
BRIEF RESEARCH REPORT
published: 09 January 2020

doi: 10.3389/fneur.2019.01364

Frontiers in Neurology | www.frontiersin.org 1 January 2020 | Volume 10 | Article 1364

Edited by:

Victor B. Fenik,

VA Greater Los Angeles Healthcare

System, United States

Reviewed by:

Sina A. Gharib,

University of Washington,

United States

Jimmy Fraigne,

University of Toronto, Canada

*Correspondence:

Nuria Farré

NFarreLopez@parcdesalutmar.cat

Specialty section:

This article was submitted to

Sleep Disorders,

a section of the journal

Frontiers in Neurology

Received: 21 October 2019

Accepted: 10 December 2019

Published: 09 January 2020

Citation:

Cabrera-Aguilera I, Benito B, Tajes M,

Farré R, Gozal D, Almendros I and

Farré N (2020) Chronic Sleep

Fragmentation Mimicking Sleep Apnea

Does Not Worsen Left-Ventricular

Function in Healthy and Heart Failure

Mice. Front. Neurol. 10:1364.

doi: 10.3389/fneur.2019.01364

Chronic Sleep Fragmentation
Mimicking Sleep Apnea Does Not
Worsen Left-Ventricular Function in
Healthy and Heart Failure Mice
Ignacio Cabrera-Aguilera 1,2, Begoña Benito 3,4,5, Marta Tajes 4, Ramon Farré 1,6,7,

David Gozal 8, Isaac Almendros 1,6,7 and Nuria Farré 4,5,9*

1Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain,
2Departament of Human Movement Sciences, Faculty of Health Sciences, School of Kinesiology, Universidad de Talca,

Talca, Chile, 3Department of Cardiology, Hospital del Mar, Barcelona, Spain, 4Heart Diseases Biomedical Research Group,

IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain, 5Department of Medicine, Universitat Autònoma de

Barcelona, Barcelona, Spain, 6CIBER de Enfermedades Respiratorias, Madrid, Spain, 7 Institut d’Investigacions Biomèdiques

August Pi i Sunyer, Barcelona, Spain, 8Department of Child Health and Child Health Research Institute, The University of

Missouri School of Medicine, Columbia, MO, United States, 9Heart Failure Unit, Department of Cardiology, Hospital del Mar,

Barcelona, Spain

Aims: Obstructive sleep apnea (OSA) has been associated with heart failure (HF).

Sleep fragmentation (SF), one of the main hallmarks of OSA, induces systemic

inflammation, oxidative stress and sympathetic activation, hence potentially participating

in OSA-induced cardiovascular consequences. However, whether SF per se is

deleterious to heart function is unknown. The aim of this study was to non-invasively

evaluate the effect of SF mimicking OSA on heart function in healthy mice and in mice

with HF.

Methods and Results: Forty C57BL/6J male mice were randomized into 4 groups:

control sleep (C), sleep fragmentation (SF), isoproterenol-induced heart failure (HF), and

mice subjected to both SF+HF. Echocardiography was performed at baseline and after

30 days to evaluate left ventricular end-diastolic (LVEDD) and end-systolic (LVESD)

diameters, left ventricular ejection fraction (LVEF) and fraction shortening (FS). The effects

of SF and HF on these parameters were assessed by two-way ANOVA. Mice with

isoproterenol-induced HF had significant increases in LVEDD and LVESD, as well as a

decreases in LVEF and FS (p= 0.013, p= 0.006, p= 0.027, and p= 0.047, respectively).

However, no significant effects emerged with SF (p = 0.480, p = 0.542, p = 0.188, and

p = 0.289, respectively).

Conclusion: Chronic SF mimicking OSA did not induce echocardiographic changes

in cardiac structure and function in both healthy and HF mice. Thus, the deleterious

cardiac consequences of OSA are likely induced by other perturbations associated

with this prevalent condition, or result from interactions with underlying comorbidities

in OSA patients.
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INTRODUCTION

Sleep apnea is the most frequent sleep breathing disorder in
patients with heart failure (HF), and is strongly associated with
worse prognosis (1). The two major physiological perturbations
experienced by patients with sleep apnea are intermittent
hypoxia and sleep fragmentation (SF), and are a consequence
of the recurrent events of nocturnal airway collapse. These two
characteristic perturbations have beenmechanistically implicated
in the mid-term and long-term adverse consequences of OSA.
However, whereas the effects of recurrent hypoxemia in the
healthy heart or in HF have been extensively studied (2, 3), there
is no specific information on the potential cardiac effects induced
by chronic SF. Given that increased sympathetic activation is
common in both HF and SF (4, 5), it is possible that SF negatively
contributes to cardiac function in the healthy heart, and more
particularly in HF.

The aim of this work was to assess whether chronic SF affects
ventricular cardiac function in a mouse model mimicking sleep
apnea. To this end, we used non-invasive cardiac echography
since this technique is immediately applicable to routine
patient assessment.

METHODS

The experimental protocol (approved by the institutional Ethical
Board) was conducted on 40 male mice (C57BL/6J; 10 weeks
old; 12 h light/dark cycle; water/food ad libitum) randomly
distributed into 4 groups (n = 10 each). In two groups the
mice were allowed to sleep normally: healthy control (C) and
heart failure (HF). In two similar groups (C+SF, HF+SF), SF
mimicking sleep apnea was imposed.

HF was conventionally induced by continuous infusion of
isoproterenol (6). Briefly, mice in HF and HF+SF groups were
anesthetized by isoflurane inhalation and an osmotic mini-pump
(Alzet, model 1004) was implanted subcutaneously in the flank.
The pump was set to deliver 30 mg/kg per day of isoproterenol
(Sigma Aldrich; in sterile 0.9% NaCl solution) for 28 days.
Buprenorphine (0.3 mg/kg, i.p.) was administered 10min before
surgery and after 24 h, and the suture was removed 7 days
after surgery. Healthy animals (C, C+SF) were subjected to the
same protocol with the only difference that no isoprotenerol was
dissolved into the 0.9% NaCl pump medium.

Two days after surgery, SF was daily applied by means
of a previously described and validated device for mice
(Lafayette Instruments, Lafayette, IN) based on intermittent
tactile stimulation (7, 8). Sleep arousals were induced by a
mechanical near silent motor with a horizontal bar sweeping
just above the cage floor from one side to the other side in the
standard mouse laboratory cage. This automatic system, with no
human intervention, minimized stress to the animal. To apply SF
mimicking sleep apnea, 2min intervals between each sweep (i.e.,
corresponding to an apnea-hypopnea index of 30 events/h) were
applied during the murine sleep period (8 a.m. to 8 p.m.) for 28
days (until day 30 from surgery).

Echocardiography (Vivid IQ and L8-18i-D Linear Array 5–
15 MHz, General Electric Healthcare, Horten, Norway) was
performed in each animal at baseline, before surgery, and
at day 30 following a standard protocol (9). The following
echographic indices were subsequently computed: left ventricular
end-diastolic (LVEDD) and end-systolic diameter (LVESD), left
ventricular ejection fraction (LVEF) and fraction shortening (FS).
All echocardiographic measurements and computations were
carried out by a single operator (NF), who was blind to the
experimental group.

Immediately after the final echography, blood was extracted
to measure circulating interleukin (IL)-6 (ELISA kit Ab100712,
Abcam), which can be considered a systemic biomarker of SF
effects (10), and animals were euthanized by exsanguination.

All data are presented as mean ± SEM. Comparison of
echocardiographic data between all groups at baseline was
performed using one-way ANOVA. Comparison of IL-6 plasma
concentrations and echocardiographic data between all groups at
day 30 was performed using two-way ANOVA followed by the
Student-Newman-Keuls comparison method. For all tests, p <

0.05 was considered statically significant.

RESULTS

First, as expected from random distribution of mice into the
four experimental groups, there were no significant differences
in the baseline values of LVEDD, LVESD, LVEF, and FS (p =

0.308, 0.756, 0.817, and 0.771, respectively). Second, effective
application of SF was confirmed by a 10-fold (p < 0.001; 2-way
ANOVA) increase in circulating IL-6 in the mice subjected to
this challenge [82.2 ± 27.0 pg/ml (C-SF) and 62.2 ± 36.3 pg/ml
(HF+SF)], as compared with control sleep mice [9.1± 6.4 pg/ml
(C) and 6.3 ± 2.8 pg/ml (HF)]. Third, isoprotenerol infusion
effectively induced HF. As expected from extensive data in the
literature (6), mice in the HF groups had significant increases in
LVEDD and LVESD as well as significant reductions in LVEF and
FS (Figure 1). Indeed, 2-way ANOVA of the 4 groups showed
that HF was significant (p = 0.013, 0.006, p = 0.027, and p =

0.047 for LVEDD, LVESD, LVEF, and FS, respectively).
The main finding however, was that SF did not significantly

worsen ventricular function (LVEDD, LVESD, LVEF, and FS),
neither in healthy mice, nor in animals with HF (Figure 1), as
indicated by 2-way ANOVA (p = 0.294, p = 0.657, 0.509, and
p = 0.625, respectively). Moreover, there were no statistically
significant interactions between factors HF and SF (p = 0.480,
p= 0.542, 0.188, and p= 0.289, respectively).

DISCUSSION

Although sleep apnea considerably increases the morbidity
and mortality of cardiovascular diseases (1), the potential
mechanisms are poorly understood. Whereas, the deleterious
role of intermittent hypoxemia has been widely investigated, the
cardiac effects of SF, the other main physiological perturbation
in sleep apnea, has not been specifically explored to date. For
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FIGURE 1 | Sleep fragmentation (SF) mimicking sleep apnea did not modify left ventricular echocardiographically-measured structure and function in control healthy

mice (C) and in heart failure (HF) mice. LVEDD, end-diastolic diameter; LVESD, end-systolic diameter; LVEF, left ventricular ejection fraction; FS, fraction shortening.

Only HF significantly changed cardiac indices in both normal sleep and in SF (**p < 0.05), with no significant differences induced by SF in healthy controls (C) and in

HF mice.

the first time, this study provides experimental data showing
that SF mimicking sleep apnea does not worsen cardiac function.
Interestingly, this lack of effect of SF was seen both in healthy
mice and in animals with HF.

We conducted the study in an isoproterenol-induced
heart failure model since the involved mechanism [increased
sympathetic activation (11)] could be synergistic with the
physiological response to SF. Indeed, sleep fragmentation is
considered a main determinant of the sympathetic activation
in sleep apnea, independently of the frequency and severity of
oxygen desaturation (4). It should be mentioned, however, that
animals in the HF model could have some sleep alterations
since it has been reported that direct infusion of isoproterenol
into the lateral hypothalamic area may result in increased
arousability (12). However, it is not possible to compare the
doses directly injected into the lateral hypothalamic area with
the ones that correspond into this area from the concentration
of the intraperitoneally injected isoproterenol in the model of
SF. Notwithstanding, to the best of our knowledge no sleep
alterations have been reported from the large number of studies
using the isoproterenol-induced heart failure model. Hence, this
question deserves further investigation, for instance by EEG-
based sleep characterization of animals subjected to this drug-
induced heart failure model. However, contrary to what would
be expected, our study showed that SFmimicking sleep apnea did
not affect cardiac function.

It is interesting to compare our results on SF with previous
data on intermittent hypoxia. Studies carried out in C57BL/6J
and HF-transgenic mice reported that 28 days of intermittent

hypoxia resulted in altered heart function, as measured by
echocardiography. Surprisingly, intermittent hypoxia was not
deleterious, and in fact resulted in improvements in cardiac
function (2, 3). In this setting, we did not find any changes
induced by SF, even though application of SF of similar duration
has been shown to be deleterious to several organs other than
the heart (7, 8, 10, 13). However, we cannot rule out that a
longer exposure to SF could be required to manifest cardiac
function alterations. The fact that physiological perturbations
characterizing sleep apnea (SF and recurrent hypoxemia) are not
deleterious to cardiac function is intriguing. Besides the need
for expanded research on this issue, the cumulative findings to
date may account for some of the contrasting results reported
by clinical studies addressing the interaction between sleep apnea
and heart diseases. Indeed, in obesity hypoventilation syndrome,
the prevalence of chronic heart failure had the strongest negative
association with the highest tertile of oxygen desaturation
index (14). More intriguingly, treatment of severe central sleep
apnea with adaptive servo-ventilation in patients with HF was
associated with an increase in all-cause and cardiovascular
mortality (15).

Our experimental study has some limitations. Our
measurements do not completely preclude an adverse effect
of SF on the heart, since it is still possible that diastolic function
could be affected. However, the few studies that have reported
changes in diastolic function and sleep abnormalities involved
acute sleep deprivation (16), and not SF. The possibility also
remains that SF could worsen HF of different etiologies, even
if no such effects were apparent in our HF model. Accordingly,
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studying how SF interacts with HF in models induced by
different challenges (e.g., pressure/volume overload or ischemic
injury) (17) is warranted. In addition, we evaluated ventricular
function by echocardiography to assess for clinically relevant
structural and functional changes. However, we cannot rule
out whether SF induces minor changes at the molecular and
cellular level in the heart. It is also worth noting that our
study was carried out in male animals exclusively. Taking
into account that some sex differences have been reported in
rodent heart failure models (18), future studies addressing the
interaction between SF and HF should be also carried out in
female mice.

In conclusion, SF did not induce echocardiographic detectable
deleterious effects in heart structure and function in a sleep apnea
model imposed on both healthy and HF mice. These findings
suggesting that the potential cardiac consequences of sleep apnea
in patients are mainly induced by other perturbations resulting
from the obstructive nocturnal events or reflect interactions with
the underlying comorbidities frequently found in patients with
sleep apnea.
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