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Objectives: The cause of Meniere’s disease (MD) is unclear but likely involves genetic

and environmental factors. The aim of this study was to investigate the genetic basis

underlying MD by screening putative candidate genes for MD.

Methods: Sixty-eight patients who met the diagnostic criteria for MD of the Barany

Society were included. We performed targeted gene sequencing using next generation

sequencing (NGS) panel composed of 45 MD-associated genes. We identified the

rare variants causing non-synonymous amino acid changes, stop codons, and

insertions/deletions in the coding regions, and excluded the common variants with minor

allele frequency >0.01 in public databases. The pathogenicity of the identified variants

was analyzed by various predictive tools and protein structural modeling.

Results: The average read depth for the targeted regions was 1446.3-fold, and 99.4% of

the targeted regions were covered by 20 or more reads, achieving the high quality of the

sequencing. After variant filtering, annotation, and interpretation, we identified a total of 15

rare heterozygous variants in 12 (17.6%) sporadic patients. Among them, four variants

were detected in familial MD genes (DTNA, FAM136A, DPT ), and the remaining 11 in

MD-associated genes (PTPN22, NFKB1, CXCL10, TLR2, MTHFR, SLC44A2, NOS3,

NOTCH2). Three patients had the variants in two or more genes. All variants were not

detected in our healthy controls (n = 100). No significant differences were observed

between patients with and without a genetic variant in terms of sex, mean age of onset,

bilaterality, the type of MD, and hearing threshold at diagnosis.

Conclusions: Our study identified rare variants of putative candidate genes in some

of MD patients. The genes were related to the formation of inner ear structures, the

immune-associated process, or systemic hemostasis derangement, suggesting the

multiple genetic predispositions in the development of MD.

Keywords: Meniere’s disease, endolymphatic hydrops, gene, whole-exome sequencing, rare variant

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2019.01424
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2019.01424&domain=pdf&date_stamp=2020-01-22
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rachelbolan@hanmail.net
https://doi.org/10.3389/fneur.2019.01424
https://www.frontiersin.org/articles/10.3389/fneur.2019.01424/full
http://loop.frontiersin.org/people/883942/overview
http://loop.frontiersin.org/people/257051/overview
http://loop.frontiersin.org/people/620990/overview
http://loop.frontiersin.org/people/882782/overview
http://loop.frontiersin.org/people/856844/overview
http://loop.frontiersin.org/people/307014/overview
http://loop.frontiersin.org/people/631541/overview


Oh et al. Genetic Variants in Meniere’s Disease

INTRODUCTION

Meniere’s disease (MD) is a clinical syndrome that consists of
episodes of spontaneous vertigo usually associated with unilateral
fluctuating sensorineural hearing loss (SNHL), tinnitus and aural
fullness (1). Almost 150 years have elapsed since ProsperMeniere
first described the clinical entity, but unfortunately, the exact
pathophysiology of this condition is yet to be fully understood.
Histopathological studies in human temporal bones have found
endolymphatic hydrops (EH) in most patients with MD, but the
origin of the EH is unknown (2).

MD is considered a multifactorial disorder associated with the
various factors including anatomical abnormalities, infections,
allergens, and autoimmune disorders. Most MD cases are
sporadic, but familial MD is observed in 8–10% of sporadic
cases, suggesting genetic susceptibility to the development of MD
(3–5). To search a candidate gene associated with MD, many
approaches including linkage analysis, case-control study or the
sequencing of selected genes have been previously used (6–10).
A variety of common single nucleotide polymorphisms (SNPs)
have been meaningfully detected in patients with MD (11–35)
(Supplementary Table 1). Most of them were the genes related
to the inflammation or regulating the ionic composition and
water transport of the inner ear. However, the effect size of
these common variants was small (odds ratio < 2). Furthermore,
a common variant could not reflect the entire heritability of
MD. Recent studies using whole-exome sequencing (WES) for
Spanish families with MD have identified probably pathogenic
rare variants in candidate genes including FAM136A, DTNA,
PRKCB, DPT, and SEMA3D (36–38). Since these genes encode
proteins that may be relevant to the formation or maintaining
of inner ear structures, the identified rare variants are expected
to account for the genetic contribution of MD, but further
replicative studies in distinct populations are needed. Thus, the
aim of this study was to explore the previously proposed MD-
associated genes using targeted NGS to investigate the genetic
basis underlying MD.

MATERIALS AND METHODS

Subjects
We recruited 68 unrelated patients with definite MD who visited
a tertiary dizziness clinic from 2015 to 2018. The diagnosis of
definite MD was made based on the criteria established by the
Classification Committee of the Barany Society (1). All patients
met the following criteria: (1) Two or more spontaneous episodes
of vertigo, each lasting 20min to 12 h, (2) Audiometrically
documented low- to medium-frequency sensorineural hearing
loss in the affected ear on at least one occasion before, during,
or after one of the episodes of vertigo, (3) Fluctuating aural
symptoms (hearing, tinnitus, or earfullness) in the affected ear,
(4) Not better accounted for by another vestibular diagnosis. A
brain MRI was performed to rule out any neurological lesions.
The patients included 38 males and 30 females with age ranging
from 28 to 89 years (mean age 60.2 ± 12.0 years). The mean
age of onset was 57.5 ± 11.3 years. Most patients (n = 63, 93%)
had a unilateral MD. Six had at least one family member with a

history of MD-like symptoms. According to the phenotype, 18
(26%) were classified as delayed MD based on a previous history
of sensorineural hearing loss (months or years) before the onset
of vertigo episodes, while the others (n= 50) showed classic MD
phenotype (39).

All experiments followed the tenets of the Declaration of
Helsinki, and informed consents were obtained after the nature
and possible consequences of this study had been explained to the
participants. This study was approved by the institutional review
boards of Pusan National University Yangsan Hospital.

Targeted Next-Generation Sequencing
Targeted genes were collected from the literature review. The
keywords “Meniere’s disease” and “gene” were used to search
the MD-associated genes in PubMed, resulting in 101 papers
when this study was initiated (August, 2017). After excluding the
genes showing no correlation withMD, we selected 45 genes used
for targeted NGS (Supplementary Table 1). The selected genes
were largely classified into two categories as follow: (1) “familial
MD gene,” the pathogenic genes for familial MD identified
by high-throughput sequencing (36–38); (2) “MD-associated
gene,” the candidate genes contributing to the development
of MD demonstrated by association study or network-based
study (11–35, 40). The MD gene panel was designed by the
Suredesign webtool (Agilent) to cover the exons and 20 bp in the
flanking regions.

Genomic DNA was extracted from the blood sample of all
patients. For the generation of standard exome capture libraries,
we used the Agilent SureSelect Target Enrichment protocol for
Illumina paired-end sequencing library (ver. B.3, June 2015)
with 1 µg input DNA. The quantification of DNA and the
DNA quality was measured by PicoGreen and Nanodrop. The
qualified genomic DNA sample was randomly fragmented by
Covaris followed by adapter ligation, purification, hybridization,
and PCR. Captured libraries were subjected to Agilent 2100
Bioanalyzer to estimate the quality and were loaded on to
the Illumina HiSeq2500 (San Diego, USA) according to the
manufacturer’s instructions. Raw image files were processed
by HCS1.4.8 for base-calling with default parameters and the
sequences of each individual were generated as 100 bp paired-
end reads. Sequence reads were aligned to the human reference
genome sequence (GRCh37.3, hg19) using the Burrows-Wheeler
Aligner (BWA, version 0.7.12). PCR duplicate reads were marked
and removed with Picard tools (version 1.92). Genome Analysis
Toolkit (GATK, version 2.3-9) was used for indel realignment
and base recalibration. Variation annotation and interpretation
analysis were performed using SnpEff (version 4.2).

Identification of Rare or Novel Variants
To identify the possible pathogenic variants, we first filtered out
synonymous and non-coding variants, and extracted the variants
causing non-synonymous amino acid changes, stop codons,
in-frame insertions/deletions in coding regions, or changes to
splice site sequences in exon/intron boundaries. Then, common
variants with a minor allele frequency (MAF) > 0.01 that
represented in dbSNP147, the Exome Aggregation Consortium
(ExAC), gnomAD, 1,000 Genomes Project, and NHLBI GO
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Exome Sequencing Project (ESP) 6500 were excluded. The
pathogenicity of the non-synonymous variants was analyzed
using Sorting Intolerant From Tolerant (SIFT), Likelihood Ratio
Test (LRT), Polyphen2, MutationTaster, Functional Analysis
Through Hidden Markov Models (FATHMM), and Combined
Annotation Dependent Depletion (CADD) phred score. The
higher CADD phred scores indicate that a variant is more
likely to have deleterious effects (41). The strength of ectopic
splicing sites created by intronic variants was evaluated by the
Human Splicing Finder program. All rare and novel variants
were annotated for previously reported disease-causing variants
using the Human Gene Mutation Database. All variants were
confirmed by Sanger DNA sequencing, and were screened in 100
normal controls.

Protein Structural Modeling
The structural modeling of missense variants of PTPN22 (PDB
accession code: 2P6X), MTHFR (PDB accession code: 6FCX),
NOTCH2 (PDB accession code: 2OO4) and CXCL10 (PDB
accession code: 1O80) were generated using I-TASSER server.
The confidence scores (C-scores) indicating significance of
threading template alignments and the convergence parameters
of modeling simulation were calculated for each predicted model
to estimate the quality of model (42). The calculated C-scores of
PTPN22,MTHFR, NOTCH2, CXCL10 were 1.61, 0.07, 0.36, 0.34,
respectively. The best model was selected based on the template
modeling score (TM-score) and the root mean square deviation
(RMSD) value indicating proper topology of the mutant model
compared to the PDB template. The optimization of predicted
models was performed by PyMOL (The PyMOL Molecular
Graphics System, Version 2.0 Schrödinger, LLC.), and each
mutant model was aligned with that of wild type to compare
three-dimensional structures.

Statistical Analyses
To investigate the association between the genetic variants and
disease manifestation, we calculated the odds ratio for each
variant using Fisher’s exact test from the allele frequency of
ExAC and gnomAD database as controls (total population and
East Asian population). P-values were corrected for multiple
testing by the total amount of variants found for each gene
following Bonferroni approach. We also compared the clinical
characteristics between patients with and without rare variants.
Continuous variables (mean age, age of onset, and hearing
threshold at diagnosis) were compared using the Mann-Whitney
test, and categorical variables (sex, bilaterality, the type of MD,
and the presence of family history) using Fisher’s exact test. A
statistical analysis was performed using SPSS software (SPSS Inc.,
Chicago, IL, USA) and a p < 0.05 was considered as significant.

RESULTS

The average read depth for the targeted regions was 1446.3-
fold, and 99.4% of the targeted regions were covered by 20
or more reads, achieving the high quality of the sequencing
(Supplementary Table 2). After variant filtering, annotation, and
interpretation, we identified a total of 15 rare heterozygous

variants (two novel and 13 rare variants) in 12 (17.6%) sporadic
patients (Table 1). Among them, four variants were detected
in familial MD gene, and the remaining 11 in MD-associated
gene. Three patients (P-29, P-60, P-66) had the variants in two
or more genes. All variants were not detected in our healthy
controls (n= 100).

Variants in Familial MD Genes
We identified one novel and three rare heterozygous variants in
three familial MD genes. Two variants were detected in DTNA.
One was a rare variant affecting splice acceptor site located in
intron 8 (P-31: c.1002-4A > G, Figure 1A). Human Splicing
Finder predicted that this variant will alter the splice site and
make new splice sites resulting in three bases longer on exon
9. Another was a nonsense variant resulting in a premature
stop codon (P-66: c.2094G > A, p.W698X, Figure 1B). It was
absent in all public database, and predicted to be deleterious by
MutationTaster and CADD scores. The other rare variants were
detected in FAM136A (P-29: c.238G> T, p.A80S, Figure 1C) and
DPT (P-13: c.16C > T, p.L6F, Figure 1D). Both were a missense
variant which a single nucleotide change results in a codon
that codes for a different amino acid. Of them, the variant in
DPT changed highly conserved amino acid and was predicted as
protein-damaging potential by three prediction tools (Polyphen2,
LRT, MutationTaster).

Variants in MD-Associated Genes
We identified one novel and 10 rare heterozygous variants in
eight MD-associated genes. Interestingly, possibly pathogenic
variants of PTPN22 were detected in three unrelated patients.
Two were truncated variants caused by premature stop codon
(P-60: c.829G > T, p.E277X, Figure 2A) or single base deletion
(P-65: c.1356delT, p.F452Lfs∗3, Figure 2B). The nonsense variant
was predicted to be deleterious by LRT, MutationTaster and
CADD score. The remaining one was a missense variant with
protein-damaging potential predicted by all prediction tools (P-
26: c.205A > G, p.S69G, Figure 2C). Protein structural modeling
predicted that p.S69G variant may disrupt the positions of
surrounding residues (p.F68, p.N87, p.K90, and p.Q267) by
steric hindrance effects, and eventually may affect the enzymatic
activity of PTPN22 (Figure 2D).

We also detected two missense variants of MTHFR in
three unrelated patients (P-5 and P-35: c.136C > T, p.R46W,
Figure 3A; P-66: c.742A > G, p.I248V, Figure 3B). They were
considered likely pathogenic by four of the prediction tools.
Protein structural modeling revealed that p.R46W variant may
cause breakage of salt bridges with surrounding residues (p.D188,
p.D191, and p.D223), resulting in destabilizing the β-strand
(β5and β6 Figure 3C). On the other hand, p.I248V variant
showed no discernible differences when the secondary structure
as well as surrounding residue orientation were analyzed.

The other five missense variants had protein-damaging
potential predicted by at least one prediction tool: SLC44A2 (P-
29: c.761G > A, p.R254H, Figure 4A), NOS3 (P-60: c.2207G
> A, p.R736Q, Figure 4B), NFKB1 (P-49: c.1799A > C,
p.E600A, Figure 4C), NOTCH2 (P-63: c.4688G > A, p.R1563H,
Figure 4E), and CXCL10 (P-29: c.85C > T, p.R29C, Figure 4F).
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TABLE 1 | Identified rare variants in putative candidate genes associated with Meniere’s disease.

Gene mRNA Protein Variant effect Patient’s ID dbSNP ExAC MAF gnomAD MAF In silico prediction CADD

phred score

SIFT Polyphen LRT Mutation taster FATHMM

Familial MD genes

DTNA c.1002-4A > G (–) Aberrant splicing P-31 rs369005625 0.00018 0.00025 (–) (–) (–) (–) (–) 21.8

DTNA c.2094G > A p.Trp698* Nonsense P-66 (–) 0 0 (–) (–) U D (–) 44

FAM136A c.238G > T p.Ala80Ser Missense P-29 rs199565792 0.00009 0.00005 T B N N (–) 18.63

DPT c.16C > T p.Leu6Phe Missense P-13 rs192608693 0.00005 0.00003 T P D D T 16.52

MD-associated genes

PTPN22 c.205A > G p.Ser69Gly Missense P-26 rs202095629 <0.00001 0 D D D D D 26.2

PTPN22 c.829G > T p.Glu277* Nonsense P-60 rs72483511 <0.00001 0.00003 (–) (–) D D (–) 37

PTPN22 c.1356delT p.Phe452Leufs*3 Deletion P-65 (–) 0 0 (–) (–) (–) (–) (–) (–)

NFKB1 c.1799A > C p.Glu600Ala Missense P-49 rs55661548 0.00031 0.00045 T B N D T 22.5

TLR2 c.1339C > T p.Arg447* Nonsense P-54 rs62323857 0.00037 0.00029 (–) (–) N D (–) 35

CXCL10 c.85C > T p.Arg29Cys Missense P-29 rs11548618 0.00611 0.00608 D D D D T 25.3

MTHFR c.136C > T p.Arg46Trp Missense P-5/P-35 rs138189536 0.00022 0.00020 T D D D D 25.3

MTHFR c.742A > G p.Ile248Val Missense P-66 (–) 0.00002 0.00003 D D N D D 22.5

SLC44A2 c.761G > A p.Arg254His Missense P-29 (–) 0.00002 0.00003 D D D D T 31

NOS3 c.2207G > A p.Arg736Gln Missense P-60 rs544887797 0.00008 0.00010 D D D D T 33

NOTCH2 c.4688G > A p.Arg1563His Missense P-63 rs76770652 0.00002 0.00002 T B U D D 22.7

MAF, minor allele frequency; MD, Meniere’s disease.

Transcript ID: DTNA, NM_001198938.1; FAM136A, NM_032822.2; DPT, NM_001937.5; PTPN22, NM_015967.7; NFKB1, NM_003998.4; TLR2, NM_003264.4; CXCL10, NM_001565.4; MTHFR, NM_005957.4; SLC44A2,

NM_020428.4; NOS3, NM_000603.5; NOTCH2, NM_024408.4.

SIFT- D (damaging), T (tolerated); Polyphen- D (probably damaging), P (possibly damaging), B (benign); LRT- D (deleterious), N (neutral), U (unknown); MutationTaster- D (disease_causing), N (polymorphism); FATHMM- D (deleterious),

T (tolerated).
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FIGURE 1 | Sequencing results of the rare variants in familial MD genes identified by targeted next-generation sequencing. The chromatograms show two rare

heterozygous variants in DTNA: (A) one is a splice site variant at the 4th nucleotide of the splice acceptor site in intron 8 (c.1002-4A > G, P-31); (B) another is a novel

nonsense variant in exon 22 causing a premature stop codon (c.2094G > A, p.W698X, P-66). The others are a heterozygous missense rare variant in exon 3 of

FAM136A causing the substitution of alanine by serine at position 80 (c.238G > T, p.A80S, P-29) (C) and in exon 1 of DPT changing the highly conserved leucine by

phenylalanine at position 6 (c.16C > T, p.L6F, P-13) (D).

Protein structural modeling predicted that the p.R1563H
variant in NOTCH2 may destabilize the Lin-12/Notch repeat
(LNR) domain by impairing a hydrogen bond network with
surrounding residues (p.D1511, p.F1513, and p.D1515), while
the p.R29C variant in CXCL10 may cause no conformational
change in overall structure. The remaining one was a nonsense
variant of TLR2 (P-54: c.1339C > T, p.R447X, Figure 4D),
which was predicted to be deleterious by MutationTaster
and CADD score.

Copy number variation (CNV) analysis using CNVkit from
targeted DNA sequencing data did not reveal any pathogenic
CNV in each patient.

Association Analysis of a Genetic Variant
When using the allele frequency of total population from
ExAC and gnomAD database, 14 of the 15 rare variants
were significantly associated with MD (unadjusted p-
value), but eight of them showed significant association
after correcting for multiple testing (Bonferroni) in both
databases (Table 2). The genes included DTNA, PTPN22,
MTHFR, SLC44A2, and NOTCH2. In particular, all
rare variants of PTPN22 and MTHFR were significantly
associated with MD even after correcting for multiple
testing. Compared to the allele frequency of East Asians, 10
variants were significantly associated with MD (unadjusted
p-value) in both databases, but no significant associations
were observed in all variants after correcting for multiple
testing (Table 2).

Phenotypes of Patients With a Genetic
Variant
The mean age of onset in patients with a novel/rare variant
was 53 ± 11.7 years, which showed a tendency of early-onset
disease rather than the patients without a genetic variant, but
this was not significantly different (vs. 58.4 ± 11.1 years, p =

0.133, Table 3). Also, no significant differences were observed
between the two groups in terms of sex, bilaterality, the type of
MD, and hearing threshold at diagnosis (Table 3). Three patients
with variants in two or more genes did not have distinct clinical
features compared to those without variants.

DISCUSSION

To the best of our knowledge, this is the first study on extensive
genetic screening with regard to putative candidate MD genes.
By using targeted NGS, we identified 15 rare heterozygous
variants in 11 candidate MD genes, which some of them had the
pathogenic potential by in silico prediction or protein structural
modeling. Our results highlight the genetic landscape of MD.

Over the last 20 years, many candidate genes have been
proposed for MD based on the so-called “common disease-
common variants” paradigm that prevailed in complex disease
genetic studies (8–10). It was thought that the common variants
may lead to genetic susceptibility to complex polygenic disease
(43). By this approach, some SNPs associated with MD have been
identified in the genes related to the inflammation or regulating
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FIGURE 2 | Sequencing results and protein structural modeling of the rare variants in PTPN22 identified by targeted next-generation sequencing. The chromatograms

show three rare heterozygous variants: (A) one is a nonsense variant in exon 11 resulting in a premature stop codon (c.829G > T, p.E277X, P-60); (B) another is

single base deletion in exon 13 that leads to frameshift and premature stop codon 3 amino acids downstream (c.1356delT, p.F452Lfs*3, P-65); (C) the other is a

missense rare variant in exon 3 causing the substitution of highly conserved serine by glycine at position 69 (c.205A > G, p.S69G, P-26). Protein structural modeling

predicts that p.S69G variant may affect the enzyme activity of PTPN22 by a disruption of hydrogen bonds network between p.S69 and p.N87 residues, and the steric

hindrance effect resulting from the rotation of p.F68, p.Q267, and p.K90 residues (D), yellow: wild type PTPN22, teal: p.S69G mutant PTPN22).

the ionic composition and water transport of the inner ear (11–
35). However, most of the SNPs had small effect size with an
odds ratio <2, and several variants were located in the non-
coding regions of the genome. In addition, none of them would
be replicated among a different ethnic group (26, 44, 45). These
suggest that a common genetic variant cannot explain the entire
heritability of MD and another investigation may be needed (46).

The MD has strong familial aggregation, and most of these
families show an autosomal dominant mode of inheritance
with incomplete penetrance (3–5). Thus, the optimal methods
identifying novel genes may be a NGS technique or a massive
parallel sequencing targeting for familial MD. Recent advances
in molecular diagnostics have made it possible to explore the
entire genome of individuals. By using WES, a Spanish group
has identified novel or rare variants in the FAM136A, DTNA,
PRKCB, DPT, and SEMA3D in several families with MD (36–38).
These proteins were expressed in the neurosensorial epithelium
of the crista ampullaris of the rat by immunohistochemistry. This
suggests that they may play a significant role in the formation
or maintaining of inner ear structures, and the identified rare
variants are expected to contribute to the development of EH
by the altered protein functions. In this study, we identified
some rare variants of FAM136A, DTNA, and DPT genes in

sporadic cases. Especially, one variant in DTNA (c.2094G >

A) had highly pathogenic potential by truncating the protein.
The DTNA encodes α-dystrobrevin (DB), a structural protein
of the dystrophin-associated protein complex (36). The absence
of α-DB resulted in abnormal brain capillary permeability,
progressively escalating brain edema in the mouse model (47).
Also, it was expressed in the vestibular system at early stages of
development inmice, suggesting a relevant role in thematuration
of the vestibular system (48). Although their pathogenicity
should be confirmed by functional study, the rare variants in
familial MD genes may have large effects on phenotype by
impairing protein function, and gene-environment interactions
may be strongest for rare alleles (49–51).

In addition, we detected some rare variants in the immune-
associated genes including PTPN22,NFKB1, TLR2, and CXCL10.
There have been growing evidences on the role of autoimmunity
and immunological mechanisms in the development of MD as
follows: (1) The increased prevalence of autoimmune disease
amongMDpatients, (2) The elevated levels of autoantibodies and
immunocomplexes in MD patients, (3) The association of MD
withHLA-types and genetic polymorphisms, and (4) The positive
response to steroid (52–54). Recent studies have found that
basal levels of proinflammatory cytokines were increased in some
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FIGURE 3 | Sequencing results and protein structural modeling of the rare variants in MTHFR identified by targeted next-generation sequencing. The chromatograms

show two rare heterozygous variants: (A) one is a missense rare variant in exon 2 causing the substitution of highly conserved arginine by tryptophan at position 46

(c.136C > T, p.R46W, P-5/P-35); (B) another is also a missense rare variant in exon 5 causing the substitution of highly conserved isoleucine by valine at position 248

(c.742A > G, p.I248V, P-66). (C) Protein structural modeling shows that p.R46W variant may cause breakage of salt bridges with side chains of p.D188, p.D223, and

p.D191 residues. This leads to destabilize the central β-sheet which is essential for reductase activity. On the other hands, p.I248V variant reveals no discernible

differences when secondary structure as well as surrounding residue orientation are analyzed (brown: wild type MTHFR, green: p.R46W/p.I248V mutant MTHFR).

patients with MD (55, 56). Gene expression study using mRNA
also demonstrated that immune-related genes such as GSTM1,
TMEM176A, and TMEM176B were highly expressed in MD
patients compared to normal controls (57). Through our study,
the PTPN22may be of particular interest to support the immune-
associated process in MD. The identified rare variants had a
pathogenic potential by truncating protein or inducing structural
instability. The PTPN22 encodes lymphoid tyrosine phosphatase
(LYP), which is a strong negative regulator of T cell activation,
and is expressed in various immunocytes including T- and B-cells
(58). It has been found to be associated with autoimmune diseases
such as rheumatoid arthritis, systemic lupus erythematosus, and
type 1 diabetes (59–61). A previous study also found significant
association between putative functional SNP (rs2476601) and
bilateral MD in the Spanish population (31). The NFKB1
encodes a transcription factor that regulates inflammation and
immune responses, and has been linked to a number of
inflammatory diseases, such as autoimmune arthritis, asthma,
and glomerulonephritis (15). Some allelic variants in NFKB1 are
known to modify the hearing outcome in patients with MD and
unilateral SNHL (15). The TLR2 is a member of the Toll-like

receptor family, which plays a fundamental role in pathogen
recognition and activation of innate immunity (40). The CXCL10
encodes interferon gamma-induced protein 10 (IP-10), a small
cytokine belonging to the CXC chemokine family (40). IP-
10 is an important mediator of the inflammatory response to
interferons, and has been reported to contribute to immune
mediated apoptosis in the ear, inducing human presbycusis (62).
All these things support the possible autoimmune etiology or
immunological mechanisms in the development of MD.

For several decades, a vascular theory has been proposed
as the mechanism of MD’s attacks (63). The classic attacks
are characterized by acute loss of vestibular response and
low-tone hearing followed by an apparent recovery over
hours. These unique characteristics may be explained by
the differential sensitivity of inner ear tissues to transient
ischemia and the excitotoxic cascade lasting several hours
by ischemia/reperfusion injury (63). Most animal models
demonstrated that both the endolymphatic hydrops and the
impaired perfusion pressure were needed to induce MD’s
attacks (64, 65). Many studies have also documented an
association between MD and presumed vascular disorders
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FIGURE 4 | Sequencing results and protein structural modeling of the rare variants in other MD-associated genes identified by targeted next-generation sequencing.

(A–D) The chromatograms show a heterozygous missense rare variant in SLC44A2 (exon 10, c.761G > A, p.R254H, P-29), NOS3 (exon 18, c.2207G > A, p.R736Q,

P-60), and NFKB1 (exon 17, c.1799A > C, p.E600A, P-49), and a nonsense variant in exon 3 of TLR2 causing premature stop codon (c.1339C > T, p.R447X, P-54).

(E) P-63 has a heterozygous missense variant in exon 26 of NOTCH2 causing the substitution of highly conserved arginine by histidine at position 1563 (c.4688G >

A, p.R1563H). In protein structural modeling, p.R1563H variant may result in loss of interaction with p.D1511 and p.F1513 residues, and form new hydrogen bond

network with main chain of p.K1514 residue and side chain of p.D1515 (green dash line). These impaired interactions make p.D1515 residue to lose ability to interact

with a calcium ion, and eventually destabilize the Lin-12/Notch repeat domain required for regulating the NOTCH2 receptor (orange: wild type NOTCH2, purple:

p.R1563H mutant NOTCH2). (F) P-29 had a heterozygous missense rare variant in exon 2 of CXCL10 causing the substitution of highly conserved arginine by cystein

at position 85 (c.85C > T, p.R29C). However, there is no conformational change in overall structure because the R29 residue is located at the N-terminal end and not

involved in interaction with neighboring residues (teal: wild type CXCL10, orange: p.R29C mutant CXCL10).

Frontiers in Neurology | www.frontiersin.org 8 January 2020 | Volume 10 | Article 1424

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


O
h
e
t
a
l.

G
e
n
e
tic

V
a
ria

n
ts

in
M
e
n
ie
re
’s
D
ise

a
se

TABLE 2 | Genetic association analysis results for rare variants.

Gene Variant Frequency

of variant

in this study

ExAC gnomAD

Odd ratio,

totala
p-value Adjusted

p-valueb

Odd ratio, East

asiana

p-value Adjusted

p-valueb

Odd ratio, totala p-value Adjusted

p-valueb

Odd ratio, East

asiana

p–value Adjusted

p–valueb

DTNA c.1002-4A > G 1/68 119.24

(1.5–42.4)

0.0129 0.1930 8.50 (0.6–18.9) 0.1654 1.0000 87.04 (1.3–36.5) 0.0174 0.2610 6.94 (0.4–12.2) 0.1977 1.0000

DTNA c.2094G > A 1/68 5396.11

(1.7–1034.5)

0.0006 0.0084 384.64

(0.5–328.5)

0.0077 0.1155 5345.89

(1.7–1030.3)

0.0006 0.0090 442.78

(0.6–349.3)

0.0067 0.1005

FAM136A c.238G > T 1/68 233.12

(1.9–59.5)

0.0067 0.1010 16.69 (0.6–18.9) 0.0897 1.0000 373.78 (2.2–78.6) 0.0043 0.0645 30.90 (0.7–26.6) 0.0511 0.7665

DPT c.16C > T 1/68 376.81

(2.2–78.8)

0.0043 0.0646 26.88 (0.7–25.1) 0.0584 0.8760 692.25

(2.5–117.7)

0.0024 0.0360 57.22 (0.8–39.9) 0.0296 0.4440

PTPN22 c.205A > G 1/68 1707.67

(2.6–246.7)

0.0012 0.0177 125.83 (0.9–79.5) 0.0158 0.2370 5345.89

(1.7–1030.3)

0.0005 0.0075 442.78

(0.6–349.3)

0.0067 0.1005

PTPN22 c.829G > T 1/68 1791.13

(2.7–251.9)

0.0011 0.0169 127.99 (0.8–80.1) 0.0155 0.2325 684.10

(2.5–117.1)

0.0025 0.0375 80.36 (0.9–51.6) 0.0222 0.3330

PTPN22 c.1356delT 1/68 5396.11

(1.7–1034.5)

0.0006 0.0084 384.64

(0.5–328.5)

0.0077 0.1155 5345.89

(1.7–1030.3)

0.0006 0.0090 442.78

(0.6–349.3)

0.0067 0.1005

NFKB1 c.1799A > C 1/68 70.06

(1.2–32.9)

0.0216 0.3241 5.11 (0.4–10.1) 0.2577 1.0000 49.02 (1.1–27.9) 0.0306 0.4590 4.19 (0.4–9.6) 0.0141 0.2115

TLR2 c.1339C > T 1/68 59.18

(1.1–30.5)

0.0255 0.3821 54.92 (0.8–39.2) 0.0308 0.4620 75.26 (1.3–34.0) 0.0201 0.3015 49.18 (0.8–35.0) 0.0334 0.5010

CXCL10 c.85C > T 1/68 3.59 (0.3–8.8) 0.3427 1.0000 126.87 (0.8–79.8) 0.0156 0.2340 3.63 (0.3–8.8) 0.3396 1.0000 141.36 (0.9–83.6) 0.0141 0.2115

MTHFR c.136C > T 2/68 163.70

(2.5–34.2)

0.0001 0.0019 13.79 (0.8–11.8) 0.0160 0.0019 184.44 (2.6–36.2) 0.0001 0.0015 19.17 (0.9–13.8) 0.0087 0.1305

MTHFR c.742A > G 1/68 770.26

(2.6-123.3)

0.0022 0.0336 54.88 (0.8-39.1) 0.0308 0.2400 593.97 (2.5-103.2) 0.0028 0.0420 49.17 (0.8–35.0) 0.0334 0.5010

SLC44A2 c.761G > A 1/68 1079.20

(2.7–159.4)

0.0017 0.0252 76.91 (0.9–50.6) 0.0232 0.3480 694.64

(2.5–117.8)

0.0025 0.0300 80.40 (0.9–51.6) 0.0222 0.3330

NOS3 c.2207G > A 1/68 218.55

(1.8–58.4)

0.0072 0.1082 218.55 (1.8–58.4) 0.0072 0.1080 210.69 (1.8–56.5) 0.0074 0.1110 17.50 (0.6–19.2) 0.0855 1.0000

NOTCH2 c.4688G > A 1/68 1078.80

(2.7–159.4)

0.0017 0.0252 384.47

(0.5–328.5)

0.0078 0.1170 972.38

(2.6–152.3)

0.0018 0.0270 402.07

(0.5–334.9)

0.0074 0.1110

a Odd ratios were calculated in the 95% confidence interval.
b p-value adjusted for multiple testing by the total amount of variants found for each gene following Bonferroni approach.

The bold values denote statistical significance at the p < 0.05 level.
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TABLE 3 | Phenotypic differences between patients with and without a genetic

variant.

Genetic variant

(+), n = 12

Genetic variant

(–), n = 56

p-value

Sex, female, n (%) 7 (58) 31 (55) 0.851

Age of onset, mean ± SD 53 ± 11.7 58.4 ± 11.1 0.133

Bilaterality, n (%) 0 (0) 5 (9) 0.576

Classic MD, n (%) 10 (83) 40 (71) 0.490

Hearing threshold at

diagnosis (dB)a
49 ± 31.1 49.6 ± 24.3 0.941

a Hearing threshold was defined as four pure tone average 0.5, 1, 2, and 3 kHz according

to the AAO-HNS criteria.

including migraine, sickle cell disease, Behcet’s disease, and
branch retinal artery occlusion (66–71). Among the identified
genes in this study, several genes including MTHFR, NOS3,
SLC44A2, and NOTCH2 are associated with prothrombotic
risk factors and various vascular disorders (72–75). The
MTHFR encodes methylenetetrahydrofolate reductase which
catalyzes the conversion of 5,10-methylenetetrahydrofolate
to 5-methyltetrahydrofolate, a co-substrate for homocystein
remethylation to methionine (29). Specific polymorphisms
in MTHFR (rs1801131, rs1801133) have been proposed as
predisposing inherited vascular risk factors in the development
of MD and sudden SNHL (29, 76, 77). The NOS3 encodes
a nitric oxide synthase 3, which is responsible for the
generation of nitric oxide (NO), a vasodilator in the vascular
endothelium (13). NOS3 is also located in the inner and
outer hair cells, and a polymorphism of NOS3 (rs1799983)
was significantly associated with the risk of sudden SNHL
and MD (13). The SLC44A2 encodes a choline transporter-
like protein 2 (CTL2) which plays a role in choline transport
or uptake with CTL1 (32). Two polymorphisms in SLC44A2
(rs2288904, rs9797861) were linked to venous thrombosis,
coronary artery disease, and stroke, and rs2288904 was associated
with severity of MD (32). Furthermore, in vivo binding of anti-
SLC44A2 antibody induced hearing loss in mice and guinea
pigs (78, 79). Thus, their genetic deficiency may cause the
increased permeability of vascular endothelial cells, oxidative
stress response, and increased vascular resistance, resulting
in thrombosis and disturbance of micro-circulation in the
inner ear (32).

Although the diagnostic criteria established by the
Classification Committee of the Barany Society may improve
the accuracy in clinical diagnosis of MD, the phenotypic
heterogeneity is observed and some patients may have co-
morbid conditions with MD, such as migraine or autoimmune
disorders (39). Recent study suggests that an enrichment of
rare variants in hearing loss genes such as GJB2, SLC26A,
or USH1G may contribute to explain these phenotypic
heterogeneities (80). Our patients in this study also showed
a broad phenotypic spectrum regarding the onset age, clinical
subgroups, and hearing threshold at diagnosis, and some
had an accumulation of rare variants in two or more MD
genes. Although we confined our gene panel to putative

candidate genes associated with MD, our results also suggest
the additive effect of several rare variants in the variable
expressivity of MD phenotype. Alternatively, the burden
of copy number variation can help understand phenotypic
heterogeneity (81). Further studies may be needed to confirm
these theories.

This study has potential limitations. Despite the extensive
genetic screening using NGS, more than 80% of our patients
did not have any likely pathogenic variant in putative candidate
MD genes. This low detection rate may be due to a high
proportion of sporadic cases in our study. Or, the unknown genes
or additional factors including epigenetic and environmental
modification are likely to contribute to the development of MD
(46). We also did not perform functional study determining
pathogenicity of our variants. Indeed, several variants in our
study were predicted to be benign by in silico prediction
tools, or affect only some isoforms of a gene. Despite the
rarity and putative pathogenicity of the variants, establishing
the pathogenicity may be difficult without a functional study,
especially in sporadic cases. With regard to variants of familial
MD gene, we could not determine if they were de novo
mutations because of parental death. Finally, our panel did not
include the GSTM1 or histamine H4 receptor genes, which have
recently been suggested as a possible candidate gene of MD
(57, 82). All of these should be considered when interpreting
our results.

In conclusion, we identified rare variants of putative candidate
genes in some of MD patients. The identified genes were related
to the formation of inner ear structures, the immune-associated
process, or systemic hemostasis derangement, suggesting the
multiple genetic predispositions in the development ofMD. Since
there are still manyMD patients without genetic variants, further
assessments for the candidate genes will be needed.
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