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Progressive supranuclear palsy (PSP) is a four-repeat tau proteinopathy. Abnormal

tau deposition is not unique for PSP and is the basic pathologic finding in some

other neurodegenerative disorders such as Alzheimer’s disease (AD), age-related

tauopathy, frontotemporal degeneration, corticobasal degeneration, and chronic

traumatic encephalopathy. While AD research has mostly been focused on amyloid

beta pathology until recently, PSP as a prototype of a primary tauopathy with high

clinical-pathologic correlation and a rapid course is a crucial candidate for tau therapeutic

research. Several novel approaches to slow disease progression are being developed.

It is expected that the benefits of translational research in this disease will extend

beyond the PSP population. This article reviews advances in the diagnosis, epidemiology,

pathology, hypothesized etiopathogenesis, and biomarkers and disease-modifying

therapeutic approaches of PSP that is leading it to become a frontrunner in translation.

Keywords: progressive supranuclear palsy, tauopathy, translational research, epidemiology, etiopathogenesis,

biomarker

INTRODUCTION

Progressive supranuclear palsy (PSP) is a primary tauopathy that is playing an increasingly
important role in the field. Better understanding of PSP clinicopathological correlations and
pathogenesis has led to a revision of the diagnosis and search for new biomarkers and
disease-modifying therapeutic approaches. Because of the rapidly progressive nature of the disease,
PSP is an excellent candidate both for pre-clinical, animal model studies of tauopathies, and
development of novel therapeutics that could be translated into the clinic. This article reviews
the advances in the diagnosis, epidemiology, pathology, hypothesized etiopathogenesis, and
biomarkers and disease-modifying therapeutic approaches of PSP that is leading it to become
a frontrunner in translation. A summary of the progress in PSP research in the last 25 years is
depicted in Figure 1 (1–27).

DIAGNOSIS

PSP was described as a clinicopathologic entity in 1964 by Steele et al. (28) who described
nine patients with characteristic steady progressive vertical supranuclear gaze palsy, pseudobulbar
palsy, cognitive impairment, retrocollis and axial rigidity. These features differentiated it from
Parkinson’s disease (PD) and encephalitic and vascular parkinsonism. They also mapped the
neuronal degeneration characterized by neuronal cell loss, neurofibrillary tangles and gliosis in
certain nuclei of the rostral midbrain, basal ganglia, and cerebellum (28).
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FIGURE 1 | Twenty-five years of progress in progressive supranuclear palsy research. AD, Alzheimer’s disease; CBD, corticobasal degeneration; CDK5,

cyclin-dependent kinase 5; CXCR4, chemokine receptor type 4; FTDP-17, frontotemporal dementia with parkinsonism linked to chromosome 17; GSK-3, glycogen

synthase kinase 3; MAPT, microtubule associated protein tau gene; MT, microtubule; NFT, neurofibrillary tangle; p-tau, phosphorylated tau; PET, positron emission

tomography; PiD, Pick’s disease; PSP, progressive supranuclear palsy; 3R, tau protein with 3 repeat domains; 4R, tau protein with 4 repeat domains.

Ten years later PSP was characterized as the prototype
of subcortical dementias in view of its significant executive
dysfunction and absence of cortical features (29). Early recurrent
falls and slowing of vertical saccades were recognized later
and were considered as the distinctive features of the National
Institute of Neurological Disorders and Stroke and Society
for PSP (NINDS-SPSP) possible clinical diagnostic inclusion
criteria published in 1996 (30). The probable NINDS-SPSP
criteria require both severe postural instability with falls within
the first year of symptom onset and vertical supranuclear gaze
palsy. These set of diagnostic criteria require lack of features
excluding PSP such as cortical dementia resembling Alzheimer’s

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; CBD,

corticobasal degeneration; CBD-CBS, corticobasal degeneration with corticobasal

syndrome phenotype; CI, mitochondrial complex I; CNS, central nervous

system; CSF, cerebrospinal fluid; ENGENE-PSP, environmental genetic PSP

risk factor study; FTDP-17, frontotemporal degeneration with parkinsonism

linked to chromosome 17; FTLD, frontotemporal lobar degeneration; GSK3,

glycogen synthase kinase 3; GWAS, Genome-wide association study; MAO-

A, monoamine oxidase A; MAPT, microtubule associated protein tau gene;

MDS-PSP, International Parkinson and Movement Disorders Society PSP study

group criteria; MRI, magnetic resonance imaging; MRPI, Magnetic resonance

parkinsonism index; MSA-P, parkinsonism-predominant multiple system atrophy

(); MT, microtubule; NfL, neurofilament light chain; NFTs, neurofibrillary tangles;

NINDS-SPSP, National Institute of Neurological Disorders and Stroke and

Society for PSP; O-GlcNAc, O-linked N-acetylglucosamine; PAD, phosphatase-

activation domain; PD, Parkinson’s disease; PERK, pancreatic endoplasmic

reticulum kinase; PET, positron emission tomography; PiD, Pick’s disease; PMCA,

protein misfolding cyclic amplification; PSP, Progressive supranuclear palsy;

PSP-C, PSP- cerebellar ataxia; PSP-CBS, PSP- corticobasal syndrome; PSP-F,

PSP- behavioral variant of frontotemporal dementia; PSP-nfaPPA/AOS, PSP-non-

fluent, agrammatic primary progressive aphasia/progressive apraxia of speech;

PSP-OM, PSP-ocular motor; PSP-P, PSP-Parkinsonism; PSP-PGF, PSP- progressive

gait freezing; PSP-PI, PSP-postural instability; PSP-PLS, PSP- primary lateral

sclerosis; PSP-RS, PSP-Richardson syndrome; PSP-SL, PSP- speech language

variant; PTMs, post-translational modifications; R2, repeat domain number

2 of the tau gene; RT-QuIC, real-time quaking-induced conversion; SNPs,

single nucleotide polymorphisms; UPR, unfolded protein response; 3R-tau, tau

containing 3 repeat domains; 4R-tau, tau containing 4 repeat domains.

disease (AD), autonomic disturbances or limb cerebellar
features resembling multiple system atrophy, hallucinations, and
delusions resembling dementia with Lewy bodies, lateralized
cortical/motor features resembling corticobasal syndrome,
oculomasticatory myoclonus characteristic of Whipple’s disease
andmagnetic resonance imaging (MRI) abnormalities suggesting
other disorders such as vascular parkinsonism, etc.

Pure akinesia with gait freezing was the first atypical PSP

presentation that was reported by Japanese researchers in a

number of pathologically diagnosed PSP cases in 1987 (31–

33). Other PSP phenotypic presentations were later described
in pathologically confirmed PSP patients (34), recognizing the
PSP clinical heterogeneity. The original constellation of findings
is now called PSP-Richardson syndrome (PSP-RS) or classical
PSP (30).

The International Parkinson and Movement Disorder Society

(MDS) has recently standardized the definition of several PSP

phenotypic presentations (35). The new criteria (MDS-PSP) (35)

classify the core PSP clinical features into four domains: ocular

motor dysfunction, postural instability, akinesia, and cognitive
dysfunction, which are classified into three levels of certainty

(Table 1). Combinations of these features in different stages of
the disease (especially early stages) determine the phenotype of

PSP (35). In view of the considerable overlap between phenotypes
(36), a set of four rules has recently been proposed by the MDS
PSP study group to guide assignment of a unique phenotypical
diagnosis to those patients who fulfill criteria for multiple
phenotypes (37). However, it seems that still more refinement of
the criteria is needed (38).

PSP-Parkinsonism (PSP-P) is a retrospective diagnosis made
after patients presenting with usually asymmetric parkinsonism
with or without resting tremor or levodopa response resembling
PD later develop typical PSP-RS features including postural
instability and/or vertical supranuclear gaze palsy (34, 39).
Williams et al. first defined PSP-P based on these features (34, 39),
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TABLE 1 | Defining clinical features of the PSP phenotypes based on MDS-PSP criteria.

Clinical domains Certainty level

Level 1 Level 2 Level 3

Ocular motor dysfunction O1 O2 O3

Vertical supranuclear gaze palsy Slow vertical saccades Macro square wave jerks or eyelid opening

apraxia

Postural instability P1 P2 P3

Repeated unprovoked falls during the first

3 years of disease

Falls on pull-test during the first 3 years of

disease

Three or more steps backwards on pull-test

during the first 3 years of disease

Akinesia A1 A2 A3

Progressive gait freezing during the first 3

years of disease

Levodopa resistant bradykinesia with

axial-dominant rigidity

Parkinsonism (bradykinesia and rigidity)

with or without: tremor/asymmetry/

levodopa response

Cognitive dysfunction C1 C2 C3

Speech/language disorders Frontal cognitive/behavioral presentation Corticobasal syndrome

but the MDS criteria added an axial dominant parkinsonism (A2
in Table 1) as a more specific, though less sensitive, presentation
for PSP-P (40).

PSP-progressive gait freezing (PSP-PGF) was originally
described in Japan (32), and is currently defined as predominant
transient motor blocks or start hesitations in the first 3
years of symptom onset which is unresponsive to levodopa
and is unaccompanied with rigidity, tremor, or dementia
early in disease course (35). Postural instability, falls and
eye movement disturbances are late features of this variant
and some patients never develop vertical supranuclear gaze
palsy. Prominent axial and neck rigidity without limb rigidity
are distinctive features for PSP-PGF. Conspicuous frontal
subcortical dementia and levodopa responsive parkinsonism
are not usual features (41). Patients with this phenotype, as well
as the PSP-P phenotype have a longer survival than those with
the PSP-RS.

A frontal behavioral/cognitive syndrome is the presenting
feature of PSP in a small subset of patients (PSP-F) (42, 43).
This phenotype is characterized by severe apathy, disinhibition,
compulsive behavior and loss of insight. Typical PSP-RS features
develop years later in the course of the disease. The MDS-PSP
criteria defines frontal behavioral/cognitive syndrome as having
two out of five basic cognitive features: apathy, bradyphrenia,
dysexecutive syndrome, reduced phonemic verbal fluency,
and socially inappropriate behaviors (impulsivity, disinhibition,
or perseveration).

PSP-non-fluent, agrammatic primary progressive
aphasia/progressive apraxia of speech (PSP-nfaPPA/AOS), or
the speech/language variant (PSP-SL) is another cortical PSP
variant (44) that is believed to have high specificity to represent
a probable underlying 4R tauopathy pathology, along with the

corticobasal syndrome (CBS) (35). PSP-CBS presents with a
combination of cortical (ideomotor orobuccal or limb apraxia,

parietal sensory dysfunction, and alien limb phenomenon) and

movement (non-levodopa responsive akinesia, rigidity, and
stimulus sensitive myoclonus) abnormalities. The standardized

MDS definition requires presence of at least one feature of

each, cortical or movement-related, categories. Sometimes
these patients are clinically indistinguishable from patients with
CBD-CBS, but the early presence of supranuclear vertical gaze
palsy/slow vertical saccade or postural instability may favor the
PSP-CBS diagnosis (45–48).

In the search for an early diagnosis of prodromal PSP, theMDS
designates two variants: PSP-ocular motor (PSP-OM), defined
as vertical supranuclear gaze palsy (O1), and PSP-postural
instability (PSP-PI), defined as falls or postural instability on the
pull test (P1 or P2). Both exclude other PSP clinical findings.

There are other rare variants described, which have yet to
be standardized: PSP-primary lateral sclerosis (PSP-PLS) (49–51)
and PSP-cerebellar ataxia (PSP-C) (52–54), but these are rare and
have a very low predictive accuracy for PSP pathology (35).

Overall, the mean disease duration for PSP patient is about
6–8 years, with the shortest duration for PSP-RS (55). The
main predictors of a short survival are the PSP-RS variant,
early presence of falls, cognitive disorders, and dysphagia (56).
Pneumonia and sepsis are considered as the leading causes of
death in PSP patients (57).

EPIDEMIOLOGY

PSP is the most common atypical parkinsonian disorder. It
was considered as having an approximate prevalence of 5–6
per 100,000 (58, 59). However, higher PSP prevalence has been
reported from Japan, Switzerland, and the United Kingdom
(55, 60, 61). This higher prevalence could be related to
the aging of population, increased general awareness of the
condition, inclusion of various disease phenotypes and also
the fact that recruitment occurred within a government-based
program in Japan that provides support for rare disorders
such as PSP. The fact that in some non-selected community-
based brain autopsy series (62–64) 3–5% of cases with no
or minimal clinical findings have showed PSP pathologies
suggests that the true prevalence of PSP is probably much
higher. PSP prevalence increases with age and shows no gender
predominance (58, 59).
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The cause of PSP is still unknown. The intriguing explanation
of exposures to mitochondrial toxins as probable cause of PSP
and the PSP-like Guadeloupean parkinsonism (65), as well as a
cluster of PSP cases in an industrial region (66), suggests the
role of environmental/toxic exposures in the PSP pathogenesis.
A recent large incidence-based case-control study of 284 PSP
and 284 matched controls (ENGENE-PSP) (67) showed that
PSP is associated with lower education and exposure to well-
water also supports those findings. The association of PSP
with lower education is in accordance with previous studies
(68, 69). The association with well-water consumption suggests
pesticide exposure. Though pesticide, organic solvents, andmetal
exposures, assessed by an industrial hygienist and toxicologist,
as well as living in or close to a rural area were significantly
associated with PSP in univariate analyses, these factors were,
however, not statistically significant in the multivariate analysis
(67), which could be in part related to the relatively small study
size. Note the possible contributory role of metal exposure found
in the PSP cluster in Northern France (66) and the association
between firearm use in veterans and PSP found in the ENGENE-
PSP case-control study (70).

The epidemiological studies that assessed the PSP
environmental risk factors are summarized in Table 2 (66–
74). Available evidence collectively suggests a possible role of low
education, metal exposure and consumption of well-water. It
could be hypothesized that metal exposure and possible exposure
to pesticides through well-water in people who work in those
fields who may have low education could lead to increase in
oxidative injury that in turn could lead to tau aggregation in
susceptible individuals. However, it remains unclear why low
education remains as an independent factor in the multivariate
analyses. More research is needed to further identify the specific
agent(s) responsible and possible mechanisms that would explain
these observations (Table 2). Unfortunately only one of those
studies had a relatively large sample to identify risk factors (67).

PATHOLOGY

Olszewski reported neurofibrillary tangles (NFTs) and gliosis
in the basal ganglia (mainly globus pallidus and subthalamic
nucleus), brainstem structures (predominantly superior colliculi,
substantia nigra, periaqueductal gray matter, and pontine
tegmentum), and cerebellar dentate nucleus in their cases (28).
Pathological criteria of PSP, however, were developed about 30
years later (75) and subsequently revised and validated in 1996
(76) providing the basis for PSP research till present. It defines
definite PSP as high density of NFTs and neuropil threads in
at least three of these following areas: pallidum, subthalamic
nucleus, substantia nigra, or pons. These changes should be
accompanied by a pathology of low to high density in at least
three of the following areas: striatum, medulla, oculomotor
complex, or dentate nucleus. Fulfillment of these criteria in a
patient with PSP-compatible history, after exclusion of ischemic
and degenerative lesions diagnostic of other disorders, will define
definite PSP. However, the tufted astrocyte which is characteristic
of the disease was described a few years later by Komori et al. (77).

The establishment of the presence (78, 79) and central role
of the tau protein in NFTs (8, 80, 81) and recognition of the
six tau isoforms (82) was the key to the later identification of
PSP as a 4R-tauopathy. This implies an over representation of
the 4-repeat domain containing tau (4R-tau) isoforms relative
to the 3-repeat containing ones (3R-tau) in its pathological tau
aggregates (7, 83). This is in contrast to what occurs in healthy
subjects that have both, 3- and 4-repeat tau isoforms in equal
proportions. In PSP, hyperphosphorylated 4R-tau assembles into
13–14 nm straight filaments (84) that aggregate to form dense
perikaryal “globose” NFTs in neurons and characteristic glial
inclusions named “tufted astrocytes” (85, 86). It is hypothesized
that PSP tau pathology in PSP-RS starts in the pallido-luyso-
nigral areas and then spreads to the pontine nuclei, other basal
ganglia structures, cerebellar dentate nucleus as well as frontal
and parietal cortices. The various phenotypic presentations are
a consequence of the pathology in different brain areas (87, 88).

In corticobasal degeneration, another 4-repeat tauopathy,
neuronal NFTs are more disperse and less argyrophilic than
in PSP and astrocytic plaques are the typical lesions because
the aggregated tau is mainly located in cell processes, leaving
cell soma almost devoid of aggregates. In contrast, PSP’s tufted
astrocytes are laden with tau fibrillar deposits at soma, with
propagation to the cell processes (86, 89).

In contrast to these 4R tauopathies, tau pathology in AD
mainly includes bundles of filaments that are composed of both
3R and 4R tau isoforms (90). These filaments are arranged
in an antiparallel helical pattern as opposed to the straight
filaments of PSP (91). AD tau aggregates mainly in neurons
in special areas of the brain starting from transentorhinal
regions with subsequent spread to the neocortical
association areas (92).

GENETICS OF PSP

Tau is a microtubule associated protein coded by the
MAPT (microtubule associated protein tau) gene located
on chromosome 17q21. MAPT contains 16 exons. Alternate
splicing of exons 2, 3 (inclusion of either 0, 1, or 2 near
N-terminal inserts) and 10 [inclusion or exclusion of repeat-
domain number 2 (R2)] produces all six tau isoforms (82)
(Figure 2). Tau is extensively expressed in the brain and is
mostly located in axons. It is believed traditionally that tau
acts as a microtubule (MT) stabilizer and regulator of MTs
assembly (94). Further studies showed that tau can regulate fast
axonal transport (95) and probably plays a role in stabilizing
nuclear DNA (96). To perform its functions, tau bears an
intrinsically disordered conformation, meaning that it lacks a
stable folded structure and this feature allows its interaction
with a wide range of regulatory molecules (97, 98). Each
tau isoform consists of 4 domains; an acidic N-terminus
region containing a phosphatase-activation domain (PAD), a
proline-rich domain, a MT binding region (with 3 or 4 repeat
domains), and a neutral highly conserved C-terminal domain.
In its monomeric water-soluble state, tau takes a paperclip
conformation (99) that keeps the phosphatase-activation domain
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TABLE 2 | Environmental epidemiological risk factors studies in PSP.

References Design/number of

subjects

Region Risk factor(s) assessed Findings

Kelley et al. (70) Case-control/

67 military veterans with

PSP and 68 matched

controls

North

America

Firearm use as indicator of heavy

metal (lead) exposure;

Traumatic brain injury (TBI)

Firearm use was significantly higher in incident

PSP cases vs. controls;

Higher, but not significant, history of TBIs in

incident PSP cases vs. controls

Park et al. (71) Case-control/

150 PSP women, 150

matched control women

North

America

Low estrogen Estrogen replacement therapy is associated

with incident PSP cases,

Inverse association of early menarche with

PSP severity

Kelley et al. (72) Case-control/

76 PSP, 68 matched

controls

North

America

Lifetime stress exposure Association of high-severity lifetime stressful

events with incident PSP

Litvan et al. (67) Case-control/

284 PSP, 284 matched

controls

North

America

Environmental/Occupational On univariate analysis: association of PSP

incidence with lower income and education, and

higher well-water use, years living in farm/near

agricultural area, pack-years of smoking, years

of transportation jobs and jobs with metal

exposure

On multivariate analysis: association of PSP

incidence with well-water use and inverse

association with having a college degree

Caparros-

Lefebvre et al.

(66)

Report of a geographical

PSP cluster/92 PSP

Northern

France

Industrial exposure to chromate

and phosphate ore processing;

textile dyeing, and tanning

A cluster of Richardson and parkinsonism PSP

phenotypes with an observed incidence of 12.3

times expected

Vidal et al. (69) Case-control/

79 PSP and 79 matched

controls

France Environmental/social/medical/toxic/family

history

Low education level associated with PSP

More frequent use of meat/poultry and less

frequent use of fruits in PSP cases

More frequent use of herbicides in PSP cases

Vanacore et al.

(73)

Case-control/

55 PSP, 134 matched

controls

Italy Smoking No association of PSP prevalence with

smoking

Golbe e al. (68) Case-control/

91 PSP (75 matched), 104

controls (75 matched)

North

America

Environmental/ Occupational

exposures

Social/ medical/family history

Low education level associated with PSP

prevalence

Davis et al. (74) Case-control/

50 PSP, 100 matched

controls

North

America

Viral, toxic, medical and surgical

history

Social and vascular risk factors

Living in areas with low population was

associated with PSP prevalence

No association of PSP prevalence with history

of stroke, hypertension or smoking

unexposed. The proline-rich domain includes much of the tau’s
potentially phosphorylatable regulatory sites, and the C-terminus
region contains residues that probably prevent tau aggregation
(100, 101).

The human MAPT gene is affected by a large inversion
polymorphism that generates a region of linkage disequilibrium
defined by two extended haplotypes, H1 and H2. The H1
haplotype is more frequent in PSP patients compared to the
general population (9, 102). In fact, the H1 haplotype is
present in 95% of the PSP patients compared to 75% of the
general populations with an estimated odds ratio of 5.5, which
indicates that H1 haplotype risk for PSP is the same to that
of apolipoprotein E (APOE) ε3/ε4 risk allele for AD (103).
A common variant of this haplotype, H1c sub-haplotype, has
been shown to be accountable for the associated risk of the H1
haplotype with PSP and a number of other neurodegenerative
disorders (104–106). A single nucleotide polymorphism (SNP)
in the H1c background, rs242557, carries the major associated
risk of this haplotype in PSP and CBD (107, 108). More

recently three other H1 sub-haplotypes have been proposed to
be associated with PSP including H1d, H1g, and H1o (109).
The exact mechanism of pathogenesis of the H1 haplotype is
not yet known, however there are some clues to confirm or
denote to its role: (1) the PSP-like clinical phenotype has been
observed in patients with familial tauopathy (frontotemporal
degeneration with parkinsonism linked to chromosome 17,
FTDP-17) who have an H1/H1 genotype in contrast to the
frontal dementia-predominant phenotype in those with H1/H2
genotype (110), (2) increase in translation of total tau with a
higher 4R:3R-tau ratio has been shown to be related to H1c sub-
haplotype (111), (3) epigenetic studies have shown differential
methylation pattern at this haplotype in PSP patients vs. controls
(21, 112, 113), and (4) recently, increased plasma tau levels have
been found to be associated with the H1c sub-haplotype (114). A
MAPT variant, p.A152T, has also been found as a risk factor for
PSP and other tauopathies (115).

Genome-wide association studies (GWAS) also found PSP-
associated SNPs in other genes including STX6, EIF2AK3,
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FIGURE 2 | Tau isoforms and conformations. Six tau isoforms result from alternate splicing of exons 2, 3, and 10 (E2, E3, and E10). Tau mutations that present with

PSP-like phenotypes (boxes) are mainly located at exon 10 or its splice site. There is only one mutation (R5L) located outside exon 10 that causes a PSP phenotype

with brainstem 4R-tau aggregates but also 3R-tau-containing aggregates in cortical areas (93).

and MOBP (104, 107). STX6 encodes the protein syntaxin 6
which is involved in protein trafficking through the endoplasmic
reticulum (116). However, it is not yet known how this altered
function would affect the tau metabolism in neurons and glia.
(116) EIF2AK3 encodes an RNA-like pancreatic endoplasmic
reticulum kinase (PERK), a regulator of the unfolded protein
response (UPR) of this organelle. UPR is triggered when the
endoplasmic reticulum is overloaded by unfolded proteins, and
causes a reduction in overall protein translation and enhances
autophagy (117). UPR is activated in regions of PSP brains
involved by tau pathology (118). Studies on cultured neurons
derived from PSP patients also showed that tauopathy-associated
PERK alleles produce a functionally impaired kinase that is
associated with neuronal damage due to endoplasmic reticulum
stress (119). Product of the gene MOBP is a central nervous
system (CNS) myelin structural protein highly expressed in
the involved brain regions in PSP (120). Two recent GWAS
studies with meta analyses (121, 122) revealed additional SNPs
significantly associated with PSP inside or near three other
genes: SLCO1A2, DUSP10, and RUNX2. SLCO1A2 codes for a
solute carrier organic anion transporter that is highly expressed
in areas commonly involved in PSP. A SNP found in an
intergenic region near DUSP10 possibly has influence on tau
hyperphosphorylation (122). RUNX2 codes for a transcription
factor with an effect on differentiation of osteoblasts but its role

in PSP is not yet known (121). These two large studies confirmed
findings of previous studies except for an SNP in EIF2AK3 that
did not reach genome-wide significance in one of these studies
(121). Further studies are needed to confirm the latter findings
and their implication in the PSP pathogenesis.

ETIOPATHOGENESIS

It is not yet known which inciting event(s) trigger dysregulation
of the tau protein and which tau abnormality precedes others in
the sporadic PSP cases. The exact role of recent epidemiological
studies described above need to be further studied (Table 2). A
notion of possible contribution of tau “toxic gain of function” as
the basic pathogenic underpinning of tauopathies was challenged
after a study by SantaCruz et al. (123) who showed that switching
off the abnormal expression of tau in a transgenic tauopathy
mouse model stopped the neurodegeneration process and
improved the cognitive function despite continued deposition
of NFTs (124). Similar results were reported in other studies
(125, 126). These findings indicate that the process of NFT
formation could be dissociated from neurodegeneration and
open a window for further discussion on the probability of
existence of other more toxic soluble tau species that account for
neurodegeneration (127, 128).
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Abnormal Post-translational Modifications
After translation, tau undergoes numerous regulatory post-
translational modifications (PTMs) including phosphorylation,
acetylation, methylation, truncation, among others. These PTMs
can result in changes in tau conformation and in its affinity
to MTs as well as its propensity to form aggregates (129). In
the adult human brain, phosphorylation and dephosphorylation
of tau by different kinases and phosphatases at various
epitopes regulate the tau function, binding to microtubules
and other membrane or nucleic acid partners, and axonal
transport (95, 130). Tau contains 85 phosphorylatable epitopes
(including serine, threonine, and tyrosine residues) but only
10 epitopes are phosphorylated in the normal brain compared
to 16 epitopes in the PSP brains (131, 132). Abnormal tau
phosphorylation is associated with a range of disturbances
including: (1) tau detachment from MTs and impaired axonal
transport (by unmasking of the PAD) (95, 101, 133, 134), (2)
tau aggregation (especially through phosphorylation at the C-
terminal region) (135), (3) redistribution of tau from axons to
cell soma and dendritic processes causing impaired synaptic
function and plasticity accompanied by α-amino-3-hydroxy-
5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-
aspartate (NMDA) receptor rearrangements (136), and (4)
impaired tau degradation by the proteasome via impairing its
recognition by chaperons (137).

Considering the profound role of tau hyperphosphorylation
in mediating various pathogenic processes leading to
neurodegeneration in PSP, efforts have been mainly directed to
elucidate the role of tau kinases and phosphatases. Tau is the
substrate for a large number of kinases including proline-directed
kinases, particularly glycogen synthase kinase 3 (GSK3) and
cyclin-dependent kinase 5 (CDK5), many non-proline directed
serine, and threonine kinases such as calcium/calmodulin-
dependent protein kinase II, microtubule affinity-regulating
kinases, cAMP-dependent protein kinase A) and tyrosine kinases
(Fyn, Src, Abl) (101). GSK3 can phosphorylate almost half of
tau’s phosphorylatable sites and its abnormal activation has been
shown in PSP as well as CBD and AD brains and is believed
to be associated with pathologic tau hyperphosphorylation
and aggregation (15). GSK3 is involved in a signaling pathway
mediated by exposed PAD to trigger kinesin-bound cargo
delivery. Abnormal exposure of PAD probably results in
GSK3 activation and leads to cargo detachment from the
MT as well as tau hyperphosphorylation and aggregation
(95, 134) (Figure 3). However, the GSK3 inhibitors (including
lithium, sodium valproate, and tideglusib) recently evaluated in
clinical therapeutic trials of PSP patients failed to slow disease
progression (138, 139). Other kinases and phosphatases are
under evaluation (140). However, it is not yet known whether
tau hyperphosphorylation is a cause for or a consequence of
tau aggregation.

In addition, in PSP there is physiological and pathological
acetylation on various lysine residues of the tau molecule
(20). Acetylation of various residues provide stabilization
of MT-bound tau and regulation of tau phosphorylation,
aggregation, degradation, subcellular redistribution, truncation
and tau liquid-liquid phase separation (20, 141–146). Acetylation

at K280, which is located in the repeat domain 2 of
the 4R tau, is a well-known pathological mechanism of
acetylation in PSP and other tauopathies (20). However, further
research is needed to reveal the acetylation profile of tau
in PSP and evaluate its potential implication as a novel
therapeutic strategy.

The addition of O-linkedN-acetylglucosamine (O-GlcNAc) to
the tau protein occurs physiologically and is believed to prevent
tau hyperphosphorylation (147, 148). Although reduction of the
enzyme involved in tau O-GlcNAcylation was shown in AD
brains (149), there are no in vivo or in vitro studies in PSP.

Tau truncation can change its folding and this probably has
effects on tau clearance leading to tau aggregation or other
various toxic effects (150). Tau fragments enter the cerebrospinal
fluid (CSF) and are being used as potential disease markers in
many neurodegenerative diseases (151) including PSP. Other
tau PTMs including nitration, ubiquitination, sumoylation,
methylation, isomerization, and deamidation have mostly been
studied in AD, but their role in PSP need to be clarified (101).
A detailed profile of sequences and patterns of PSP tau PTMs
in neurons and glia could increase our understanding of tau
pathogenesis and provide new therapeutic targets.

Mitochondrial Dysfunction
Several lines of evidence indicate the possible role of
mitochondrial dysfunction, oxidative injury and defects
of energy metabolism in PSP. Based on epidemiological
and experimental studies, exposure to herbal neurotoxins
containing mitochondrial complex I [CI, NADH:ubiquinone
oxidoreductase (152)] inhibitors (mainly fruits and tea made
from the Annonaceae family) is a risk factor for a PSP-like
parkinsonian disorder with brainstem-predominant 4R-tau
inclusions in the French West Indies (153–156). In addition,
studies on PSP hybrid cell lines containing mitochondrial DNA
showed CI hypofunction (157). PSP patients’ brain positron
emission tomography (PET) and phosphorous magnetic
resonance spectroscopy provide further evidence of energy
metabolism failure (158–160). Moreover, PSP brains studies
show lipid peroxidation deficits and evidence of oxidative
injury (161–163). Although these studies show possible energy
metabolism defects in PSP, the exact biochemical basis for the
mitochondrial dysfunction is not yet understood. Two recent
small clinical trials of the coenzyme Q10 mitochondrial CI
enhancer showed marginal or no benefit (164, 165).

Neuroinflammation
Both direct postmortem examination of brain tissue and in vivo
ligand-based PET studies show activation of brain macrophages
and microglia in the PSP involved brain areas (13, 16, 19).
Higher levels of proinflammatory cytokine transcripts, especially
interleukin-1β, have also been reported in PSP brains (19) and
a recent GWAS showed that the microglial gene CXCR4, is
associated with increased risk of PSP and PD (26).

Other studies showed the role of the proinflammatory 5-
lipoxygenase enzyme in PSP (26, 166). Despite all evidence for
the role of neuroinflammation in the PSP pathogenesis, a PSP
case-control study did not find any association between prior use
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FIGURE 3 | When tau binds to microtubules the N-terminal half of the protein projects away. The extreme N-terminal end of tau contains a phosphatase-activation

domain (PAD) (green) that has a role in the regulation of cargo delivery. In the normal paperclip conformation PAD is not exposed, preventing it from triggering the

phosphatase-kinase cascade (PKC) and detachment of cargo from microtubule. Activation of PAD and PKC normally occurs at the site of cargo delivery. Abnormal

tau phosphorylation (by priming kinases) leads to persistent exposure and activation of PAD and triggering of the PKC which involves overactivation of GSK3β (yellow).

Impairment of the fast axonal transport subsequently ensues. In the aggregated form, the microtubule binding domains constitute the core of the filament with the N-

and C-terminal regions forming a fuzzy coat around it.

of non-steroidal anti-inflammatory agents and PSP, its disease
severity, or the age of symptom onset (167). However, the sample
was not large enough to evaluate only anti-inflammatories that
cross the blood-brain barrier.

Prion-Like Tau Spread
Several studies show that in PSP abnormally phosphorylated tau
fibrils act like self-propagating strains and produce pathogenic
“seeds” that are transferable to neighboring cells and are capable
of inducing tau aggregates in connecting neurons and glia
following neural networks (168–171). However, it is not yet
known which mechanisms in the cell-to-cell tau spread are
the most relevant (exosomes, release and uptake, tunneling
nanotubes, unconventional secretion, or other mechanisms)
(172–175). Moreover, although studies are indicative of short-
segment filamentous tau species as probable seeds (176, 177), the
specific pathogenic PSP tau seeds and their conformation are still
unknown. Detailed structure of the core of tau filaments derived
from AD, Pick disease and chronic traumatic encephalopathy
brains have recently been studied using cryo-electronmicroscopy
(178–180). These studies provide interesting information about
specific tau folding in AD, Pick’s disease and chronic traumatic
encephalopathy. Similar studies are being performed in PSP and
corticobasal degeneration that will likely provide clues into the
underlying tau pathogenic process, differentiate these disorders
and equally important allow the modeling and development of
new therapies based on the protein conformation.

DIAGNOSTIC BIOMARKERS

There are no reliable biomarkers for the antemortem diagnosis
of PSP. The diagnosis is currently based on clinical criteria.
It is particularly challenging to differentiate PSP from a wide

range of parkinsonian and dementing disorders during the
first few years of disease in the absence of postural instability
and ophthalmoparesis (181). Epidemiological studies show
a lag of four or more years between the presentation of
the first PSP symptom until the correct diagnosis (55, 58).
Fortunately, due to increased PSP awareness this diagnosis
lag is decreasing. Considering the lack of optimal biomarkers
and the wide range of PSP phenotypic presentations that
also overlap with other neurodegenerative proteinopathies
PSP still remains underdiagnosed. Hopefully, ongoing studies
focused on the characterization of PSP-specific biomarkers
will soon identify accurate diagnostic and outcome biomarkers
that would allow the conduction of therapeutic trials at
earlier stages.

Structural Brain Imaging
Conventional brain imaging may show atrophy of midbrain
and superior cerebellar peduncle out of proportion to that
of the pons and middle cerebellar peduncle. Several imaging
indices have been suggested as reliable markers of PSP-RS
(182). However, imaging studies on pathologically confirmed
PSP cases are limited and other conditions, especially CBD with
clinical presentations of the Richardson syndrome,may have false
positive indices (183). Therefore, the value of the MRI studies in
increasing the certainty of the underlying pathologic diagnosis
is unclear. The magnetic resonance parkinsonism index (MRPI)
developed by Quattrone et al. (184) as the product of the ratios of
pons to midbrain area (Pa/Ma) and middle to superior cerebellar
peduncles diameter (MCPd/SCPd) showed a high sensitivity
and specificity to differentiate PSP from PD and parkinsonism-
predominant multiple system atrophy (MSA-P), another atypical
parkinsonian disorder (184–187). A new variant of MRPI, named
MRPI 2.0, that in addition incorporates the measurement of
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the third ventricle diameter (188) seems even more promising.
MRPI 2.0 is defined as the MRPI ratio multiplied by the ratio
of the third ventricle width of the frontal horn (Figure 4).
However, pathologically confirmation in independent samples is
still lacking.

Other structural imaging techniques such as voxel based
morphometry, volumetry, diffusion weighted, and diffusion
tensor imaging and combination of various measurements have
been suggested to detect earlier stages of degeneration [for a
review see (189)]. Lack of pathological confirmation in most
studies as well as inherent limitations and confounders of these
modalities are major shortcomings for these studies (190, 191). A
number of small pathologically confirmed studies proposed that
midbrain atrophy can differentiate PSP from other parkinsonian
syndromes (192, 193). A larger pathologically confirmed study,
using 3 dimensional MRI volumetry of the combination of
midbrain, parietal white matter, temporal gray matter, brainstem,
frontal white matter and pons, showed that this measure can
reliably differentiate PSP from CBD and controls. However, a
later study that differentiated typical and variant PSP phenotypes
in their sample of 24 pathologically confirmed PSP showed that
midbrain atrophy is associated with typical PSP phenotype (with
underlying PSP or CBD pathology) but cannot differentiate PSP
pathology presenting with variant phenotypes (183). Free water
imaging (194) and diffusion kurtosis imaging (195) have recently
been used to address parts of the limitations of structural imaging
studies and have showed promising results. An increase in free
water was found in several brain areas in PSP patients including
basal ganglia, thalamus, midbrain, substantia nigra, cerebellar
peduncles, dentate nucleus, cerebellar vermis and lobules V and
VI, and corpus callosum. This pattern was in contrast to PD
cases who had increased free water only in substantia nigra.
MSA patients also had more restricted pattern than PSP cases
(i.e., dentate nucleus, subthalamic nucleus, and corpus callosum
did not show increased free water in MSA patients). Similarly,
changes in free-water-corrected fractional anisotropy values were
more pervasive in PSP (increased in putamen, caudate, thalamus,
and vermis and decreased in the superior cerebellar peduncle
and corpus callosum) than MSA (increased in putamen and
caudate) and PD (no significant difference compared to controls)
cases. These findings indicate that free water imaging might be
used to differentiate various parkinsonian syndromes, however,
replication of these findings in pathology proven samples is
needed. These findings are in accordance with the results of the
previous studies applying diffusion weighted and diffusion tensor
imaging to parkinsonian patients (196–198) which in turn reflect
the pattern of pathological involvement assessed by voxel based
morphometry (199, 200). There are scarce studies focusing on
differentiation between PSP phenotypes (201–204) but the results
have been contradictory and inconclusive.

Functional Imaging
Various functional imaging techniques have been used in
parkinsonian syndromes including magnetic resonance
spectroscopy, dopamine transporter imaging, task-free
functional MRI, and FDG-PET (182). These techniques are

not specific for the underling pathology and do not differentiate
between neurodegenerative and non-degenerative processes.

Recently, tau PET imaging makes it possible to detect
the distribution and severity of specific forms of tau
pathology (182, 205). [11C]PBB3 (phenyl/pyridinyl-butadienyl-
benzothiazole/benzothiazolium family), [18F]AV-1451 [aka
[18F]flortaucipir, pyrido-indole family], and [18F]THK5351
(arylquinoline family) are the first generation of tau PET tracers
tested in clinical studies (205). Unfortunately, [11C]PBB3 has off-
target binding to white matter, venous structures and β amyloid
(206) and [18F]AV-1451 has off-target binding to monoamine
oxidase (MAO)-A, choroid plexus and mineralized or melanin
containing structures (207). However, despite these off-target
binding, studies on PSP patients showed that [18F]AV-1451 also
binds to the PSP-specific subcortical areas with tau pathology,
including dentate nucleus, thalamus, midbrain, pallidum and
striatum (24, 25, 208, 209), which makes it a favorable tracer in
studies of PSP. The pattern has been correlated with postmortem
tau pathology in a few patients (24). In fact, [18F]AV-1451 has
been reported to be highly sensitive and specific in differentiating
PSP from PD (24). Nonetheless, off target binding precludes an
early diagnosis because ligand binding is found in the same areas
in normal controls except for the dentate nucleus (210–212).
On the other hand, because these tracers were developed to
detect 3R/4R AD pathology, the PET tau signal is lower in PSP,
CBD and in patients carrying MAPT mutations with probable
4R tau pathology compared to those with AD (213). It remains
controversial whether the tracer uptake associates with disease
severity (208, 211). Despite the fact that postmortem PSP brain
autoradiographic studies showed weak binding of this tracer
to PSP pathology (207, 214), clinical studies show tau binding
in PSP (24, 25, 208, 209). In fact, a recent study, evaluating
disease progression in clinically diagnosed PSP-R patients
followed up for 12 months using [18F]AV-1451 and midbrain
volume on 3 Tesla MRI (215) showed that MRI midbrain
atrophy correlated better with clinical disease progression than
to [18F]AV-1451 uptake.

A recent study showed a correlation between PSP patients’
clinical severity with the [18F]THK5351 signal in 11 PSP patients
(216), however, there are concerns about its possible binding to
TDP-43 pathology (217).

Second generation tracers including [18F]PM-PBB3,
[18F]GTP-1 (ClinicalTrials.gov NCT02640092), [18F]PI-
2620 (218, 219), [18F]MK-6240 (220), [18F]R06958948 (221),
and [18F]JNJ64349311 (222) have generally showed less off-
target binding especially at choroid plexus and MAO enzymes
in AD and PSP. However, further validation in different
samples including older patients are necessary. It is hoped that
ongoing ligand studies identify 4R tau specific ligands. Detailed
information of the PSP tau fibrillar structure once available
will probably be helpful in designing more specific PSP tau
ligands (223).

CSF and Blood Biomarkers
Although high levels of tau oligomers in CSF have been
well-incorporated into diagnostic workup of AD (224), tau
oligomer measurements in PSP have not yet shown reliable and
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FIGURE 4 | MRPI 2.0 index. This index is the product of the ratios of pons to midbrain area (Pa/Ma), width of middle to superior cerebellar peduncles (MCPd/SCPd),

and average third ventricle diameter (measured at three points) to the maximal frontal horn diameter [(3rd Vd 1+2+3/3)/FHd]. MRIPI 2.0 = (Pa/Ma) × (MCPd/SCPd) ×

(average 3rd Vd/FHd).

consistent pattern except for decreased level of total tau and
phospho-tau compared to AD and healthy controls (225). It
has been hypothesized that measurement of specific truncated
forms or PSP-specific epitopes of tau released by degenerating
cells in PSP are needed to show real amount of CSF tau in
PSP. However, newer ELISAs with antibodies directed to mid-
and N-terminal portions of tau showed the same results of
lower tau levels in CSF (225). There are studies reporting a
reverse association of CSF phospho-tau with disease severity in
PSP (226).

Recently a protein amplification technique called real-
time quaking-induced conversion (RT-QuIC) (227) or protein
misfolding cyclic amplification (PMCA) assay (228), has been
applied successfully in identification of small amounts of

misfolded proteins in body tissue/fluid samples. RT-QuiC
in CSF was recently used to discriminate PiD from other
neurodegenerative disorders and healthy controls (229). The
3R-tau filaments of PiD, but not filaments from AD or
FTD, seeded recombinant 3R tau monomers. 3R-tau RT-QuIC
differentiated PiD from other disorders with high sensitivity and
specificity. These results await replication in larger samples. The
same method was used to differentiate AD tau seeds from disease
controls including cases of 4R (PSP and CBD), 3R (PiD) or
3R+4R (chronic traumatic encephalopathy, primary age-related
tauopathy) tauopathies (230). Results showed that AD-RT-QuIC
assay can differentiate AD from 3R and 4R tauopathies with
high sensitivity and specificity. These techniques are also under
evaluation for possible application in identification of 4R-tau PSP
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TABLE 3 | Disease modifying therapeutic approaches for PSP based on their target etiopathogenic process.

Target Reduction of

abnormal PTMs

Blocking

transcellular

spread

Mitochondrial

complex I

enhancers

Autophagy

enhancers

Microtubule

stabilizers

Reduction of

microglial activation

and inflammation

Reduction of tau

expression

Preclinical/

Hypothetical

• Novel GSK3β

inhibitors

• Inhibitors of

other kinases

• CDK5

• Brain specific

calpain

• ROCK

• Novel

anti-4R-tau

antibodies

• Benfotiamine

(NRF2-dependent

genes expression

enhancer)

• 5-Lipoxygenase

blockers

• Antisense

oligonucleotides

• RNA

interference

silencing of

tau expression

Ongoing

clinical trials

• ASN120290

• MK-8719

• BIIB092 • AZP2006 • TPI-287

Completed

clinical trials

• Tideglusib

• Sodium

valproate

• Lithium

• Salsalate

• ABBV-

8E12

• Coenzyme Q10

• α-lipolic acid

with L-acetyl

carnitine

• Pyruvate with

creatine

and niacinamide

• Lithium • Davunetide • Salsalate

seeds. However, at present, these techniques are not quantitative
and do not allow to measure the disease severity.

Higher levels of neurofilament light chain (NfL) have
been found in atypical parkinsonisms compared to PD (231).
NfL is an unspecific marker of axonal loss in central and
peripheral nervous system and studies on mouse models of
tauopathy, AD, and α-synucleinopathy have showed that its
blood and CSF levels are associated with progression and
severity of neurodegeneration (232). NfL has been related
to disease severity in PSP and changes in its level have
been measurable in time-span of clinical trials, suggesting
it could be a marker of disease progression in therapeutic
trials (226, 233, 234). However, NfL is not suitable for PSP
diagnosis since it can be high and associated with disease
severity in other disorders such as vascular dementia and
frontotemporal degeneration (235, 236). Various combinations
of above-mentioned biomarkers have been proposed for the
differential diagnosis of PSP, but replication studies are needed
(226, 237, 238).

DISEASE-MODIFYING THERAPEUTIC
APPROACHES

Various disease modifying approaches are now under evaluation
based on recent advances in the understanding of PSP
pathogenesis (Table 3). Tideglusib, a GSK3-β inhibitor, was
among the first disease-modifying agents evaluated in a large
double-blind placebo-controlled clinical trial of PSP patients
(138). Tideglusib failed to show any clinical effect as other
GSK3-β inhibitors did in smaller trials (139). Davunetide, a
neuroprotective and microtubule stabilizer, was evaluated with
the same negative results (233). However, other phosphorylation
inhibitors, microtubule stabilizers and neuroprotective agents are
still under evaluation (140). Mitochondrial function enhancing

nutrients including coenzyme Q10 have also been tested in
clinical trials of PSP patients with no apparent benefit (140, 165).

Anti-tau antibodies are the most promising potential
therapeutic strategies that are currently in clinical phase
evaluation for PSP. Two humanized antibodies directed to
different epitopes of extracellular tau, ABBV-8E12, and BIIB092,
entered phase II with the hope to prevent the spread of
tau pathology. ABBV-8E12 is a humanized antibody against
extracellular fibrillar tau antibody designed to slow down the
cell-to-cell spread of tau pathology. BIIB092 is directed to an
N-terminally truncated form of extracellular tau. These agents
showed no significant adverse events in the phase I trials and
are being well-tolerated in ongoing phase II studies (140, 239).
Unfortunately, ABBV-8E12 trial was recently discontinued due
to lack of benefit.

MAPT gene silencing using antisense oligonucleotides or
RNA interference are other promising future therapeutic
strategies for tauopathies. IONIS-MAPTRx (BIIB080) is the only
antisense oligonucleotide directed to the MAPT gene expression.
It is currently under clinical evaluation in mild AD in a phase I/II
study (ClinicalTrials.gov NCT03186989) and is planned to enter
phase II/III in FTLD patients.

CONCLUSION

PSP is a pathological entity with a wide range of presenting
clinical features. It may present with symptoms similar to
other neurodegenerative disorders including other atypical
parkinsonisms, PD, frontotemporal lobar degeneration, and
AD. Recent advances in terms of phenotypic and pathologic
characterization, genetics, and molecular imaging have greatly
increased our understanding of this unique disorder and have
provided clues for the development of disease modifying
treatments. Further knowledge about the mechanisms involved
in its development, pathological alteration at the level of genes,
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RNA, tau protein regulation and new insights into the structural
details of 4R tau fibrils and seeds, will pave the way for novel
therapeutic approaches. Development of 4R tau PET ligands and
accurate measures of 4R-tau in blood are of utmost importance
for an early diagnosis and measure of disease progression in new
therapeutic trials.

Our better understanding of the etiopathogenesis is being
translated into experimental therapeutic trials with anti-tau
antibodies (240, 241) and a number of other therapeutic
modalities, including antisense oligonucleotides (242), tau post-
translational modifiers (138), neuroprotective (233), and anti-
inflammatory drugs (243). Hopefully soon these new approaches
will also translate into clinical practice.
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