that NAA is converted
to aspartate in oligodendrocytes, which can then be converted to
glutamate through the TCA cycle with an energetically favorable
set of reactions (77). Thus, NAA in neuronal tissue may serve
as a large reservoir for refilling glutamate (77), and hence may
be key in shaping the relationship between glutamate and harm
avoidance in times of stress.

Another important question refers to the clinical impact of a
decrease in mPFC metabolic activity. In individuals with chronic
pain, both glutamate and NAA were significantly negatively
correlated with harm avoidance, but not with state depression
and anxiety scores. As anxiety and depression scores were not
correlated to glutamate andNAA levels, it seems that the decrease
in glutamate and NAA is associated with different constructs
than state anxiety and depression in individuals with chronic
pain. The mPFC is implicated in complex cognitive functions
such as learning and memory (21, 99), decision making (22),
executive control (100), and emotional processing (19) such as
extinction of fear (20). Given this, it is conceivable that changes
in concentration of these metabolites may alter more complex
multidimensional trait factors.

Harm avoidance is a multidimensional trait comprising
cognitive, emotional, and behavioral characteristics and aligns
with the psychological complexity of chronic pain presentations
(47, 101). Harm avoidance refers to the psychological correlates
of fear and worry, but it also refers to other symptom
characteristics which compound adjustment to chronic pain such
as pessimistic thinking, chronic tiredness, fatigue-proneness, and
sensitivity to criticism and punishment (46).

Both rodent and human studies have revealed that the mPFC
is critical in fear conditioning (20, 102–105). Chronic pain
sufferers habitually experience pain as a threat from which they
need to escape and at any time possibly avoid (106). This
experience results in conditioned fear where fear constitutes an
adaptive response to immediate threat (107). Glutamate mediates
conditioned fear responses which can lead to maladaptive
behavior (23), which in turn can manifest in fatigue (108), mood
disorders (109, 110), and anxiety (20). This aligns with the
current study, which reveals that chronic pain is associated with
reduced mPFC glutamate content, which in turn is significantly
correlated to fearfulness, worry, pessimism, fatigue-proneness

and sensitivity to criticism and punishment. That is, the more
mPFC glutamate decreases the more people with chronic pain
tend to anticipate pain with fearful and pessimistic thoughts,
resulting in maladaptive behavior such as fatigue-proneness
(111) and avoidance of feared activities (47, 101). We suggest
that the mPFC has lost its ability to extinguish fears and
worries due to the decrease in mPFC glutamate concentration,
resulting in an ongoing tendency toward fearfulness, pessimism,
and fatigue-proneness. Indeed, alterations in mPFC glutamate
concentrations directly affect mPFC glutamateric projections
to the periaqueductal gray (PAG) (112). These projections are
known to be critical in the cortical modulation of pain and fear
responses mediated by the PAG (113, 114). Thus, changes in
mPFC glutamateric projections to the PAG result in persistent
fear and worry.

Furthermore, in individuals with chronic pain, mPFC NAA
concentration was significantly negatively correlated with levels
of harm avoidance. As described above, we argue that NAA can
be seen as a marker of metabolic activity in our study. Therefore,
this negative association supports our result that the lower mPFC
metabolic activity, e.g., glutamate and NAA concentration, the
higher the multidimensional trait of harm avoidance, e.g., more
fear, worry, and pessimistic thinking.

In healthy controls, harm avoidance scores were not
correlated with mPFC glutamate and NAA concentration. The
lack of relationships may be because of an insufficient range in
harm avoidance scores in the healthy control group. In contrast,
it may suggest important causal effects. If harm avoidance
was itself associated with levels of mPFC glutamate and NAA,
then a similar relationship between these metabolites and harm
avoidance would have occurred in both control and chronic
pain subjects. The unique relationship between mPFC glutamate,
NAA and harm avoidance in only chronic pain subjects suggests
that any association between mPFC glutamate, NAA and harm
avoidance likely appears after the development of chronic pain.
Notably, we found the same pattern in a previous study—trait
depression scores were only correlated to changes in gray matter
volume in the thalamus, the cingulate, the dorsolateral prefrontal
and hippocampal cortices in chronic pain subjects, but not in age
and gender matched healthy controls (115).

Thus, with the onset of chronic pain, changes in mPFC
metabolic activity may be induced. In particular, chronic pain
may result in mPFC glia activation (93–95). This may lead to the
production of cytokines, which downregulate glutamate function
in themPFC (73, 96, 97) that in turnmay negatively affect chronic
pain suffers’ behavioral and emotional traits. For example, pain
sufferers show the following negative behavioral and emotional
characteristics: fearfulness, pessimism and fatigue-proneness.
Indeed, we recently revealed that subtle alterations in prefrontal
brain structure and metabolism can change an individual’s
personality trait in chronic pain (116).

LIMITATIONS

Our sample size was small and therefore our results should
be validated in a larger sample. We are confident that our
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results accurately reflect the nature of mPFC metabolic changes
associated with chronic pain as, although our subject numbers
were limited, both groups of chronic pain and healthy subjects
were comparable on age and gender demographics. This is
particularly important as we know that the mPFC changes its
structure and function across the lifespan (117). It is possible
that subtle differences between dissimilar types of chronic pain
may emerge in a larger sample. In our sample there was
no significant difference between people with neuropathic and
non-neuropathic (nociceptive) pain in mPFC glutamate and
NAA concentration, as well as harm avoidance, anxiety and
depression scores. Indeed, we recently demonstrated that high
levels of harm avoidance (113), state anxiety and depression
(118) are independent of chronic pain type, e.g., neuropathic
and non-neuropathic (nociceptive). A decrease in mPFC gray
matter volume which may reflect a decline in mPFC glutamate
(10) has been consistently shown in various pain disorders
(6). Therefore, alterations in mPFC glutamate may also be
independent of chronic pain type. Notably, in our study both
neuropathic and non-neuropathic groups, were not significantly
different in mean age, pain duration, scan pain and diary pain.
Further, it is possible that some analgesics may have an effect
on mPFC metabolic activity as well as on harm avoidance,
depression and anxiety levels. For example, monoaminergic-
based antidepressants have been shown to affect glutamate
system function (119). Further, in healthy subjects, painful
stimulation during treatment with morphine has resulted in
decreased Glu/Cr, MI/Cr, and NAA/Cr ratios in the anterior
cingulate cortex (74). Another study in healthy subjects revealed
that Glu/Cr ratio in the anterior cingulate cortex/mPFC, insula
and prefrontal cortex was reduced after 5 days of taking an
opioid or a serotonin and norepinephrine reuptake inhibitor
(120). Acute and chronic effects of medications in the mPFC
needs to be tested in a larger sample size. A larger sample
size may also identify differences relating to pain phenotype.
In our study, the limited sample size may also explain the
lack of association between mPFC NAA concentration and pain
intensity and mPFC NAA concentration and pain duration.
Previous studies have revealed that NAA concentration within
the anterior cingulate cortex is associated with both pain
intensity and duration in individuals with chronic pain (25,
86).

Finally, it is important to acknowledge that at 3T, glutamate
and glutamine overlap (121). The fitting algorithm used here
gives an estimation of glutamate concentration that is within
generally acceptable error but estimation of glutamine by this
method at 3T using short-echo PRESS is problematic. Given that
glutamate concentrations are far greater (up to 5x higher) than
glutamine (69), the uncertainty in the glutamine estimation is of
limited concern.

CONCLUSION

This study reveals for the first time a significant decrease inmPFC
glutamate in individuals with chronic pain. Furthermore, the

decrease in glutamate is significantly negatively correlated with
harm avoidance. This means that the greater themPFC glutamate
decrease, the more chronic pain sufferers show the following
characteristics: fearfulness, pessimism, fatigue-proneness, and
sensitivity to criticism and punishment.

We suggest that chronic pain, particularly the stress-
induced release of glucocorticoids, induces changes in glutamate
transmission in the mPFC, thereby influencing cognitive, and
emotional processing. Thus, regulation of fear, worry, negative
thinking, and fatigue is impaired.
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