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Objectives: To investigate the performance of substate classification of children with

benign epilepsy with centrotemporal spikes (BECTS) by granger causality density (GCD)

based support vector machine (SVM) model.

Methods: Forty-two children with BECTS (21 females, 21 males; mean age, 8.6 ± 1.96

years) were classified into interictal epileptic discharges (IEDs; 11 females, 10 males) and

non-IEDs (10 females, 11 males) substates depending on presence of central-temporal

spikes or not. GCD was calculated on four metrics, including inflow, outflow, total-flow

(inflow + outflow) and int-flow (inflow – outflow) connectivity. SVM classifier was applied

to discriminate the two substates.

Results: The Rolandic area, caudate, dorsal attention network, visual cortex, language

networks, and cerebellum had discriminative effect on distinguishing the two substates.

Relative to each of the four GCD metrics, using combined metrics could reach up the

classification performance (best value; AUC, 0.928; accuracy rate, 90.83%; sensitivity,

90%; specificity, 95%), especially for the combinations with more than three GCD

metrics. Specially, combined the inflow, outflow and int-flow metric received the best

classification performance with the highest AUC value, classification accuracy and

specificity. Furthermore, the GCD-SVM model received good and stable classification

performance across 14 dimension reduced data sets.

Conclusions: The GCD-SVM model could be used for BECTS substate classification,

which might have the potential to provide a promising model for IEDs detection. This may

help assist clinicians for administer drugs and prognosis evaluation.

Keywords: benign epilepsy with centrotemporal spikes, granger causality density, seizure disorder, support vector

machine, classification, prediction

INTRODUCTION

Recently, functional neuroimaging methods have been widely used to describe functional network
changes and the relationships among different brain networks in diseases. The most widely
used method is functional connectivity, which involves calculation of the correlation of time
courses between one brain region and each of the rest of brain regions. Another method,
functional connectivity density, which unbiasedly measures the functional connectivity strength

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2019.01201
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2019.01201&domain=pdf&date_stamp=2019-11-14
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhangzq2001@126.com
mailto:cjr.luguangming@vip.163.com
https://doi.org/10.3389/fneur.2019.01201
https://www.frontiersin.org/articles/10.3389/fneur.2019.01201/full
http://loop.frontiersin.org/people/438868/overview
http://loop.frontiersin.org/people/418565/overview
http://loop.frontiersin.org/people/638309/overview
http://loop.frontiersin.org/people/808988/overview
http://loop.frontiersin.org/people/176958/overview
http://loop.frontiersin.org/people/400882/overview


Dai et al. BECTS Classification by GCD-SVM Model

over the whole brain, could reflect the communication amounts
among brain regions (1). However, both methods cannot reflect
the directed information flow among different brain regions.
Although granger causality analysis fulfills this requirement
(2–4), it is based on priori hypotheses of definition of
regions of interest. Reliable and accepted methods are needed.
A new method, called granger causality density (GCD),
aggregates conditional information sets according to community
organization using weighted connectivity density map, reflecting
the average effect connectivity strength between each voxel and
the rest of voxels of whole brain. The proposed GCD analysis
could avoid redundancy and overfitting, which makes it suitable
for neuroimaging data analysis, and even for high-dimensional
and short dataset. Furthermore, this method could provide an
opportunity for unbiased searches abnormalities within the entire
connectivity matrix without any priori hypotheses, and reflect the
directed information flow among different brain networks from
voxel levels. However, it has not been applied into any diseases.

Group-based methods are not helpful in inferring specific
clinical outcomes for individual patients. Current functional
MRI researchers mainly focus on describing group differences
between subject classes (knowing the label of each subject),
which cannot be classified across different types of subjects.
Therefore, for the purpose of individual classification, a desirable
method would be one that can compare a single subject’s
scan to a group. The interictal epileptiform discharges (IEDs)
detection remains a challenging problem for simultaneous EEG-
fMRI examination because of the absence of long-term data
recordings, which are not like the single EEG data recordings,
and the insufficient data recordings cannot be used for training
and testing (5, 6). Support vector machine (SVM) classifier
recognition algorithm is a sensitive neuroimaging bioindicator
and efficient feature-selection method. The SVM can train a
classifier to classify the label of an unseen subject by taking
multiple features into account jointly. There is a growing findings
in data-analytic modeling for detection and seizure prediction
from intracranial EEG recording (5–8). Seizure prediction has
the potential to transform the management of patients with
epilepsy by administering preemptive clinical therapies (such as
neuromodulation, drugs) and patient warnings (9). The SVM-
based model can help us to explore the voxel features or
target brain regions with a high contribution to classification
or prediction, and has been successfully applied to EEG data
(6), but whether the functional MRI data could be used for
IEDs prediction or classification left largely unknown. Epilepsy
is a disease with brain network disorders (10, 11). Observation
of the directed information flow propagation of the IEDs is
one of the most important clinical purposes of epilepsy. Benign
childhood epilepsy with central-temporal spikes (BECTS), also
known as Rolandic epilepsy, is the most common type of
idiopathic epilepsy in childhood. BECTS is a highly prevalent
idiopathic epilepsy, affecting about 15.7% of epilepsy with 75%
starting between 7 and 10 years (12, 13). Children’s brains are
developmentally immature and the nerve excitabilities are high,
and therefore the children are more susceptible to epilepsy
due to internal and external factors (13), which makes the
BECTS considered to be an ideal model to describe the directed

information flow differences in brain networks between IEDs and
non-IEDs substates.

Seizure refers to the transformation of normal neurons into
abnormally high excitatory and super synchronous electrical
activities, resulting in recurrent episodes of transient seizures
and brain dysfunction (14, 15), which is thought to be caused
by an imbalance between excitation and inhibition (14). It has
been suggested that brain excitation/inhibition imbalance is an
important mechanism for leading to an overexcited epilepsy-
related networks (16–18). The onset of the IEDs may break
the excitatory/inhibition balance of neurons, leading to high
excitatory and super synchronous electrical activities of epilepsy-
related neural networks, and resulting in an imbalance of
directed information flow among these networks. Therefore,
we hypothesized that the IEDs substate may differ from the
non-IEDs substate. Since the spread of epileptic activity is
characterized by input and output information flow (19–24),
combining the input and output information flow features
may reach up the classification performances. To address these
hypotheses, the present study is the first to apply the GCD-SVM
model to explore a highly sensitive neuroimaging biomarker
for BECTS substates classification. Previous studies have found
that the GCA method may help patients with epilepsy for
substate classification to discriminate between interictal and
ictal status (25), which has important guiding significance for
the decision-making of intraoperative surgical procedures. The
present study may provide a potential biomarker to discriminate
the BECTS having or not having the IEDs, and evaluate the
possible mechanism of brain damage caused by the differences,
which may be helpful to build an imaging model to predict
remission and prognosis of BECTS, and have the potential to
assist clinicians for clinical administration and monitoring the
efficacy of disease-modifying therapies.

MATERIALS AND METHODS

Subjects
Forty-two children with BECTS (21 females, 21 males; mean
age, 8.6 ± 1.96 years) underwent simultaneous EEG-fMRI
examination. The BECTS were classified into IEDs (11 females,
10 males; 5∼12 years) and non-IEDs (10 females, 11 males; 6∼12
years) substates depending on the presence of central-temporal
spikes or not from the EEG-fMRI examination.

Inclusion criteria were as follows: (a) clinical and EEG findings
indicative of BECTS, (b) aged between 5 and 17 years, (c)
attending school regularly for education, (d) no developmental
disabilities, (e) full-scale intelligence quotient of more than
70, and (f) no history of addictions or neurological diseases
other than epilepsy. Patients received diagnoses on the basis of
all available clinical and EEG data according to the following
criteria: (a) International League Against Epilepsy classification
(26) and current literature (13); (b) presence of simple partial,
often facial, and motor or tonic-clonic seizures during sleep; and
(c) spike waves in centrotemporal regions.

Exclusion criteria were (a) pathological focal brain lesions
on T1-weighted and T2-weighted fluid-attenuated inversion-
recovery MR images, (b) falling asleep during the MRI session
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(assessed by means of self-report and occurrence of sleep waves
in simultaneously recorded EEG data), (c) head motion with
more than 1.5mm in translation or 1.5◦ in rotation, (d) age
<5 years, (e) any history of significant head trauma or loss of
consciousness >30min, (f) any foreign implants, and (g) any
history of neurological disorders or psychiatric illnesses.

This study was approved by Medical Research Ethical
Committee of our Hospital in accordance with the Declaration
of Helsinki and written informed consent was obtained from all
subjects and their guardians.

Simultaneous EEG and Functional MR
Imaging Acquisition
During the fMRI data acquisition, the EEG data were
continuously recorded with an MR-compatible recording
system (Brain Products, Gilching, Germany). A total of 32
channels MR compatible Ag/AgCl electrodes (Brain Product,
Munich, Germany) with reference at the electrode FCz and
electrocardiography were attached to the scalp and connected
to a Brain map amplifier. EEG data sets were processed offline
to remove MR and ballistocardiographic artifacts (Brain Vision
Analyzer 2.0; Brain Products, Munich, Germany). The EEG data
were transmitted via an optic fiber cable from the amplifier
placed inside the scanner room to a computer outside. The
IEDs were marked on artifact-removed EEG by an experienced
electroencephalographer and a neurologist.

Functional and structural imaging data were acquired with
a clinical 3-Tesla MRI scanner (SIEMENS Trio Tim, Erlangen,
Germany) with a standard eight-channel head coil. A total
of 176 high-resolution T1-weighted anatomical slices were
acquired with a three-dimensional magnetization prepared
rapid-gradient-echo sequence in a sagittal orientation (repetition
time = 2,300ms, echo time = 2.98ms, thickness = 1.0mm,
matrix = 256 × 256, field of view = 256mm × 256mm, flip
angle = 90). A total of 250 functional images were acquired
using a single-shot Gradient-Recalled Echo-Planar Imaging pulse
sequence (repetition time = 2,000ms, echo time = 30ms,
thickness = 4.0mm, inter-slice gap = 1.2mm, field of view
= 220mm × 220mm, matrix = 64 × 64, flip angle 90◦, 30
transverse slices). The scan time of the functional data was 8min
and 10 s.

GCD Data Processing
Data Preprocessing
The first 10 time points of the functional images were discarded
due to the possible instability of initial MRI signal and
inadaptation to the scanning environment. The remaining data
were entered into pre-processing by Data Processing & Analysis
for Brain Imaging (DPABI 2.1, http://rfmri.org/DPABI) toolbox,
including the steps of data format transformation, slice timing,
head motion correction, spatial normalization, and spatial
smoothed using a Gaussian kernel of 8× 8× 8mm3 full-width at
half-maximum. Participants with more than 1.5mm maximum
translation in x, y, or z directions and/or 1.5◦ degree of motion
rotation were removed.

To limit the impact of micro-movements artifacts, we
implemented a “head motion scrubbing regressors” procedure

as part of data preprocessing. An estimate of head motion at
each time point was calculated as frame-wise displacement (FD)
using Friston 24 head motion parameters procedure. The Friston
24 head motion parameter model was used to regress out the
headmotion effects. Images with FD>0.5mmwere removed and
replaced by a linear interpolation. Linear regression was applied
to remove other sources of possible spurious covariates, including
the global mean signal, white matter, and cerebrospinal fluid
signal. After the head-motion correction, the remaining images
were spatially normalized to Montreal Neurological Institute
(MNI) space and re-sampled at a resolution of 3 × 3 × 3 mm3.
The time series for each voxel were further linearly detrended and
temporally band-pass filtered (0.01–0.1 Hz).

Voxel-Based GCD Analysis
It is based on the idea that, given two time series of two voxels
of x and y, if knowing the past of y is useful for predicting the
future of x, then y must have a causal influence on x. The auto-
regression model of the granger causality influence between the
two time series of x and y variables were defined as follows:

yt = a0 + a1yt-1 + a2yt-2 + ...+ amyt-m + e1;

yt = a0 + a1yt-1 + a2yt-2 + ...+ amyt-m + bdxt-d

+ ...+ bfxt-f + e2;

The lagged value of d represents the earliest one in the significant
time point of the x(n) variable, and f represents the closest one.
Accordingly, the lagged value of m represents the earliest one of
the y(n) variable.

The e1 represents the estimate residual of the autoregressive
models of the time series of x(n), and the e2 represents the
estimate residual of y(n) after adding the time series of x(n).
Similarly, the definition of the variable of h1 and h2.

Generally, residual e(t) : |e1| >= |e2|;

If x has a causal influence on y, the influence is defined as:
Fx−>y = ln(|e1|/|e2|);

Similarly, the Fy−>x means y has a causal influence on x, and
is defined as: Fy→x = ln(|h1|/|h2|).

The GCD algorithm has been improved based on the granger
causality analysis algorithm. The GCD algorithm takes any one
voxel of the brain voxels to define its time series as x, and the time
series of the rest voxels are defined as y. Then, the linear direct
influence of x on y (Fx−>y) and the linear direct influence of y on
x (Fy−>x) were calculated voxel by voxel across the whole brain.

The Fx−>y value means output information flow from the
targeted voxel (x) to whole brain voxels (y), and the Fy−>x means
input information flow to the targeted voxel (x) from rest whole
brain voxels (y). For the whole brain voxels, a series of Fx−>y and
Fy−>x values are achieved, which reflects the output and input
causal effective connectivity, respectively.

The density map of output causal influence of x variable on
y variable is defined by the summation of the Fx−>y values (the
threshold was defined as p < 0.05), namely outflow connectivity.
Similar definition of the density map of input influence of y
variable on x variable (Fy−>x), namely inflow connectivity.
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Considering that the graph GCD is directed, all topological
properties are calculated on four metrics, including inflow,
outflow, total-flow (inflow + outflow) and int-flow (inflow −

outflow) connectivity.
The total-flow connectivity is defined as the combined effects

of inflow and outflow connectivity. The int-flow connectivity is
defined as the differences between the inflow connectivity and the
outflow connectivity (Fy−>x − Fx−>y), which identify nodes that
have distinctive causal effects on network dynamics. Specifically,
a node with a relatively high negative int-flow connectivity is
regarded as more causal sources (driven effect), whereas a node
with a relatively high positive int-flow connectivity is more causal
targets (target effect).

Voxel-Based Analysis for Each GCD Metric
The LIBSVM toolbox (http://www.csie.ntu.edu.tw/~cjlin/
libsvm/) was used to perform the classifications. Principal
component analysis was used for dimension reduction. Finally, a
linear SVM was used for images training and testing (Figure 1).
Each image is treated as a point in a high dimensional space
(space dimension = number of voxels in the image). In the
present study, we classified the images into two classes (here,
IEDs and non-IEDs substates) to find a potential separating
hyperplane or decision boundary. The GCD images were entered
into the classification procedure which consists of training phase
and testing phase. A leave-one-out cross-validation test was
used to evaluate the classification accuracy of the SVM classifier.
The clusters with higher than 70% classification accuracy and
contiguous voxels of more than 5 voxels were considered as
accuracies. The resulting spatial map at each voxel with higher
than 70% classification accuracy was used to find brain regions
that exhibited differences between-groups.

Classifier Performance of Combinations
With Multiple GCD Metrics
The classification accuracy of the combinations with more than
two GCDmetrics were calculated using the linear SVM classifier.
Multivariate pattern analysis (MVPA) technique was used to
extract features, as the input of pattern analysis. The classifier
is trained by providing examples of the form <x, c>, where x
represents a spatial pattern (number of voxels in the image; here
is pre-selected features of GCD images) and c represents the
class label (here, IEDs and non-IEDs substates). To identify the
set of voxels with highest discriminative power, SVM recursive
feature elimination (SVM-RFE) was applied (27). The SVM-
RFE classifier is repeatedly trained, and at each iteration, a
feature-ranking criterion is used to remove a subset of the least
informative features. Once the decision function is learned from
the training data, it can be used to classify the class of a new test
sample. The parameter (C) controls the trade-off between zero
training errors and misclassifications, which was fixed at C = 1
for all cases (default value).

The performance of the classifier was validated by the
commonly used 5-fold cross validation approach, which tested
the robustness of the classification results. Subsequently, the
class assignment of the test subjects was calculated during
the test phase. Permutation test can be used to evaluate the

probability of obtaining specificity and sensitivity values higher
than the ones obtained during the cross-validation procedure by
chance. We permuted the labels 100 times, each time randomly
assigning the two labels to each image. The whole nested cross-
validation process was repeated 5 times, and the final result
was the average accuracy of 5 repetitions of the 5-fold cross-
validation procedure. Classifier performance was evaluated using
basic receiver operating characteristic (ROC) curve. The area
under curve (AUC), sensitivity and specificity of the classifier
were quantified.

STATISTICAL ANALYSES

Comparisons of demographic factors between the two BECTS
substates were performed using two-sample t-tests. Chi-square
(χ2) test was used for categorical data. Statistical analysis was
performed using IBM SPSS 21.0 version. Data are presented as
mean ± standard deviation. All the quoted results are two-tailed
values, and p < 0.05 was considered as statistically significant.

RESULTS

Sample Characteristics
There were no significant differences between the two BECTS
substates in mean age (t = −1.743, p = 0.089), sex (χ2 = 0.095,
p = 0.758) and epilepsy duration (t = −1.388, p = 0.174). The
number of IEDs was (29.71 ± 25.31; range, 4∼92) times in the
IEDs substate (Table 1).

Voxel-Based Analysis for Each GCD Metric
The Rolandic area, caudate, dorsal attention network,
visual cortex, language networks, and cerebellum showed
discriminative effect on distinguishing the IEDs substate from
the non-IEDs substate (Figures 2A–D, Table 2). Specifically, the
discriminative effect of the Rolandic area was only found in the
GCD metric of outflow connectivity (Figure 2B).

Classification Performance
Across the reduced data sets of the evaluated GCD metrics,
the combinations with more than three GCD metrics received
good classification performances (Figures 3A–D, Table 3). The
combination with total-flow, inflow and int-flow connectivity,
and the combination with total-flow, outflow and int-flow
connectivity did not receive good classification performances
(Figures 3A,B). However, the combination with inflow,
outflow and int-flow connectivity significantly reached up
the classification accuracy and received the best classification
performance with the highest accuracy rate (90.83%) and
specificity (95%), as well as extremely high AUC value (0.928)
and sensitivity (86%) (Figure 3C). Subsequently, the GCD
metric of total-flow connectivity entered into the classification
and the sensitivity could reach up to 90% (Figure 3D), but the
AUC value, accuracy rate and specificity decreased (Table 3).
Furthermore, when the functional connectivity density as the
input of SVM, poor classification performance was found
(sensitivity, 86%; specificity, 48%; Supplementary Figure 1).
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FIGURE 1 | Schematic diagram overview of machine learning classification framework. The inner cross-validation was used to determine the optimal number of

features and the outer cross-validation was employed to estimate the classification performance.

TABLE 1 | Characteristics of BECTS.

IEDs Non-IEDs t-value p-value

Mean age, year 8.14 ± 1.88 9.19 ± 2.02 −1.743 0.089

Sex (male, female) 21 (10, 11) 21 (11, 10) 0.095# 0.758

Epilepsy duration, month 16.12 ± 16.16 24.66 ± 23.1 −1.388 0.174

Number of IEDs, time 29.71 ± 25.31 N/A N/A N/A

Data are mean ± standard deviation values; #chi-square value; N/A, Not applicable.

BECTS, benign childhood epilepsy with central-temporal spikes; IEDs, interictal

epileptiform discharges; N/A, not applicable.

Classification Capacity
Since the combination with inflow, outflow and int-flow

connectivity received the best classification performance, we
therefore calculated the classification performance of this

combination at each reduced data set to evaluate its stability.

Here, we reported fourteen reduced data sets-50, 250, 500,

750, 1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500, 4,750,

and 5,000 voxels. This combination received good and stable

classification performance when the dimension reduced data sets

were more than 750 voxels (Figure 4).
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FIGURE 2 | Resulting spatial maps of accuracy for discriminating between IEDs and non-IEDs substates for each of the four GCD metrics. These clusters were

identified by setting the threshold of accuracy higher than 70%. Resulting spatial brain areas of accuracy for discriminating between IEDs and non-IEDs substates for

Inflow (A), outflow (B), total-flow (C), and int-flow (D) connectivity.

TABLE 2 | Most important brain regions discriminating between IEDs and non-IEDs substates.

Conditions Brain regions of peak coordinates R/L BA Peak accuracy (%) MNI coordinates

X Y Z

Inflow Middle occipital gyrus R 18 78.57 32 −84 −16

Inflow Cerebellum anterior lobe R N/A 73.81 8 −52 −12

Inflow Cingulate gyrus R 23, 24 78.57 12 −28 32

Outflow Middle temporal gyrus R 21 78.57 64 −20 −8

Outflow Precuneus L 7, 19 76.19 −24 −60 32

Total-flow Caudate head L N/A 76.19 −8 4 −4

Total-flow Cingulate gyrus L 23, 24 80.95 −8 −12 36

Int-flow Cerebellum posterior lobe L N/A 78.57 −20 −40 −52

Int-flow Superior temporal gyrus R 38 80.95 24 12 −40

Int-flow Middle temporal gyrus L 21 80.95 −64 −32 −8

Int-flow Middle occipital gyrus R 19 76.19 40 −76 8

Int-flow Middle temporal gyrus L 39 78.57 −52 −68 20

Int-flow Precuneus L 7, 19 73.81 −28 −64 32

Int-flow Precentral gyrus R 6 76.19 44 0 40

Int-flow Superior parietal lobule R 7 73.81 32 −72 48

These clusters were identified by setting the threshold of accuracy higher than 70%. IEDs, interictal epileptiform discharges; N/A, not applicable R, right; L, left; BA, Brodmann’s area;

MNI, Montreal Neurological Institute.
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FIGURE 3 | Classification results of GCD maps using selection of the optimal feature dimensions of the SVM-RFE method. GCD, granger causality density; SVM,

support vector machine; RFE, recursive feature elimination. The classification accuracy of the combination with total-flow, inflow and int-flow connectivity (A), the

combination with total-flow, outflow and int-flow connectivity (B), the combination with inflow, outflow and int-flow connectivity (C), and the combination with

total-flow, inflow, outflow and int-flow connectivity (D).

DISCUSSION

BECTS is often associated with clinical syndrome-related specific

functional brain impairment (19–24, 28), these impairments

not only occur during IEDs substate (29–33), but also non-
IEDs substate (33). However, whether the IEDs and non-

IEDs substates share the same mechanisms of brain functional

impairment remains exploration. The IEDs cannot always be

identified by clinical EEG recordings. Thus, the BECTS substate
classification has important clinical significance, which may have

the potential to early predict IEDs, and assist clinicians for
clinical administration. Ji et al. found that both BECTS substates
showed consistently abnormal global topology in their functional
networks (i.e., decreased global efficiency) relative to that of
control subjects, but no differences between the two substates
(34). Our study is the first to apply the GCD-SVM model to find
a promising model for BECTS substate classification. Our data
indicated that the GCD-SVM model achieved extremely high
classification performances. Accordingly, although functional
connectivity density has been used to characterize abnormal
functional connectivity changes in both BECTS substates (35),

in the present study, poor performance was observed when the
functional connectivity density as the input of the SVM classifier.
These findings may suggest that the GCD-SVM model may be
served as a sensitive neuroimaging biomarker for BECTS substate
classification. In general, the more useful voxel information
was entered into the classification procedure, the better the
classification performance was. This may explain that: (a) the
combinations with more than three GCD metrics could reach
up the classification performances relative to single GCD metric;
and (b) the classification performance was increased as more
numbers of input voxel features (≥750 voxels) were entered
into the classification procedure. Specially, some features are
uninformative, irrelevant or redundant for classification (36, 37),
which may decrease the classification performance. This may
explain why the classification performance of the combination
with four GCD metrics was decreased relative to the best
classification combination. Taken together, our data support
our hypothesis.

Machine learning and pattern recognition techniques are
being increasingly used in functional MRI data analysis. These
methods allow detecting subtle, non-strictly localized effects that
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may remain invisible to the conventional analysis with univariate
statistics (38, 39). In contrast to the conventional analysis, the
machine learning technique takes the full spatial pattern of brain
activity into account, measures many locations simultaneously,
and exploits the inherent multivariate nature of functional MRI
data. The use of machine learning algorithm has been applied to
discriminate between the newborns with seizures secondary to
hypoxic ischemic encephalopathy and those newborns without
seizures (40). Furthermore, non-invasive EEG has been used

TABLE 3 | Classification performances using combinations of GCD metrics.

Classification

indicator

AUC Accuracy Sensitivity Specificity

value (%) (%) (%)

Total-flow + inflow 0.703 66.39 62 76

Total-flow + outflow 0.634 66.47 74.67 56

Total-flow + int-flow 0.74 73.61 67 81

Inflow + outflow 0.815 78.61 76 81

Inflow + int-flow 0.9325 75.83 67 95

Outflow+ int-flow 0.8975 83.61 76 90

Total-flow + inflow +

outflow

0.675 71.39 62 81

Total-flow + inflow +

int-flow

0.758 78.61 86 71

Total-flow + outflow+

int-flow

0.8575 81.11 76 86

Inflow + outflow +

int-flow

0.928 90.83 86 95

Total-flow + inflow +

outflow + int-flow

0.8175 86.11 90 81

GCD, granger causality density; IEDs, interictal epileptiform discharges; AUC, area

under curve.

to identify the presence of seizures in pediatric subjects (41).
It has been reported that diffusion tensor imaging based
SVM classification method has diagnostic advantage over other
T1 based classification in temporal lobe epilepsy (42), and
appears promising for distinguishing the children with active
epilepsy from those with remitted epilepsy or controls with high
sensitivity and specificity (43). Our data indicate that the GCD
analysis also can be served as a biomarker for BECTS substate
classification. In the present study, the combinations with input
and output information flow features (inflow + outflow + int-
flow connectivity) received the best classification accuracy of
90.83%, which is close to the EEG classification accuracy (44).

There is a close relationship between the hemodynamic
changes and brain neural activity. Since the hemoglobin is
an oxygen carrier, the neuronal firings may increase the
concentration level of local blood oxygen and oxyhemoglobin
(antimagnetic), and decrease the deoxygenated hemoglobin
(paramagnetic), and therefore change the blood oxygen level
dependence (BOLD) signal of regional brain area. This may
change the brain excitatory/inhibition balance. It has been
reported that the intrinsic spontaneous BOLD signal and the
task-induced functional BOLD signal are linearly superimposed
(45). This may help us understand why the proposed GCD
method (intrinsic spontaneous BOLD signal) has the potential
to reflect the IEDs-induced functional BOLD signal. Relative to
the non-IEDs substate, the IEDs-related activation may increase
the input and/or output information flow connectivity of the
epilepsy-related brain networks, and change the brain network
connectivity architecture (edge and/or directions). Consistently,
Zhu et al. found that the mapped features of the resting-state
functional MRI could distinguish the two BECTS substates (46).
These findings may support the high classification performance
of the GCD-SVM model in distinguishing the two BECTS
substates. The brain regions of the Rolandic area, caudate,

FIGURE 4 | Classification performance at each of reduced data sets. These values reported are of the weighted average of the 5 cross-validation. The reduced data

sets were selected by the relief feature selection algorithm. Here, we reported fourteen reduced data sets-50, 250, 500, 750, 1,000, 1,500, 2,000, 2,500, 3,000,

3,500, 4,000, 4,500, 4,750, and 5,000 voxels.
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dorsal attention network, visual cortex, language networks, and
cerebellum, exhibiting high discriminating value, may be the
neurobiological base of the high classification accuracy between
the two BECTS substates. These findings suggest that the
proposed GCD-SVM model may be helpful for BECTS substate
classification by exploitingmultitype andmultidimensional voxel
features with discriminating value.

CONCLUSIONS

To summarize, the proposed GCD-SVM model could be served
as a potential neuroimaging biomarker to discriminate between
the two BECTS substates, which may expand our understanding
of the neurobiological mechanism of BECTS. The performance
of the GCD-SVM model has the potential to assist clinicians
for early diagnosis, clinical administration, and monitoring the
efficacy of disease-modifying therapies. This may promote the
clinical management of BECTS.

The strengths of our study are the performance of innovative
GCD–SVMmethod and the invaluable data of the IEDs substate.
However, there are several potential limitations that should be
noted. First, varying quality of preictal data for different subjects
may obtain varying prediction performances. Therefore, small
sample size and single center data limited its generality. A larger
number of sample sizes and multiple center studies are necessary
to corroborate our findings. Second, the small number of IEDs
may limit the classification performance. The IEDs substate with
more numbers of IEDs may increase the classification accuracy.
Third, different types and the density (i.e., the IED number
for window length) of the IEDs were not addressed in the
present study. Fourth, traditionally, BOLD signal in the white
matter (WM) was regarded as noise and was regressed out in
the preprocessing step in our study. However, recent research
showed that the WM signal was also biologically meaningful. It
has structural basis and could be modulated by cognitive state
(47). In neurological disease, such as PD, it is of great significance
in clinical application (48). In this study, we regressed out the
WM signal in the preprocessing step because of unclear biological
mechanism. Fifth, the data of non-IEDs and IEDs substates were

came from different subjects. However, 8min MRI scan time
are not enough to obtain enough data to divide the data of
one subject into non-IEDs and IEDs substates. Therefore, it is
equally important to classify the non-IEDs and IEDs substates
from different subjects for MRI data. Sixth, twenty BECTS (10
IEDs, 10 non-IEDs) were not first-time visitors and had taken
medication before. In the present study, the medication effects
were not taken into account.
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