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Goals: The development of new treatment for drug abuse requires identification

of targetable molecular mechanisms. The pathology of glutamate neurotransmission

system in the brain reward circuit is related to the relapse of multiple drugs. Glutamate

transporter regulates glutamate signaling by removing excess glutamate from the

synapse. And the mechanisms between glutamate transporter and drug addiction are

still unclear.

Methods: A systematic review of the literature searched in Pubmed and reporting drug

addiction in relation to glutamate transporter. Studies were screened by title, abstract,

and full text.

Results: This review is to highlight the effects of drug addiction on glutamate transporter

and glutamate uptake, and targeting glutamate transporter as an addictive drug addiction

treatment. We focus on the roles of glutamate transporter in different brain regions in drug

addiction. More importantly, we suggest the functional roles of glutamate transporter may

prove beneficial in the treatment of drug addiction.

Conclusion: Overall, understanding how glutamate transporter impacts central nervous

system may provide a new insight for treatment of drug addiction.

Keywords: addiction, glutamate transporters, excitatory amino acid transporters, vesicular glutamate

transporters, glutamate

INTRODUCTION

Drug addiction is a chronic and recurrent mental disorder characterized by compulsive and
uncontrollable drug use and addiction behavior (1). There is growing evidence that drug abuse-
induced changes in synaptic plasticity, especially in the midbrain dopamine system, lead to long-
term effects and contribute to relapse after withdrawal (2). Drug addiction can also inhibit the
central respiratory system and reduce the sensitivity of the respiratory center to carbon dioxide.
Long-term use of addictive drugs can lead to pathological changes in the related brain areas and
produce related pathological behavior, such as drug seeking, drug withdraw, and relapse. The
molecular mechanisms of drug addiction are mainly involved in the following four brain regions:
prefrontal cortex (PFC), ventral ventral tegmental area (VTA), nucleus accumbens (NAc), and
hippocampus (Hip). After drug addiction, the pathological behavior andmemory are closely related
to these brain regions. In addition, the most important thing is that the pathological changes in
these brain regions will change the neural projection of the brain and the synaptic plasticity of the
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neurons. The addiction of some drugs limited its clinical
implication. For example, morphine is the first-line choice
for the management of chronic pain in both cancer or non-
cancer patients (3–5). Dolantin is a synthetic opioid receptor
agonist. Although dolantin has been used in the clinical
treatment of pain instead of morphine, the analgesic effect
of dolantin is about 10 percent of morphine. Beside that,
chronic administration of dolantin also leads to addiction and
tolerance. Therefore, it is necessary to investigate the mechanism
of drug addiction. Recently, lots of studies have provided
evidence for the complexity of anatomical and functional
interactions between neuros in brain reward circuits prompted
by drug’s rewarding action, including dopaminergic neurons,
glutamatergic neurons, and gama aminobutyric acid neurons.
Recently research has reported that glutamatergic neurons is
closely related to drug addiction, because it is involved in
learning association in mesocorticolimbic reward circuitry. The
PFC glutamatergic neurons projection to the NAc plays an
important role in drug seeking behavior (6). NAc also receives
glutamatergic input from Hip and VTA, which has been
proved that this circuit is implicated in drug addiction (7–
9). Cholinergic neurons from laterodorsal tegmental nucleus
(LDTg) activate dopamine neurons in the reward circuit via
projecting to the VTA (10). GABAergic neurons from NAc
project to the VTA associating with rewarding by regulating
DA neurons activity (11). Schematic of brain reward circuitry
was shown in Figure 1. However, there is less research on
glutamate transporters in drug addiction. Here, we review
the glutamate transporters in brain reward circuits under
drug addiction.

Glutamate transporters (GLT) play an important role
in physiological glutamate homeostasis, neurotoxicity, and
glutamatergic regulation of opioid tolerance (12–16). It has
been found that there are two kinds of glutamate transporter,
including vesicular glutamate transporters (VGLUTs) and
excitatory amino acid transporters (EAATs) (17). Extracellular
glutamate levels are regulated by high-affinity EAATs (18).
EAATs are known to be responsible for maintaining the
homeostasis of the extracellular glutamate concentration by
protecting neurons against detrimental overstimulation of
glutamatergic receptors (19). EAATs are classified into five
different subtypes: glutamate aspartate transporter (EAAT1),
glutamate transporter-1 (EAAT2), excitatory amino acid
carrier-1 (EAAT3), EAAT4, and EAAT5 (20). In addition to
the aforementioned mechanisms, glutamate concentrations
are also regulated by modulating glutamate internalization
into synaptic vesicles through VGLUTs 1, 2, and 3. The
release of glutamate in the presynaptic area depends upon the
expression and the function of secretory vesicles, vesicular
glutamate transporters (VGLUTs). VGLUT family presents
distinct expression patterns. VGLUT1 and VGLUT2 are the
major secretory vesicles in the brain, and VGLUT3 often acts as
a cotransporter of glutamate and other neurotransmitters,
such as serotonin, gamma-aminobutyric acid (GABA),
and acetylcholine (21). Tables 1, 2 provide a summary of
the distribution of glutamate transporters and potential
drug targets.

FIGURE 1 | Schematic of brain reward circuitry implicated in addiction. The

ventral tegmental area (VTA) projects dopaminergic (red) transmission to the

nucleus accumbens (NAc), hippocampus (Hip), prefrontal cortex (PFC). The

NAc receives Glutamatergic (purple) inputs from the PFC, VTA, and Hip. The

VTA receives GABAergic (blue) from the NAc. The VTA receives cholinergic

(green) input from the laterodorsal tegmental nucleus (LDTg).

METHODS

This review is according to literature study in Pubmed until
March 31st 2019. Pubmed was searched by using free-text
terms and addiction subject heading. A uniform search strategy
was applied to Pubmed to identify the reported studies. The
primary and keywords were as following: addiction, withdrawal,
relapse, reward VGLUT1, VGLUT2, VGLUT3, EAAT1, EAAT2,
EAAT3, EAAT4, EAAT5, PFC, VTA, NAc, Hip, GLP, Glu,
glutamate neuron, dopamine neuron, cholinergic interneurons,
hippocampal neurons and neuroplasticity. All the studies were
screened by title, abstract, and full text.

The Role of GLT in Addiction in the VTA
The VTA is a tiny area near the midbrain, which is involved
reward effects (43–46). The VTA mainly contains three types of
neurons: dopamine neurons make up about 60–65% of the cells
in the VTA, GABAergic neurons make up ∼30–35% of the cells
in the VTA, a population of glutamate neurons make up ∼2–
3% of the cells in the VTA (7). Yamaguchi et al. have proved
that VGLUT2 mRNA but not VGLUT1 mRNA was expressed in
the VTA (30). VTA glutamatergic neurons–expressing vesicular
glutamate transporter2 (VGLUT2)–project to limbic and cortical
regions, but also excite neighboring dopaminergic neurons (47).
VGLUT2 was also found in dopaminergic neurons from VTA,
which projects to NAc (30, 48). VGLUT2 exists in these neurons
and allows glutamate to release fromVTA dopaminergic neurons
(49). This synergistic effect between glutamate and dopamine
signaling may be important for the plasticity of postsynaptic
AMPA receptors (50). Therefore, VTA plays an important role
in drug addiction. Wang et al. suggested that photoactivation of
VTA VGLUT2 neurons expressing Channelrhodopsin-2 (ChR2)
under VGLUT2 promoter causes conditioned place preferences
and also reinforces instrumental behavior. They also found that

Frontiers in Neurology | www.frontiersin.org 2 October 2019 | Volume 10 | Article 1123

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wang et al. Glutamate Transporter in Drug Addiction

TABLE 1 | Distribution of vesicular glutamate transporters.

Types of

VGLUT

Majority distribution Location Target for

addiction

References

VGLUT1 Neocortex and

hippocampus (22)

Spinal cord (23)

Hypothalamus and

amygdala (24)

Prefrontal cortex (25)

Nucleus accumbens (26)

Striatum (27)

Cerebellum (28)

Synaptic

vesicles

Potential (29)

VGLUT2 Ventral ventral tegmental

area (30)

Basolateral amygdala (31)

Nucleus accumbens (32)

Synaptic

vesicles

Yes (33)

VGLUT3 Caudate-putamen, olfactory

tubercle

Nucleus accumbens

Hippocampus

Interpeduncular nucleus and

dorsal

Medial raphe nuclei (34)

Synaptic

vesicles

Yes (35)

activation of VTAVGLUT2 neurons ismediated by local AMPAR
and NMDAR. In addition, VTA VGLUT2 neurons mediate
the development of place preference by releasing glutamate
into the VTA, resulting in activation of both NMDA and
AMPA receptors (47). The loss of VGLUT2 expression in DA
(dopamine) neurons in VTA probably leads to a decrease in
excitatory activity of the affected dopaminergic neurons. VTA
DA neurons mediate the rewarding effects of psychostimulants
such as amphetamine by increasing the level of extracellular
DA in limbic areas such as the NAc (51). Birgner et al. proved
that DAT-Cre/Vglut2Lox mice attenuated behavioral response to
amphetamine compared to the control mice (52). These findings
suggested that VGLUT2 played an important role for mediating
rewarding effects of drugs of addiction. Behavioral studies have
proved that optogenetic activation of VTA VGLUT2 neurons or
their axonal terminals elicit aversive (47, 53–55). Until now, the
role of some other glutamate transporters in addiction has been
poorly investigated. Therefore, it is necessary to detect the role of
glutamate transporters in addiction.

The Role of GLT in Addiction in the NAc
The NAc is mainly composed of gamma-aminobutyric acid
neurons. In addition, there are also Astrocyte cells and various
types of Interneuron. The glutamate input to NAc mainly
comes from the prefrontal cortex, thalamus, amygdala, and
hippocampus. Different glutamate projections lead to different
synapses and behavioral functions. The structure of NAc is
complex, which can be divided into nucleus and shell regions
according to its anatomical structure and the effects of reward
(56–58). Medium spiny neurons (MSNs) from the NAc receive
excitatory glutamatergic inputs and modulatory dopaminergic
and cholinergic inputs from a variety of cortical and subcortical
structures. The interaction between hippocampus and PFC

TABLE 2 | Distribution of excitatory amino acid transporters.

Types of

VGLUT

Majority distribution Cell-type Target for

addiction

References

EAAT1 Cerebellum (36)

Cortex (17)

Spinal cord (37)

Glial cells Potential (38)

EAAT2 Whole brain (17)

Spinal cord (37)

Glial cells Potential (39)

EAAT3 Hippocampus

Cerebellum

Striatum (40)

Neuron Yes (41)

EAAT4 Cerebellum (40) Neuron Unknown –

EAAT5 Retina (42) Photoreceptors

Bipolar cells

Unknown –

glutamate input is thought to provide synaptic plasticity in
MSNs to regulate reward learning (59, 60). Although cholinergic
neurons are a minority group of NAc neurons, their projection
in MSN has been shown to control drug addiction (61–63).
In the NAc, VGLUT3 participates in the cooperative release of
glutamate from these cholinergic neurons (64, 65). VGLUT1
is mainly expressed in the cortical structure, and it has
been shown that NAc receives glutamate input from PFC
and hippocampus (66). The accumulation of glutamate in
the presynaptic membrane is mainly through the VGLUTS.
The VGLUTS family controls the release of glutamate by the
presynaptic membrane of the neuron (67, 68). The expression
of VGLUTS is closely related to the level of glutamate in the
synaptic cleft. In particular, VGLUT3 is expressed on cholinergic
intermediate neurons in NAc, which plays an important role in
the function of NAc (10, 69). Because of the different expression
patterns of VGLUTs, these proteins can be used as presynaptic
markers to understand the input of glutamate into NAc. Tukey
et al. suggested that chronic uptake of sucrose did not change
the expression of VGLUT1 in the synaptoneurosomes of NAc.
Repeated intake of sucrose resulted in an increase in the level
of VGLUT2 and VGLUT3 subunits in the synaptoneurosomes
of NAc (70). Another study proved that silencing VGLUT3 in
mice resulted in cocaine induced locomotor activity significantly
(71). In addition, Sakae et al. showed that knocking out VGLUT3
increased cocaine addiction by increasing the glutamate signals
of the NAc (35). Thus, in the model of addiction, VGLUTS state
a new signal form of synaptic plasticity in the NAc.

The Role of GLT in Addiction in the PFC
Projection neurons in the prefrontal cortex can regulate
subcortical tissue structure, including ventral striatum and
thalamus. Therefore, it can regulate the effects of addiction (72).
Pyramidal neurons in the medial prefrontal cortex (mPFC) can
receive nerves projections from different brain regions, including
the basolateral amygdala. And at the same time, projection
of glutamatergic neuron in the mPFC can also deliver to the
VTA and NAc (73–75). In the limbic nervous system, including
the prefrontal cortex, euphoria is associated with glutamate
neurotransmission and the number of astrocytes. It is obvious
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that astrocytes regulate glutamate levels by removing glutamate
from synapses by glutamate transporters. Glutamate neurons
are mainly located in the prefrontal cortex. Studies have shown
that the projection of glutamate neurons in the prefrontal cortex
to the nucleus accumbens is an important rewarding pathway
(76). VGLUT1 is mainly expressed in modulatory synapses,
including PFC glutamate neurons project to the different brain
regions of the reward circuit. Glutamate is the main driver
of PFC neurons, and relapse to cocaine seeking requires the
release of glutamate from the PFC projection to NAc (77).
Glutamate transporter 1 (GLT-1) is responsible for the uptake
of the majority of extracellular glutamate concentration (78,
79). Sari et al. showed that by upregulating the expression of
glutamate transporter 1 blunts cue-induced reinstatement of
cocaine-seeking behavior in rats (80). Their results suggested that
glutamate played an important role in cue-induced relapse to
cocaine-seeking behavior, implicating glutamate transporter 1 as
a potential therapeutic target for cocaine addiction. Upregulating
glutamate transporter 1 expression in mesocorticolimbic brain
regions may serve as a potential treatment of drug addiction. The
transmission of glutamate in synapse affects the excitability of
neurons and the emotion. Drug abuse can lead to mood disorder.
Therefore, to study the important role of glutamate transporter in
the PFC is necessary and glutamate transporter may be a target to
treat addiction.

The Role of GLT in Addiction in the Hip
Hippocampus is an important brain tissue related to information
storage, which has many kinds of functions. The most important
function of hippocampus is to store memory information
and learning ability. Therefore, the synaptic plasticity of
hippocampal neurons is considered to be related to learning
and memory. Vesicular glutamate transporters (VGLUTs)
play an important role in synaptic function by uptake of
glutamate in vesicles at the presynaptic terminal (81, 82).
VGLUT1 and VGLUT2 are a vesicular glutamate transporter
commonly, which are found in the telencephalic region, such
as hippocampus. Beside that, some studies has proved that
VGLUT1 and VGLUT2 are co-location in the CA1 and
CA3 region of the hippocampus (83). Neale et al. concluded
that VGLUT inhibitors can regulate glutamatergic synaptic
transmission in hippocampus (81). This may be important in the
pathophysiology of neurological diseases and may represent the
goal of developing new treatments to drug. In addition, a study
proved that eliminating the VGLUT2-dependent glutamatergic
transmission of parvalbumin-expressing neurons leads to deficits
in locomotion (84). At the same time, deletion of VGLUT2
weakened the spatial learning andmemory and synaptic plasticity
in the hippocampus of mice (85). Some studies suggested that
the synaptic responses of acute slice and autaptic cultured
rat hippocampal neurons were significantly decreased in the
VGLUT1 knock-out rat, suggesting that VGLUT1 was the main
transporter subtype in this region (86, 87). Drug abuse will
produce cue-induced drug seeking memory information stored
in the hippocampus, which plays an important role in the reward
system (88, 89). In addition, hippocampus is involved mediating
reward-related learning (90). The concentration of glutamate

in the hippocampus can affect the excitability of neurons.
Therefore, VGLUTS are very important to maintain the balance
of glutamic acid concentration in hippocampus. However, few
studies have reported the role of VGLUTS in addiction, especially
in hippocampus.

The Role of GLT in Drug Addiction Induced
by Different Kinds of Drug
Addictive drugs can generally be divided into stimulants and
inhibitors. For example, cocaine belongs to stimulants. Sakae
et al. proved that knocking out VGLUT3 in the NAc aggravated
cocaine-induced self-administration (35). In addition, Reissner
et al. showed that propentofylline (PPF) restored the expression
of glutamate transporter in the NAc induced by cocaine
(91). Upregulation of glutamate transporter attenuates cocaine-
seeking behavior (80). Morphine is a kind of inhibitor drug
targeting opioid receptor that can lead to addiction. Glutamate
transporter is a crucial role in morphine dependence (13).
Chronic morphine administration induced downregulation of
glutamate transporter expression in the NAc (92). Besides,
activation of glutamate transporter results in inhibitingmorphine
tolerance (13). In other word, drug addiction will result in
the changes of glutamate transporter. These studies reveal that
upregulation of glutamate transporter is a promising method
for treating drug addiction. And it also suggests that glutamate
transporter is involved in drug addiction induced by different
kinds of Addictive drugs. However, the underlying mechanism
is still unclear.

SUMMARY

VGLUTS are very important to maintain the balance of
the glutamate concentration in different brain regions, thus,
increasing the potential mechanisms to treat drug abuse.
However, there is little study to investigate the role of VGLUTS
in drug addiction. In this review, we suggest that the role
of different types of VGLUTS in different brain regions in
drug addiction shown in Figure 2. As we know, PFC, VTA,
NAc, and Hip are crucial to reward system. Therefore, it is
necessary to understand that how VGLUTS influence or get
involved in drug addiction. Previous studies have proved that
glutamate neurotransmitter plays an important role in drug
addiction. Therefore, the release of glutamate from different
brain regions via glutamate transporter also play a crucial
role. In addition, it is worth studying the role of glutamate
transporter in other diseases of the central nervous system,
such as Parkinson’s disease and Alzheimer’s disease. In this
review, we also find that whether glutamate transporters
can be targets for drug addiction remains to be studied
(Tables 1, 2). Although Sakae et al. showed that knocking
out VGLUT3 aggravates cocaine-induced self-administration
(35), the other kinds of transporter in different brain region
are still unclear. For example, by interfering or upregulating
the expression of Glutamate transporter in different brain
regions, and detecting addictive behaviors by conditioned
place preference or self-administration. Beside that, the role
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FIGURE 2 | Molecular mechanisms of vesicular synergy. The role of different types of vesicular glutamate transporters (VGLUTS) in different brain regions in drug

addiction. In the ventral tegmental area (VTA), VGLUT2 participates in the cooperative release of glutamate from dopaminergic neurons. In the nucleus accumbens

(NAc), VGLUT2, and VGLUT3 participate in the cooperative release of glutamate from GABAergic neurons. VGLUT3 participates in the cooperative release of

glutamate from cholinergic neurons. In the prefrontal cortex (PFC), VGLUT1 participates in the cooperative release of glutamatergic neurons. In the hippocampus (Hip),

VGLUT1, and VGLUT2 participate in the cooperative release of glutamate from CA1 and CA3 neurons.

of glutamate transporter in relapse and withdrawal are also
worth exploring. For example, by interfering or upregulating
the expression of VGLUT in different brain regions, and
detecting addictive behaviors by conditioned place preference.
Some studies have proved that VGLUTS expression level
influence the rate and extent of synaptic vesicle filling, and the
probability of synaptic vesicle release (87, 93–95). Glutamate
is the main excitatory neurotransmitter in the human brain.
It has been proved that long-term activation of the glutamate
system can lead to nerve injury and cell death. Herman
et al. proved that a low probability of release of glutamate
when VGLUT expression levels were decreased (93). It is
important that the abnormal level of these VGLUTS have been
found in the pathophysiology of mental disorders. Therefore,
in the future, VGLUTS may be a new target for treating
drug addiction.
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