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Structural magnetic resonance imaging (MRI) studies have demonstrated that the brain

undergoes age-related neuroanatomical changes not only regionally but also on the

network level during the normal development and aging process. In recent years,

many studies have focused on estimating age using structural MRI measurements.

However, the age prediction effects on different structural networks remain unclear. In

this study, we established age prediction models based on common structural networks

using convolutional neural networks (CNN) with data from 1,454 healthy subjects aged

18–90 years. First, based on the reference map of CorticalParcellation_Yeo2011, we

obtained structural network images for each subject, including images of the following:

the frontoparietal network (FPN), the dorsal attention network (DAN), the default mode

network (DMN), the somatomotor network (SMN), the ventral attention network (VAN),

the visual network (VN), and the limbic network (LN). Then, we built a 3D CNN model

for each structural network using a large training dataset (n = 1,303) and the predicted

ages of the subjects in the test dataset (n= 151). Finally, we estimated the age prediction

performance of CNN compared with Gaussian process regression (GPR) and relevance

vector regression (RVR). The results of CNN showed that the FPN, DAN, and DMN

exhibited the optimal age prediction accuracies with mean absolute errors (MAEs) of

5.55 years, 5.77 years, and 6.07 years, respectively, and the other four networks, i.e.,

the SMN, VAN, VN, and LN, tended to have larger MAEs of more than 8 years. With

respect to GPR and RVR, the top three prediction accuracies were still from the FPN,

DAN, and DMN; moreover, CNN made more precise predictions than GPR and RVR for

these three networks. Our findings suggested that CNN has the optimal age prediction

performance, and our age prediction model can be potentially used for brain disorder

diagnosis according to age prediction differences.

Keywords: age prediction, convolutional neural networks, healthy subjects, machine learning, magnetic

resonance imaging, structural network
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INTRODUCTION

Structural magnetic resonance imaging (MRI) studies have
demonstrated that the brain undergoes profound age-related
neuroanatomical changes during the normal development and
aging process. These MRI studies have reported that the global
gray matter volume linearly decreased with age, but the regional
gray matter exhibited heterogeneous age effects (1–4). The gray
matter volume in the frontal and parietal lobes and some regions
of the temporal lobe substantially decreased with age, while
some subcortical regions, such as the caudate and hippocampus,
showed non-linear patterns (1, 3–8). More importantly, a
number of structural MRI studies have found that the brain
demonstrated age-related alterations at the network level (9–
14). For example, the default mode network (DMN) exhibited
significant differences in the gray matter volumes among healthy
young, middle aged, and older subjects (9, 14). In recent
years, many studies have focused on estimating brain age from
structural MRI measurements. Such studies could advance our
understanding of the relationship between brain morphometry
and brain-predicted age (15).

Some commonmachine learning techniques have been widely
used to build brain age prediction models in neuroscience,
such as relevance vector regression (RVR), Gaussian process
regression (GPR), and support vector regression (SVR) (16–
21). Franke et al. used RVR method to estimate brain age
based on the principal components of preprocessed gray matter
images and obtained the mean absolute error (MAE) between
the predicted and the chronological age of 5 years from healthy
adult subjects (16). They also applied RVR to predict the brain
ages of children and adolescents and estimated individual brain
maturation using the age gap between the predicted age and real
age (17). Additionally, Gaser et al. used the brain age gap estimate
(BrainAGE) approach based on RVR from healthy subjects
to more accurately identify the conversion of mild cognitive
impairment (MCI) patients to Alzheimer’s disease (AD) patients
(18). Cole et al. trained a GPRmodel based on a similarity matrix
that was formed by the vector dot-products from the normalized
and concatenated gray and white matter images of healthy
subjects aged 18–90 years and confirmed that this GPR model
can accurately predict chronological age with an MAE of 5.02
years for the training dataset and 7.08 years for the test dataset
from the Lothian birth cohort (21). Dosenbach et al. computed
functional connections based on resting-state functional MRI
(fMRI) data in typically developing participants aged from 7 to
30 years, then they used SVR to estimate the predicted ages which
were converted to a functional connectivity maturation index
(fcMI) to investigate brain functional maturity level and obtained
accurate predictions about individuals’ brain maturity across
development (22). Liem et al. extracted the connectivity matrices

and the cortical thickness, cortical surface area, and subcortical

volumes as the feature vectors for resting-state fMRI and
structural MRI, respectively, and constructed an age prediction
framework using the single-source SVR as the first level and the
multi-source random forest (RF) model as the second level of the
age prediction analysis from a larger dataset of healthy subjects
aged 19–82 years (19). Their results demonstrated that all models
had good prediction performance with MAEs between 4.29 and

7.29 years and multimodal neuroimaging data improves brain
age prediction performance (19).

In recent years, artificial neural network (ANN) with an input
layer, an output layer and a single or limited hidden layer, which
is referred to as neural network (NN), also has been used to
build brain age prediction models. Lin et al. utilized ANN with
one hidden layer to estimate age based on topological network
properties from diffusion tensor imaging (DTI) of 112 healthy
subjects aged 50.4–79.1 years and found that the predicted
age was strongly related to the chronological age (r = 0.8)
(23). Valizadeh et al. evaluated the age prediction effects on
different anatomical feature sets of healthy subjects aged 7–
96 years, such as cortical and subcortical volume, thickness,
and area, using the following six machine learning techniques:
multiple linear regression, support vector machine (SVM), ridge
regression, NN with four hidden layers, RF, and k-nearest
neighbor; they found that NN and SVM had the optimal age
prediction accuracies among these six technologies (20). Though
conventional machining learning methods including the shallow
ANN performed well in age prediction, the feature extraction
process is typically required in such machine learning. Feature
extraction methods rely on manual designs based on prior
professional knowledge, and thus have certain subjectivity and
relatively poor generalization ability. Thus, the quality of the
manually extracted features determines the performance of the
whole prediction model to a large extent.

With the advancement of big data and improvements
in computing infrastructure, more researchers switched
their attention to deep learning models (24). Compared to
conventional machining learning methods, deep learning
methods can automatically learn abstract and complex
features from brain imaging data using progressive non-
linear transformations and have already been widely and
successfully used in neuroimaging studies (25–29). Most of
these deep learning-based studies investigated the neuroimaging
correlations with brain disorders and explored aging and the
prognostic or diagnostic biomarkers for healthy aging and brain
disease diagnosis (25, 27, 28). The deepNN is the primary form of
the present deep learning method in which convolutional neural
network (CNN) is a representative deep network architecture.
For example, Cole et al. utilized CNN to predict brain age from
a large dataset of healthy subjects aged 18–90 years, and found
that CNN had excellent age prediction performance with MAEs
ranging from 4.16 and 4.65 years for normalized gray matter
images using the diffeomorphic anatomical registration using
exponential lie algebra (DARTEL) algorithm and raw structural
MRI data with rigid registration and resampling to common
voxel size and dimensions, respectively (25). Moreover, they
suggested that the brain-predicted age represents an accurate,
highly reliable and genetically influenced phenotype and can be
potentially used as a brain aging biomarker (25).

Based on the structural covariance of graymattermorphology,
researchers have found that different structural networks
demonstrated age-related changes; however, the effects of brain
age prediction on different structural networks remain unclear.
In this study, we used the 3D CNN to establish brain age
prediction models. First, we extracted 7 typical structural
networks from structural MRI of 1,454 healthy individuals aged
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TABLE 1 | Information about the participants from the five datasets.

Cohort Number of

subjects

Sex

(male/female)

Age range

(years)

Age mean (SD)

ABIDE 172 152/20 18–56 26.04 (7.09)

BNU 198 76/122 18–26 21.16 (1.83)

ICBM 246 119/127 19–80 36.92 (14.08)

IXI 559 250/309 20–86 48.57 (16.49)

OASIS 279 116/163 18–90 44.95 (23.11)

Total 1454 713/741 18–90 39.51 (18.77)

18–90 years. Then, we separately trained and assessed the CNN-
based brain age prediction model for each structural network.
Last, we evaluated the performance of the CNN compared to
GPR and RVR methods, respectively.

MATERIALS AND METHODS

Subjects
All participants were from five publicly accessible databases:
Autism Brain Imaging Data Exchange (ABIDE, https://fcon_
1000.projects.nitrc.org/), Beijing Normal University (BNU,
https://fcon_1000.projects.nitrc.org/), International Consortium
for Brain Mapping (ICBM, https://www.loni.usc.edu/ICBM/),
Information eXtraction from Images (IXI, https://brain-
development.org/), and the Open Access Series of Imaging
Studies (OASIS, https://www.oasis-brains.org/). These projects
were approved by the local ethics committees. The whole data
set used in this study consisted of 1,454 healthy individuals aged
between 18 and 90 years (male/female: 713/741). The detailed
information of all subjects is shown in Table 1. All subjects were
free from major neurodegenerative or psychiatric diseases. All
structural MRI data were acquired at either a 1.5 T or 3 T scanner
using standard T1-weighted sequences. Written and informed
consent was obtained for each participant at each local scanning
site. The total subjects were randomly split into a training set (n
= 1,303) and a test set (n = 151). The subjects’ ages and genders
were matched between these two data sets (p < 0.05).

Data Preprocessing
All structural MRI data were preprocessed using the VBM8
toolbox (https://www.neuro.uni-jena.de/vbm8/) in the Statistical
Parametric Mapping toolbox (SPM8, https://www.fil.ion.ucl.ac.
uk/spm/) in MATLAB R2012b. The MRI images were segmented
into gray matter, white matter, and cerebrospinal fluid with
bias correction (30). Then, the gray matter maps were spatially
normalized into the Montreal Neurosciences Institute (MNI)
space using the DARTEL algorithm with final image matrix
dimensions of 121× 145× 121 (31). The normalized gray matter
images were multiplied by the Jacobian determinants with non-
linear only modulation to preserve the absolute tissue volumes
corrected for individual brain size. Finally, the modulated gray
matter images were smoothed by an 8mm full-width half-
maximum Gaussian filter kernel. These smoothed gray matter
images were prepared for the following analysis.

In this study, we chose the reference organization maps of
the cerebral cortex from CorticalParcellation_Yeo2011 (https://
surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_
Yeo2011) (32) as the structural network templates. Yeo et al.
applied a clustering approach to identify the parcellations of
the functionally coupled regions in the human cerebral cortex
according to the intrinsic functional connectivity from the
fMRI of healthy adults. They divided the cerebral cortex into
7 networks in the MNI152 space: the frontoparietal network
(FPN), the dorsal attention network (DAN), the DMN, the
somatomotor network (SMN), the ventral attention network
(VAN), the visual network (VN) and the limbic network (LN).
They provided two kinds of parcellations: network liberal and
tight masks. The cortical ribbon of the network liberal mask is
defined in a more liberal fashion than that of the network tight
mask, thus the network liberal mask covers more cerebral cortex
regions than the tight mask does characterized by Yeo (32). As
we consider aging impact on the brain will be broader and more
brain regions will be with better prediction, we determined to use
the seven network liberal masks. The overlapping regions of each
subject’s gray matter image and each network parcellation mask
were defined as each corresponding structural network map.

Correlation Analyses of Gray Matter
To explore the relationship between the gray matter of
each structural network and age, we calculated the Pearson’s
correlation coefficient (r) between chronological ages and gray
matter volumes of the structural network for each network.
The total gray matter volume v was calculated by summing all
the voxels within each structural network as the network’s gray
matter volume for each individual.

For each network, the v value was normalized to v∗ using a
min-max normalization method, calculated using the formula
v∗ =

v−min
max−min , where min and max represent the minimum

and maximum of gray matter volume of the corresponding
network, respectively.

Convolutional Neural Network Models
Our 3D CNN architecture was developed from VGG-13. Here,
we replaced the 2D convolutional layer and 2D pooling layer in
VGG-13 with a 3D convolutional layer and 3D pooling layer and
added a batch normalization layer before the pooling layer (33).
The inputs of each of our CNN models are all training samples’
parcellation maps of each structural network. The output of
the CNN model is the predicted brain age of each subject. The
architecture of the CNN model includes five repeated stacks of a
3× 3× 3 convolutional layer (with a stride of 1 and padding of 1),
followed by a rectified linear unit (ReLU) activation function, a 3
× 3× 3 convolutional layer (with a stride of 1 and padding of 1),
a 3D batch-normalization layer, a ReLU, a 2× 2× 2 max-pooling
layer (with a stride of 2), and finally, three fully connected layers
at the end. The number of channel maps in the convolutional
layer of the first stack was set to eight and doubled after each
max-pooling layer. The structure of CNN is shown in Figure 1.

We set the mini-batch size to 16, the learning rate to
0.01 with a constant decay of 0.1 after 10 epochs, the weight
decay to 0.0005, the momentum to 0.9, and the number
of epoch to 200. The convolutional kernel parameters of
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FIGURE 1 | The architecture of the 3D convolutional neural networks (CNN). The black box represents the input structural network image and the blue boxes represent

feature maps. The blue arrows indicate 3D CNN operations, the purple arrows indicate fully connected operations, the CNN model finally outputs the predicted age.

the CNN model are initialized using the He initialization
method (34). Then, we optimized the parameters of the
model using the mini-batch gradient descent with momentum
and back propagation with the MAE function as the loss
function during the training process. All codes were written
in Torch7 using the Lua language and run on a GeForce
GTX1080 Ti /PCIe/SSE2 GPU. We separately trained the
CNN-based brain age prediction model for each structural
network using the training set and predicted brain age of the
subjects in the test set. Finally, we calculated r, goodness of
fit (R2), MAE and root mean squared error (RMSE) between
the chronological age and predicted age in the test dataset
to evaluate the prediction performance of different brain
structural networks.

Gaussian Process Regression and
Relevance Vector Regression
We estimated the brain age prediction performance of the CNN
compared to the GPR and RVR methods, respectively. GPR is
a non-parametric model that uses the prior of the Gaussian
process in the regression analysis (35). Relevance vector machine
(RVM), as the Bayesian alternative to SVM, can obtain sparse
solutions based on the Bayesian model (36). RVM can get a
probabilistic output and has a better generalization ability than
SVM. When applying RVM to solve regression problems, we call
the method RVR.

Both the GPR and RVR models were separately implemented
for each structural network in the Pattern Recognition for
Neuroimaging Toolbox (ProNTo V2.0, www.mlnl.cs.ucl.ac.uk/
pronto) in MATLAB R2012b. We transformed each brain
network image into a vector and obtained a subject (1454 healthy
individuals)× voxel (the number of voxels in the brain network)
feature matrix. Then, we applied a linear kernel function to the
feature matrix and obtained a 1,454 × 1,454 similarity matrix.
Finally, we separately built the GPR and RVR models using the
chronological age as the dependent variable and the similarity
matrix as the independent variable.

RESULTS

Relationship Between Gray Matter Volume
and Age
The r values between the gray matter volume of each brain
network and the real age were −0.78, −0.70, −0.74, −0.75,
−0.75,−0.60, and−0.57 (p< 0.05), respectively. The r values for
the FPN,DAN,DMN, SMN, andVANweremore than or equal to
seven, which means that there was a strong correlation between
these five networks with age (Figure 2). In contrast to these
five networks, the VN and LN had relatively weak correlations
with age.

Age Prediction Accuracy Using
Convolutional Neural Networks
Table 2 shows the brain age prediction results of the seven brain
structural networks using CNN. The table presents the r, R2,
MAE and RMSE values between the chronological age and the
predicted age in the test dataset. The MAEs of the CNN model
for the seven structural networks were 5.55, 5.77, 6.07, 8.26, 9.31,
10.08, and 10.31, respectively. Among these networks, the FPN,
DAN and DMN had better brain age prediction accuracy with
rs of 0.87, 0.86, and 0.86, respectively, while the VN and LN
performed worse with rs of 0.61 (Figures 3, 4). The R2s of the
FPN, DAN and DMN were 0.76, 0.75, and 0.73, respectively,
but the R2s of the VN and LN were 0.37 and 0.40, respectively.
Moreover, the RMSEs of the FPN, DAN, and DMN were 8.37,
8.59, and 8.79, respectively, while the VN and LN obtained higher
RMSEs of 14.21 and 13.96, respectively.

Age Prediction Accuracy Using Gaussian
Process Regression and Relevance Vector
Regression
Table 3 presents the r, R2, MAE and RMSE values using GPR for
the seven brain structural networks in the test dataset. The MAEs
were 7.47, 7.86, 7.84, 8.24, 7.92, 8.13, and 8.35, respectively. With
respect to the r values for the seven networks, the r values ranged
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FIGURE 2 | Correlation relationship between the gray matter volume and the chronological age for each structural network (ps < 0.05).

TABLE 2 | Brain age prediction accuracy using CNN in the test dataset.

Network FPN DAN DMN SMN VAN VN LN

r 0.87 0.86 0.86 0.75 0.71 0.61 0.61

R2 0.76 0.75 0.73 0.56 0.50 0.37 0.40

MAE (years) 5.55 5.77 6.07 8.26 9.31 10.08 10.31

RMSE 8.37 8.59 8.79 11.36 12.66 14.21 13.96

r, Pearson’s correlation coefficient; MAE, mean absolute error; RMSE, the root mean

squared error; FPN, Frontoparietal network; DAN, Dorsal Attention network; DMN, Default

mode network; SMN, Somatomotor network; VAN, Ventral Attention network; VN, Visual

network; and LN, Limbic network.

from 0.80 to 0.84. The three networks, the FPN, DAN, and DMN,
performed excellent among the seven networks (Table 3).

TheMAEs of the RVRmodel for the seven structural networks
reached 7.76, 8.04, 8.35, 8.51, 8.43, 8.57, and 8.88, respectively
(Table 4). Furthermore, the r values were from 0.77 to 0.83, and
the RMSEs were from 9.75 to 11.14.

Comparing CNN with GPR and RVR, Figure 5 depicted the
age prediction accuracy MAEs for these three methods using a
bar chart.

DISCUSSION

In this study, we built brain age prediction models based on
seven brain structural networks using CNN and examined its
prediction performance in comparison with GPR and RVR.
The results showed that the seven structural networks exhibited
similar prediction accuracy trends for the three methods of CNN,
GPR, and RVR. The brain age prediction of the FPN, DAN, and
DMN tended to be more accurate, and the other four networks,
the SMN, VAN, VN, and LN, had the largest MAEs among the

seven networks. The MAEs also showed that CNN has more
precise prediction accuracy than that of GPR and RVR for the
FPN, DAN, and DMN.

A large number of MRI studies have identified age-related

structural covariation alterations from a between-group or
lifespan perspective (9–14, 37–39). DuPre et al. applied seed
partial least squares (PLS) to explore the life span trajectories
of the gray matter volume covariance in the FPN, DAN, VN,
SMN, VAN, and DMN from the structural MRI of healthy
subjects aged 6–94 years and found two significant age-associated
developmental trends: a stable pattern of structural covariance,
whose integrity rapidly decreases across the lifespan, and an
age-dependent pattern of structural covariance with an inverted
U-shaped or linearly decreasing trajectory, with the exception
of the VN (13). Using voxel-wise multiple regression analysis,
Li et al. extracted eight seed regions of interest (ROIs) from
gray matter volume images and investigated the age-related
trajectories of structural covariance networks in healthy subjects
aged 18–89 years (9). They found that all networks exhibited
non-linear patterns with significant between-group differences
in the language-related speech and semantic networks, the
executive control network, and the DMN; they also found that
fewer age-related changes existed in the SMN and VN for the
young and middle to older groups (9). Spreng et al. reported
that the structural covariance of the DMN declined in healthy
and pathological aging processes (38). These studies showed
that different brain networks demonstrated distinct age-related
structural covariance patterns. The networks that are associated
with high-order cognition, such as the FPN, DAN, and DMN,
showed consistent significant age-dependent changes, but the
networks that are associated with low-order cognition, such
as the SMN and VN, experienced some discrepancies across
the literatures. For example, DuPre et al. found that the SMN
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FIGURE 3 | The scatter plots and correlation coefficients (rs) between the predicted brain age and the chronological age for each structural network (ps < 0.05).

FIGURE 4 | The brain age prediction MAEs using CNN for each

structural network.

showed the age-dependent structural covariance trajectory as
mentioned above, but the VN did not (13). Additionally, our
previous study also demonstrated a significant age-related linear
decrease for the SMN (39). However, Li et al.’s study reported
little or no age-related alterations for the SMN and VN (9).
In this study, our correlation analyses demonstrated that the
gray matter volumes of all structural networks were negatively
correlated with age, which means that the gray matter volumes of
these brain networks declined with age (Figure 2). The changing
trends in the degree of correlation, from the stronger to the
weaker correlations, were basically consistent with the age-
related findings of these structural networks in the literature.

The CNN-based results showed that different structural
networks had different age prediction performances. Moreover,
the age prediction accuracies of the different networks are
basically consistent with the gray matter volume changing

patterns with age. The FPN obtained the highest prediction
accuracy among the seven structural networks with an MAE
of 5.55 years, an r of 0.87, an R2 of 0.76 and an RMSE of
8.37. The FPN, DAN, and DMN can accurately predict the
ages of healthy subjects, with the lowest MAEs of 5.55, 5.77,
and 6.07 years, respectively. As a direct comparison, Cole et al.
also used the CNN model to predict age based on structural
MRI. Both their CNN architecture and ours contained the
same repeated five blocks of convolution + ReLU, convolution
+ batch normalization + ReLU and max-pooling operations;
however, their CNN had just one fully connected layer and
ours had three fully connected layers at the end. Cole et al.
obtained very good age prediction accuracies with the highest
accuracy being MAE = 4.16 years for DARTEL normalized
gray matter images and MAE = 4.65 years for rigid registrated
structural MRI maps (25). Cole et al.’s CNN model extracted the
features from the whole gray matter or structural MRI images
while ours did it using structural networks containing some
parcellations of gray matter. Nevertheless, the age prediction
accuracies of our top three networks of the FPN, DAN and
DMN were comparable to those of Cole et al. Additionally, a
very recent study investigated brain age prediction based on

whole brain voxel-wise functional connectivity patterns using
CNN and obtained better prediction accuracy for resting-state
fMRI, which indicated that the functional connectivity measures
could be potential age prediction indices (40). The SMN andVAN
exhibited moderate age prediction accuracies with MAEs = 8.26
and 9.31, respectively; however, the VN and LN had the lowest
age prediction accuracies with MAEs = 10.08 and 10.31 years,
respectively. The worst performance of the VN and LNmay result
from the non-significant age-related patterns.

The GPR-based and RVR-based results also demonstrated
that the performance of the structural networks differed in their
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TABLE 3 | Brain age prediction accuracy using GPR.

Network FPN DAN DMN SMN VAN VN LN

r 0.84 0.81 0.82 0.80 0.81 0.80 0.80

R2 0.70 0.66 0.68 0.64 0.65 0.64 0.64

MAE (years) 7.47 7.86 7.84 8.24 7.92 8.13 8.35

RMSE 9.40 9.83 9.87 10.22 10.09 10.28 10.34

TABLE 4 | Brain age prediction accuracy using RVR.

Network FPN DAN DMN SMN VAN VN LN

r 0.83 0.81 0.81 0.78 0.78 0.78 0.77

R2 0.68 0.66 0.65 0.61 0.61 0.61 0.59

MAE (years) 7.76 8.04 8.35 8.51 8.43 8.57 8.88

RMSE 9.75 9.93 10.41 10.73 10.65 10.84 11.14

age prediction accuracy. The MAEs of the GPR-based model
are 7.47, 7.86, and 7.84 years and the MAEs of the RVR-based
model are 7.76, 8.04, and 8.35 years for the FPN, DAN, and
DMN, respectively (Tables 3, 4). However, the MAEs of both
the GPR-based model and RVR-based model are higher for the
other four networks (the SMN, VAN, VN, and LN) than they are
for these three networks. Then, GPR and RVR had consistent
prediction trends with CNN for the seven brain networks.
Compared with CNN, the top three prediction accuracies were
still from the FPN, DAN, and DMN; moreover, CNN performed
better than GPR and RVR for these three networks (Figure 5).
For a more clear comparison, Table 5 lists the age prediction
accuracies reported in literatures. Using RVR on the structural
MRI data of healthy adults, Frank et al.’s study examined
the influence of the preprocessing parameters, data reduction,
regression method and training sample size on age prediction
performance and got the lowest MAE of approximately 5 years
using the principal components of gray matter images, which
is better than the estimation accuracy of our RVR model but
close to our best CNN-based results (16). Cole et al.’s GPR
model was trained using the whole brain anatomical measures
via concatenating normalized gray and white matter images,
and obtained an MAE of 7.08 years for the independent test
data (21). Additionally, with the best prediction accuracy of
R2 = 0.84, Valizadeh et al. verified that the NN and SVM
methods performed better on the combined feature set using the
cortical thickness, volume and area than other machine learning
methods, such as multiple linear regression, ridge regression,
RF and k-nearest neighbors (20). We noted that it was hard
to directly compare others results with ours due to the various
structuralMRI anatomical measures; however, our GPR and RVR
models obtained comparable age estimation accuracy to these age
prediction studies using traditional machine learning methods.

With the super powerful parallel computing ability of
GPUs, CNN models such as VGG, GoogLeNet and ResNet
have exhibited excellent performance in predicting clinical
neurodevelopment, neurodisease classification and age (25–29,
41, 42). The typical CNN architecture mainly consists of an
input layer, a convolutional layer, a pooling layer and an output

FIGURE 5 | The brain age prediction MAEs of CNN, GPR, and RVR for each

respective structural network.

layer (43). In our study, based on VGG-13, we built the CNN
model with five repeated stacks of a convolutional layer followed
by an activation function ReLU, a convolutional layer, a batch-
normalization layer, a ReLU and a max-pooling layer. CNN can
learn characteristics from low-level common features to high-
level complex features using multiple hidden layers from imaging
data without a feature extraction process. Moreover, CNN takes
advantage of local connections, shared weight parameters, and
pooling, which reduce the network complexity and the number of
training parameters, thus making it easier to train and providing
it strong robustness and generalizability. With respect to the
input data for GPR or RVR, the brain network image of each
subject was transformed into a vector and further mapped into
a similarity matrix. This procedure may lead to losing some
important information of brain structural networks. We replaced
the 2D CNN with the 3D CNN to comprehensively utilize
the 3D brain informative regional or neighborhood correlated
relationship among the voxels within structural networks.
Compared with GPR and RVR, CNN obtained more accurate
prediction results for the FPN, DAN, andDMNwith the top three
prediction accuracies.

Though CNN performed better in age prediction, similar
to other deep learning research, it is hard to distinctly
explain the learned models due to the black box characteristics
of deep learning models. The brain network attributes and
changing patterns that are identified by CNN may be used as
biomarkers for brain aging. Additionally, the participants in
this study are from 5 publicly-available databases which used
different scanners, magnetic strength and acquisition protocols.
This inter-scanner technical variability may introduce some
uncertainty in the anatomical measure analysis for our study and
others using multi-scanner data. Our spatial pre-processing steps
included bias correction, segmentation, DARTEL normalization
and smooth, which may accounts for some MRI inhomogeneity
and noise from different scanners (25, 44). Further validation
is necessary to examine systemic biases on the predicted brain
age owing to inter-scanner technical differences when pooling
multiple center data. A further limitation of this study is
that we just considered the adult sample aged from 18 years.
There is still a lack of massive MRI data from children to
adolescents. The brain undergoes remarkable age-related brain
alterations from childhood to adolescence, and research on
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TABLE 5 | Brain age prediction results reported in literatures.

Articles Modalties Input data Methods Subjects (Age range) r MAE R2

Cole

et al. (21)

sMRI GM+WM volumes GPR 2001 NC (18–90) 0.94 5.02 0.88

Cole

et al. (25)

sMRI GM volume map

Raw MRI map

CNN 2001 NC (18–90) 0.96

0.94

4.16

4.65

0.92

0.88

Franke

et al. (17)

sMRI GM+WM volumes RVR 394 NC (5–18) 0.93 1.10 -

Franke

et al. (16)

sMRI GM volume RVM 655 NC (19–86) 0.92 5.00 -

Li

et al. (40)

rs-fMRI Functional connectivity CNN 983 NC (8–22) 0.61 2.15

Liem

et al. (19)

rs-fMRI + sMRI Functional connectivity;

Structural measures

SVR+RF 2354 NC (19–82) - 4.29 -

Lin

et al. (23)

DTI Topological network

properties

ANN 112 NC (50–79) 0.80 4.29 -

Valizadeh

et al. (20)

sMRI Anatomical feature sets SVM

NN

3144 NC (7–96) - - 0.84

0.84

sMRI, Structural Magnetic Resonance Imaging; rs-fMRI, resting-state Functional Magnetic Resonance Imaging; DTI, Diffusion Tensor Imaging; GM, Gray Matter; WM, White matter; Raw

MRI, rigid only registrated structural MRI; Structural measures: cortical thickness, cortical surface area, and subcortical volumes; Anatomical feature sets: cortical volume, thickness,

area, subcortical volume, cerebellar volume, etc; GPR, Gaussian Process Regression; CNN, Convolutional Neural Network; RVR, Relevance Vector Regression; RVM, Relevance Vector

Machine; SVR, Support Vector Regression; RF, Random Forest; ANN, Artificial Neural Network; SVM, Support Vector Machine; NN, Neural Network; NC, normal controls.

a wider age range can provide age prediction results across
the whole lifespan. Finally, gray matter alterations are known
to play a major role in the brain development and aging
process, especially the gray matter exhibits age-related network
changes. We therefore used structural MRI networks as brain
characteristics to predict age, but we only considered seven
cerebral cortex networks. The number of networks is relatively
smaller but these networks are more inclusive with regard brain
cortical regions. We will consider to explore the age prediction
effects on subcortical networks or fine-grained subnetworks in
future study. It should be noted that multimodal imaging data
can offer sufficient informative features that may improve the age
prediction accuracy. However, some of five databases we used
in this study lacked DTI or fMRI data. Research is currently
underway on building a multi-channel CNN with functional
connectivity from resting-state fMRI and structural connectivity
from DTI data.

In the current study, we trained the age prediction models
based on CNN for seven structural networks of healthy adults
and evaluated the age estimation performance of CNN compared
to GPR and RVR. Three structural networks (FPN, DAN,
and DMN) provided the optimal age prediction accuracies,
which suggested that these networks had significant age-related
changes across the lifespan. Our findings also showed that
CNN is superior to GPR and RVR for these three networks
in age prediction. Research on age prediction has shed insight
on understanding the relationship between age and the brain
morphometrics in the human developmental and aging process.
The prediction gap between the predicted age and chronological
age represents the abnormal brain changes due to some
neurodegenerative diseases. Our age prediction model based on
CNN can be potentially used for brain disorder diagnosis using
the age prediction differences.
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