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Purpose: Deep brain stimulation (DBS) is an established therapy for Parkinson’s disease

(PD). However, deteriorating cognitive function after DBS is a considerable problem for

affected patients. This study was undertaken to assess whether pulvinar findings in

susceptibility-weighted imaging (SWI) can suggest cognitive worsening.

Methods: We examined 21 patients with PD who underwent DBS along with SWI and

neuromelanin-sensitive MR imaging (NMI). We further assessed pulvinar hypointensity

based on the SWI findings and also the area of the substantia nigra (SN) pars compacta

in NMI. We then examined associations among cognitive changes, pulvinar hypointensity,

and SN area. The cognitive function of the patient immediately before surgery was

compared with function at 1 year postoperatively.

Results: Pulvinar hypointensity in SWI was found in 11 of 21 patients with PD at

baseline. One year postoperatively, six of the 21 patients demonstrated a Mini-Mental

State Examination score that was ≥3 points lower than the baseline score. We observed

pulvinar hypointensity in SWI before DBS surgery in five of these six patients (p = 0.072).

During the first postoperative year, six of 21 patients reported both transient or permanent

hallucinations; we observed pulvinar hypointensity in these six patients, while 10 patients

without pulvinar hypointensity had no hallucinations.

Conclusion: Pulvinar hypointensity in SWI in patients with PD may provide information

that is useful for suggesting cognitive deterioration after DBS treatment.

Keywords: pulvinar nuclei, susceptibility-weighted imaging, diffusion-weighted imaging, Parkinson’s disease,

deep brain stimulation, cognitive function

INTRODUCTION

Deep brain stimulation (DBS) is an established therapy for Parkinson’s disease (PD) (1). However,
patients who undergo DBS may experience side effects such as headaches, seizures, recall difficulty,
and postoperative deterioration of cognitive function (2). Frontal 18-fluorodeoxyglucose positron
emission tomography (PET) activity is reportedly related to cognitive outcome after DBS of the
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subthalamic nucleus (STN) in patients with advanced PD disease
(3). In daily practice, however, it is difficult to use PET scans.

Recently, hypointensity of the pulvinar nucleus on fluid-
attenuated inversion recovery (FLAIR) images has been found in
patients with Alzheimer’s disease; this is suspected to represent
abnormal iron accumulation (4). We have shown that a low
signal from the pulvinar nucleus on diffusion-weighted imaging
(DWI) is associated with hallucinations in dementia patients
(5). Furthermore, some reports have indicated a relationship
between pulvinar change and Lewy body dementia (DLB) (6–
8). In particular, Erskine et al. reported that α-synuclein was
present throughout the pulvinar in DLB (6). Notably, α-synuclein
can bind Fe(II) and Fe(III) (9–12), and susceptibility-weighted
imaging (SWI) exploits the tissues’ magnetic properties, such
as blood or iron content (13). Hence, we hypothesized that
hypointensity of the pulvinar nucleus in SWI will suggest
cognitive worsening after DBS during prodromal cognitive
impairment in patients with PD because it may represent α-
synuclein pathology.

Furthermore, neuromelanin-sensitive MR imaging (NMI) is a
useful tool for the diagnosis and follow-up of patients with PD
(14–19). Hatano et al. reported that patients with PD with motor
complications (MC) had markedly smaller substantia nigra (SN)
pars compacta areas in NMI compared with patients with PD
without MC (20). Several papers have reported a correlation
between motor symptom severity and NMI signal changes in
patients with PD (16–19). However, there have been no reports of
correlations between cognitive function and NMI signal changes
in patients with PD. In this study, we aimed to evaluate the
relationships between cognitive worsening in patients with PD
after DBS, the hypointensity of the pulvinar nucleus in SWI, and
the SN area in NMI.

MATERIALS AND METHODS

This study was conducted retrospectively. Inclusion criteria were
as follows: patients with PD who fulfilled the United Kingdom
Brain Bank criteria (21) and underwent DBS therapy at our
institution between November 2010 and April 2016. Twenty-one
patients (16 women, five men; mean age: 62.1 years) matched
these criteria. This study was approved by the Institutional
Review Boards of our institutions, and informed consent was
provided by all patients before enrollment in the study.

All patients underwent MRI at a 3T MRI unit (Verio; Siemens
AG, Erlangen, Germany) with a 32-channel head coil. MR
sequences consisted of SWI, DWI, three-dimensional (3D)-
FLAIR, NMI, and 3D-T1-weighted imaging. The SWI parameters
were as follows: repetition time (TR), 25ms; echo time (TE),
20ms; flip angle, 16◦; field of view (FOV), 210mm; matrix
size, 510 × 512; section thickness, 1.2mm; acquisition time,
3min 42 s. The DWI parameters were as follows: TR, 5,900ms;
TE, 85ms; FOV, 230 × 230mm; matrix size, 114 × 114;
slice thickness, 3.0mm; acquisition time, 1min 17 s. The 3D-
FLAIR parameters were as follows: TR, 10,000ms; TE, 617ms;
flip angle, T2 var; FOV, 267 × 267mm; matrix size, 256 ×

256; slice thickness, 1.1mm; acquisition time, 6min 20 s. The

pulse sequence used for NMI was a T1-weighted fast spin-echo
technique; TR, 550ms; TE, 11ms; echo train length, 4; FOV,
200mm; matrix size, 448× 311 (pixel size: 0.45× 0.64mm); slice
thickness, 2.5mm (gapless, 6-averaged, 12 slices); acquisition
time, 9min (14, 16, 18). For voxel-based morphometry (VBM),
the parameters used for 3D-T1-weighted imaging were as follows:
TR, shortest; TE, 15ms; flip angle, 90◦; FOV, 230 × 230mm;
matrix size, 256 × 256; slice thickness, 1.1mm; acquisition time,
6min 20 s.

All patients underwent bilateral electrode placement for
STN (17 patients) or pallidal (four patients) DBS. Electrodes
(Medtronic DBS lead models 3389 and 3387, Medtronic,
Minneapolis, MN, USA; and the Vercise R© DBS lead,
Boston Scientific, Natick, MA, USA) were implanted under
local anesthesia using a Leksell stereotactic frame (Elekta
Instruments AB, Stockholm, Sweden) and anatomical (MRI and
computed tomography) and physiological targeting. Based on
microelectrode recordings, electrodes were considered correctly
located in the target region. Impulse generators (Activa SC/RC,
Medtronic; Vercise R© system, Boston Scientific) were implanted
and connected during a second surgical procedure on the
same day.

The levodopa equivalent daily dose (LEDD) for each patient
was calculated as follows: 100mg L-dopa/decarboxylase inhibitor
= 1mg pramipexole = 5mg ropinirole = 3.3 mg/day rotigotine
= 4mg cabergoline = 70mg L-dopa/decarboxylase inhibitor
with entacapone (22–24).

By performing SWI, FLAIR, and DWI at the level of 2mm
above the anterior to posterior commissure (AC–PC) line, signal
intensities for the pulvinar nucleus were evaluated for normal
intensity or hypointensity by two reviewers in a blinded manner
(Figure 1). The SN area was measured at the section through the
inferior edge of the inferior colliculus using ImageJ (National
Institutes of Health, Bethesda, MD, USA). Briefly, image files
containing neuromelanin-related contrast (NRC) at the section
through the inferior edge of the inferior colliculus were imported
to ImageJ, converted into 8-bit files, and smoothed. Next, the SN
threshold was adjusted to a level that eliminated noise contrast,
leaving NRC in the SN and additional contrast in two small areas
lateral to the aqueduct. The areas filled with white were originally
shown in red on the computer color display. The number of
pixels in each area was calculated automatically (16, 18, 19).

FIGURE 1 | Pulvinar hypointensity MRI of a 61-year-old man in DWI (A), FLAIR

(B), and SWI (C).
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We also performed N-isopropyl-p-[123I]-iodoamphetamine
([123I]-IMP) single-photon emission computerized tomography
(SPECT) scans for all patients. All subjects were injected with
167 MBq of [123I]-IMP while in a supine resting state with
their eyes closed. After 5min, brain SPECT scanning was
performed for 25–30min using an E.CAM system, an LMEGP
collimator, and a GMS-5000 WorkStation (Toshiba, Tokyo,
Japan). Axial images were obtained by filtered back-projection
methods. Cerebral blood flow (CBF) wasmeasured by Graph Plot
Analysis (25).

MRI data for VBM were analyzed using SPM12 (Wellcome
Institute of Neurology, University College London, London,
UK) running on MATLAB R2012a (MathWorks, Natick,
MA, USA). In the pre-processing phase, images were set to
match the AC-PC line using an automated MATLAB script.
The images were then visually inspected to detect possible
scan issues such as field distortion and movement artifacts.
Reoriented images were corrected for intensity inhomogeneity
and segmented into gray matter (GM), white matter (WM),
cerebrospinal fluid, and other tissues outside of the brain by
SPM12 tissue probability maps. The images were registered
with the East Asian Brains International Consortium for
Brain Mapping space template through affine regularization.
We created a population-specific template using the SPM12
DARTEL template procedure to compare groups directly, with or
without pulvinar hypointensity in SWI, cognitive worsening, and

TABLE 1 | Patient profile.

Pre-operation After 1 year

Age 62.1 ± 8.6

Sex (M:F) 5:16

Disease duration (years) 11.3 ± 6.3

DBS target STN17 GPi4

Hoehn-Yahr stage (on state) 2.4 ± 0.8 2.1 ± 0.9*

Hoehn-Yahr stage (off state) 3.7 ± 0.8 2.7 ± 0.8**

UPDRS Part I 3.0 ± 2.6 0.95 ± 1.28**

UPDRS Part II 9.5 ± 6.2 8.0 ± 5.9

UPDRS Part III 18.3 ± 12.3 11.4 ± 8.5**

UPDRS Part IV 7.4 ± 2.9 3.3 ± 2.7**

LEDD (mg) 694 ± 294 427 ± 219**

L-Dopa (mg) 376 ± 161 208 ± 121**

DA (use rate; %) 86% 81%

Entacapone (use rate; %) 71% 52%

Selegiline (use rate; %) 24% 24%

Zonisamide (use rate; %) 33% 38%

MMSE 26.24 ± 3.38 25.86 ± 5.14

FAB 13.76 ± 3.08 14.75 ± 2.40

TMT-A (s) 200 ± 149 153 ± 81

CES-D 16.4 ± 13.0 13.2 ± 13.3

*p < 0.05, **p < 0.01. DBS, deep brain stimulation; STN, subthalamic nucleus; GPi,

internal segment of globus pallidus; UPDRS, the Unified Parkinson’s disease rating scale;

LEDD, levodopa equivalent daily dose; DA, dopamine agonist; MMSE, Mini-Mental State

Examination; FAB, Frontal Assessment Battery; TMT, Trail Making Test; CES-D, the Center

for Epidemiologic Studies Depression Scale.

hallucination; thus, we investigated whole-brain GM differences
between groups. GM and WM segments were inputted into
high-dimensional DARTEL to create non-linear, modulated-
normalized, GM images that were smoothed using a Gaussian
kernel of 8mm full width at half maximum. No participants were
excluded from analysis after these steps.

For the region of interest of pulvinar nucleus analyses, we
assessed the statistical significance at a voxel threshold of p <

0.005 (uncorrected); contiguous clusters of at least 10 voxels were
reported. We obtained both Montreal Neurological Institute
(MNI) and Talairach coordinates to detect the anatomical regions
of the clusters. We used a transformation from Matthew Brett
(http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach)
to convert MNI coordinates to Talairach coordinates, and
Talairach Client 2.4.3 was used to identify the anatomical
regions corresponding to Talairach coordinates (26). We
performed assessments including the Unified Parkinson’s
Disease Rating Scale (UPDRS), LEDD, Mini-Mental State
Examination (MMSE), Frontal Assessment Battery (FAB), the
Trail Making Test (TMT), and the Center for Epidemiologic
Studies Depression Scale (CES-D) for all patients before DBS
(i.e., baseline) and at 1 year postoperatively (27–31). We also
checked for the presence or absence of hallucinations based on
medical records.

All statistical analyses were performed using SPSS software
(version 23, IBM Corp., Armonk, NY, USA). To compare the
Hoehn-Yahr stage, UPDRS, use of dopamine agonist, entacapone,
selegiline and zonisamide, MMSE, FAB, and CES-D between
baseline and 1 year postoperatively, we used Wilcoxon signed-
rank tests. To compare the LEDD, L-dopa dosage, and TMT-
A between baseline and 1 year postoperatively, we used paired
t-tests. To compare the MMSE score change, MMSE score
at baseline, and Hoehn-Yahr stage between the groups with
a worsened and with a stationary or better MMSE score, we
used Mann–Whitney’s U-test. To compare age, disease duration,
and LEDD between the groups with a worsened and with a
stationary or better MMSE score, we used unpaired t-tests. To
compare the change in TMT-A and FAB scores between the
groups with pulvinar isointensity and pulvinar hypointensity in
SWI, we used Mann-Whitney’s U-test. Fisher’s exact test was
used to analyze pulvinar hypointensity or isointensity in the
SWI, DWI, and FLAIR groups and to compare between groups
with SN areas ≥12 and <12 for changes in MMSE scores.
Correlations between changes in the MMSE score and SN area,
as well as between UPDRS and SN area, were analyzed using
Spearman’s rank correlation coefficient. We used a Student’s t-
test to compare CBF between groups. An α level of 0.05 was
considered statistically significant.

RESULTS

At the time of the DBS operation, the patients’ average age
(mean ± standard deviation) was 62.1 ± 8.6 years. Immediately
after DBS, the average motor performance (Hoehn-Yahr
stage, UPDRS) significantly improved, and LEDD and L-dopa
dosage significantly decreased (Table 1). Cognitive performance
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TABLE 2 | Relationship between cognitive function and pulvinar hypointensity in SWI.

MMSE score 1 year after

DBS operation

MMSE score worsened over

3 points from baseline

Hallucination occurred

during follow-up period

Pulvinar in SWI Normal Under 24 Stationary or

better

Worsened Nothing Occurred

Hypointensity 5 6 6 5 5 6

Isointensity 10 0 9 1 10 0

p = 0.0057 p = 0.072 p = 0.0057

(MMSE, FAB, and TMT-A) and the depression scale remained
unchanged (Table 1). One year postoperatively, the average
Hoehn-Yahr stages in on and off states, respectively, improved
compared with baseline (p = 0.031 and p < 0.001, respectively)
(Table 1). All patients had no hallucinations at the baseline.

In this series, pulvinar hypointensity, as assessed by visual
inspection by performing SWI, DWI, and FLAIR, was present
in 11, 9, and 7 patients, respectively (Figure 1). One year
postoperatively, six of 21 patients had MMSE scores < 24.
Four of these six cases showed a reduction of ≥3 points in the
MMSE score from baseline, and five of the six cases experienced
transient or permanent hallucinations. The type of hallucination
was both visual and auditory in three cases and only visual in
three cases. We observed pulvinar hypointensity in SWI in all
six patients (Table 2, p = 0.0057). Six of 21 patients showed
a reduction of ≥3 points in the MMSE score from baseline;
five of these six patients showed pulvinar hypointensity in SWI
(Table 2, p = 0.072). During the observation period, six of 21
patients reported both transient and permanent hallucinations;
all six patients showed hypointensity in SWI. In contrast, 10
patients without pulvinar nucleus hypointensity in SWI reported
no hallucinations (Table 2, p = 0.0057). We compared age,
disease duration, LEDD, and MMSE score at baseline between
the groups with a worsened and with a stationary or better
MMSE score 1 year postoperatively. A difference was observed
between age at the operation and pulvinar hypointensity in SWI
(p = 0.100 and 0.072, respectively; Table 3). Nine cases showed
pulvinar hypointensity in DWI and no association with the
MMSE score, deterioration of cognitive function, or occurrence
of hallucinations 1 year postoperatively (p = 0.48, 0.93, and
0.79, respectively). Seven cases showed pulvinar hypointensity by
FLAIR and no association with the MMSE score, deterioration
of cognitive function, or occurrence of hallucinations 1 year
postoperatively (p = 0.15, 0.66, and 0.30, respectively). No
significant differences were observed in the change in TMT
A time between the groups with pulvinar isointensity (−42.8
± 41.3) and hypointensity (2.2 ± 114.7, p = 0.0642) in SWI.
There was no significant difference in the change in FAB score
between the groups with pulvinar isointensity (0.3 ± 1.8) and
hypointensity (1.1± 3.1, p= 0.133) in SWI (Figure 2). The group
with pulvinar hypointensity in SWI was divided into two. One
was a group with anMMSE score reduction of≥3 points, and the
other was a group with an MMSE score reduction of <3 points.
Age, disease duration, LEDD, and severity (Hoehn-Yahr stage)

TABLE 3 | Comparison between the worsened and stationary or better MMSE

score groups.

MMSE score worsened over 3

points from baseline

Worsened (6 cases) Stationary or better

(15 cases)

p-value

MMSE score

pre-operation

26.3 ± 2.4 26.2 ± 3.8 0.937

Change in

MMSE score

−6.0 ± 3.9 1.9 ± 2.3 0.00110

Age (years) 67.0 ± 6.5 60.1 ± 8.8 0.100

Disease duration

(years)

10.3 ± 6.3 11.7 ± 6.7 0.666

LEDD (mg) 631 ± 410 719 ± 258 0.559

Hoehn-Yahr stage

(On/Off)

3.0 ± 0.6/3.7 ± 0.8 2.2 ± 0.8/3.7 ± 0.9 0.075/0.577

Pulvinar

hypointensity

in SWI

83% (5/6) 40% (6/15) 0.072

MMSE, Mini-Mental State Examination; LEDD, levodopa equivalent daily dose; SWI,

susceptibility-weighted imaging.

at the baseline were not significantly different between the two
groups. The intraclass correlation coefficient of visual inspection
of the iso- or hypointensity of the pulvinar nucleus in SWI was
0.931, indicating excellent correlation.

No correlation was found between the SN area calculated
by NMI and the MMSE score change (rs = −0.22, p = 0.32)
(Figure 3A). However, in the group with ≥12 pixels of the SN
area (13 patients), only one patient showed an MMSE score
reduction of 3 points between baseline and 1 year postoperatively
(p= 0.0046) (Table 4). Moreover, the SN area in 21 patients with
PD by NMI was correlated with UPDRS parts II and III, when
assessed in the on state 1 year postoperatively (rs = −0.46 and
−0.48, p= 0.042 and 0.031) (Figure 3B).

In the baseline SPECT evaluation, the average occipital
CBF in the group with hallucinations (30.66 ± 3.27 ml/100
g/min) was significantly lower than that of the group without
hallucinations (38.90 ± 6.30 ml/100 g/min, p = 0.0036). In
the VBM analysis, the volume of the left pulvinar nucleus with
isointensity in SWI was greater than that of the pulvinar nucleus
with hypointensity in SWI (Figure 4). On the other hand, there
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FIGURE 2 | Change in TMT-A (A) and FAB (B) before DBS therapy and 1 year

after DBS therapy. The white circle represents the average.

was no difference between these two groups in other areas,
including the caudate nucleus, periventricular white matter area,
and centrum semiovale white matter area.

DISCUSSION

In the present study, we found that pulvinar hypointensity in
SWI helps suggest cognitive worsening and the emergence of
hallucinations. The SN area seen on NMI suggests the score of
UPDRS part II and III 1 year after DBS surgery. In general,
the cognitive impairment of patients with PD is strongly related
to their quality of life (32). Therefore, patients with PD need
to avoid deterioration of cognitive function and hallucinations
induced by DBS surgery. STN-DBS therapy is beneficial for some
elderly patients with PD aged ≥70 years; however, their clinical
benefits are inferior to those of younger patients (33). Indeed,
elderly patients with PD aged ≥70 years are frequently excluded
from DBS therapy worldwide (34, 35). This study also suggested
MMSE deterioration with age.

The present study suggested a correlation between pulvinar
hypointensity in SWI and MMSE score change after DBS.
Recently, it was reported that the pulvinar nucleus is involved in
visual attention and modulation of behavioral responses through
indirect cortico-cortical connections (36). A neuroimaging study
demonstrated modulation of responses in the pulvinar nucleus
with the usage of selective attention tasks that direct attention
to a particular spatial location, shift attention across the visual
fields, or exclude unwanted information (36). We previously
reported a correlation between pulvinar hypointensity in DWI
and hallucination in dementia patients (5), which is probably due
to functional changes in lateral and inferior pulvinar subnuclei
related to their strong connections with the visual cortex (36,
37). Moon et al. reported that the pulvinar nucleus exhibited a
low signal on FLAIR images in Alzheimer’s disease, describing

FIGURE 3 | No significant correlation was found between SN area and MMSE

score change (A), and a moderate correlation was found between SN area

and UPDRS score 1 year postoperatively (B).

potential iron accumulation on T2-weighted images (4). Based
on these reports, pulvinar hypointensity in SWI may reflect
iron deposition in the pulvinar nucleus. However, we did not
observe significant correlations between pulvinar hypointensity
on DWI or FLAIR and the MMSE score. Pulvinar hypointensity
was detected by FLAIR, DWI, and SWI in 7, 9, and 11 cases,
respectively. One possible explanation of the lack of correlation
with MMSE score in DWI and FLAIR is that the detectability
for pulvinar hypointensity was lower in these methods than in
SWI. In this regard, further studies including a larger number
of cases will be needed. There was no significant difference in
age, disease duration, LEDD, and severity between the worsened-
cognition group and the stationary or better group. We do not
know why these differences occur, and further investigations
are needed.

Recently, a relationship was reported between changes in the
pulvinar nucleus and the presence of DLB, supported by MRI
and pathological findings (8, 9). Accumulation of α-synuclein
in the pulvinar nucleus has been demonstrated in pathological
analysis of DLB patients (8). Furthermore, cultured neurons
over-expressing α-synuclein exhibited iron accumulation when
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TABLE 4 | Relationship between cognitive function and the SN area in NMI.

SN area (pixels) MMSE score

Stationary or better Worsened

≥12 12 1

<12 4 4

p = 0.0018

FIGURE 4 | VBM analysis showing the difference between groups with and

without pulvinar hypointensity in SWI. Left pulvinar volumes of the group with

pulvinar hypointensity in SWI were smaller than those of the group without

pulvinar hypointensity in SWI.

exposed to excess iron (38). Based on these findings, the low
signal in SWI may reflect the spread of α-synuclein, leading
to cognitive impairment and hallucination. In prior findings
and the present results, pulvinar hypointensity in SWI may
be compatible with stages 5 and 6 of the Braak hypothesis of
Lewy body pathology in patients with PD (39). The smaller
left pulvinar nucleus in the group with pulvinar hypointensity
observed during VBM analysis may reflect the change in pulvinar
nuclei and support this hypothesis (Figure 4). Moreover, Watson
et al. reported that the region of the left pulvinar and ventral
lateral nucleus was associated with impaired attentional function
in DLB (7). In a comparison between pulvinar hypointensity and
isointensity in SWI, the TMT A of isointensity group showed
improvement after surgery, whereas no change was observed in
the hypointensity group. The result of TMT-A did not reach a
significant level because of an outlier in the hypointensity group,
which showed remarkable improvement (Figure 2). Therefore,
TMT-A might improve after surgery in the pulvinar isointensity
group and worsen in the hypointensity group. The fact that
there was atrophy of the left pulvinar nuclei of the hypointensity
group in the significant hemisphere is congruent with the fact
that pulvinar nuclei are related to visual attention (36, 37).
It was suggested that, because of visual attention deficit, the
result of TMT-A in the hypointensity group tended to worsen

after surgery. Regarding the result of FAB, there was also no
difference between the pulvinar isointensity and hypointensity
groups. Though FAB is regarded as one of the tests for frontal
function, it includes various tasks such as similarities, motor
series, and Go–No Go, not necessarily just attention (29). It can
reasonably be concluded that diversity of FAB can occur with no
tendency in the hypointensity group.

Conversely, there was no direct association between the
SN area in NMI and the MMSE score, and only one patient
showed considerable deterioration (≥12 pixels). Moreover, 1 year
postoperatively, there was a correlation between the SN area in
NMI and UPDRS parts II and III. Thus, a larger SN area in
NMI indicated possible motor function improvement. Cognitive
function is suggested not to worsen when the SN area maintains
a specific level of positive pixels. However, a direct association
between the SN area and cognitive function remains unclear.
Therefore, this should be examined in a prospective study with
a larger number of patients.

The present study had several limitations. First, pulvinar
hypointensity was assessed based on visual inspection. Future
studies should confirm and extend our findings using a
quantitative method, such as quantitative susceptibility mapping
(QSM). We are currently conducting the study using QSM.
Second, in this study, we could not distinguish and analyze
changes in specific pulvinar subnuclei. The pulvinar nucleus has
several connections, and there are differences among subnuclei. If
pulvinar subnucleus changes can be elucidated, such information
may be more useful for clarifying the pathophysiological
significance of this phenomenon.

Pulvinar hypointensity observed in SWI in patients with PD
before DBS treatment reflects the cognitive function after DBS,
and the SN area on NMI reflects the UPDRS parts II and III at 1
year after DBS, which may provide useful information regarding
the prognosis of cognitive and motor functions after DBS.
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