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Objective: To evaluate various machine learning algorithms in predicting peripheral

vestibular dysfunction using the dataset of the center of pressure (COP) sway during

foam posturography measured from patients with dizziness.

Study Design: Retrospective study.

Setting: Tertiary referral center.

Patients: Seventy-five patients with vestibular dysfunction and 163 healthy controls

were retrospectively recruited. The dataset included the velocity, the envelopment area,

the power spectrum of the COP for three frequency ranges and the presence of

peripheral vestibular dysfunction evaluated by caloric testing in 75 patients with vestibular

dysfunction and 163 healthy controls.

Main Outcome Measures: Various forms of machine learning algorithms including

the Gradient Boosting Decision Tree, Bagging Classifier, and Logistic Regression were

trained. Validation and comparison were performed using the area under the curve (AUC)

of the receiver operating characteristic curve (ROC) and the recall of each algorithm using

K-fold cross-validation.

Results: The AUC (0.90 ± 0.06) and the recall (0.84 ± 0.07) of the Gradient Boosting

Decision Tree were the highest among the algorithms tested, and both of them were

significantly higher than those of the logistic regression (AUC: 0.85 ± 0.08, recall: 0.78

± 0.07). The recall of the Bagging Classifier (0.82 ± 0.07) was also significantly higher

than that of logistic regression.

Conclusion: Machine learning algorithms can be successfully used to predict vestibular

dysfunction as identified using caloric testing with the dataset of the COP sway during

posturography. The multiple algorithms should be evaluated in each clinical dataset since

specific algorithm does not always fit to any dataset. Optimization of the hyperparameters

in each algorithm are necessary to obtain the highest accuracy.

Keywords: posturography tests, machine learning (artificial intelligence), vestibular dysfunction, Gradient

Boosting Decision Tree (GBDT), hyperparameter
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INTRODUCTION

The postural control system in humans is maintained by
muscular actions governed by the central nervous system,
which integrates information from vestibular, visual, and
somatosensory inputs. Posturography is a clinical technique used
to measure the movement of the center of foot pressure (COP)
during sway in order to analyze postural control performance
in detail (1). In this posturography system, various parameters
of the COP have been used to investigate vestibular disorders,
central nervous system disorders and orthopedic disorders (2–4).
These parameters include the velocity, path length, envelopment
area, movements in the medial-lateral and/or anterior-posterior
direction, amplitude of displacement, power frequency, and
Romberg’s ratio, which is the ratio of parameters in eyes-closed
to eyes-open conditions. To statistically analyze these parameters
obtained from the COP measurements, a generalized linear
model has often been utilized (3).

Recently, machine learning, which is a set of computational
methods that learn patterns in data without being explicitly
programmed, has been utilized in the field of medicine (5).
Machine learning algorithms can be roughly divided into two
algorithms: a method for predicting an answer for a new case
based on a dataset whose correct answer is known, and a method
for classifying a dataset into multiple groups. In clinical research,
the former method has frequently been adopted, and many
studies have been undertaken to try to predict diseases from
medical images based on an algorithm learned from a dataset
corresponding multiple images with diseases (6, 7). Among
various algorithms of machine learning, a convolutional neural
network has been widely used as a suitable method for predicting
the disease from the image, although the type of effectivemachine
learning algorithms may differ depending on the nature of the
dataset and the number of datasets to be studied.

Among the machine learning algorithms, an artificial neural
network has been applied to process the parameters obtained
from posturography to assess fall risk and to diagnose various
balance disorders (8–10). However, the efficacy of the many other
machine learning algorithms have not been evaluated in detail
with regard to posturography parameters.

The current study aimed to evaluate multiple machine
learning algorithms and traditional statistical algorithms to
predict the presence of peripheral vestibular dysfunction from
posturography parameters. We evaluated various machine
learning algorithms in predicting vestibular dysfunction using
a dataset of the center of pressure (COP) sway during foam
posturography obtained from patients with dizziness.

SUBJECTS AND METHODS

Patients were recruited between January 2017 and November
2018 at the Balance Disorder Clinic, Department of
Otolaryngology, The University of Tokyo Hospital. The study
was approved by the regional ethical standards committee in the
Faculty of Medicine at the University of Tokyo. The study was
conducted according to the tenets of the Declaration of Helsinki,
and informed consent was obtained from each participant.

Patients were scheduled to undergo caloric testing before
posturography. Both tests were performed on the same day. The
posturography test has been taken 1 h or over after the caloric test
to prevent the effect of dizziness. Caloric testing was performed
in a darkened room by irrigating the external auditory canal with
2mL ice water (4◦C) for 20 s followed by aspiration of water. This
method of caloric stimulation is easier to perform than bithermal
irrigation with water at 30 and 44◦C, and has been shown to
have a high sensitivity and specificity for detecting canal paresis
(CP) based on Jongkees’ formula (11). Caloric nystagmus was
recorded using an electronystagmograph. An abnormal caloric
response was defined by either of the following criteria: (1) CP
percentage >20% (12); or (2) maximum slow phase eye velocity
<10◦/s bilaterally (13). A total of 99 consecutive patients showed
abnormal caloric responses. We excluded 14 patients who had
non-vestibular diseases that could cause postural instability:
brainstem hemangioma (n = 2), migraine (n = 2), psychogenic
disorder (n = 2), meningitis (n = 1), multiple neuropathy (n
= 1), neurosarcoidosis (n = 1), orthostatic disturbance (n = 1)
and disturbance of deep sensation (n = 1). Thus, 85 patients
(41 men, 44 women) were enrolled in this study. The mean age
(±standard deviation), the mean height, and the mean weight
of the 85 patients were 52.6 (±15.4) years, 161.7 (±7.7) cm and
59.7 (±15.3) kg, respectively.

Of the 85 patients, 50 patients were diagnosed as having
unilateral peripheral vestibulopathy, with etiologies of Meniere’s
disease (n= 13), acoustic tumor (n= 12), vestibular neuritis (n=
8), benign paroxysmal positional vertigo (n = 6), Ramsay-Hunt
syndrome (n= 3), cholesteatoma (n= 2), delayed endolymphatic
hydrops (n = 2), sudden deafness with vestibular dysfunction (n
= 2), otosclerosis (n = 1), and temporal bone fracture (n = 1).
The other 31 patients with unilateral peripheral vestibulopathy
could not be diagnosed as having an established clinical entity.
Four patients showed bilateral abnormal caloric responses, with
an etiology of idiopathic bilateral vestibulopathy (n = 2) or
another etiology (n = 2). The CP percentage ranged from 20 to
100, and the average (±standard deviation) was 54.0 (±27.5).

We enrolled 163 healthy control subjects (84 men, 79 women)
in the present study. Subjects in the control group have no
symptoms of dizziness, no dizziness in the past, and no problem
with walking. The mean age (±standard deviation), the mean
height, and the mean weight of the 163 healthy control subjects
were 48.7 (±22.5) years, 160.6 (±11.9) cm, and 59.4 (±11.7)
kg, respectively.

We used a Gravicorder G-5500 (Anima Co. Ltd., Tokyo,
Japan) with/without a foam rubber layer on the posture
platform (Nagashima Medical Instruments, Tokyo, Japan). The
posture platform contains vertical force transducers to determine
instantaneous fluctuations in the COP at a sampling frequency of
20Hz. The sway path of the COP was obtained from these data.
The foam rubber material was made of natural rubber, with a
tensile strength of 2.1 Kgf/cm2, an elongation stretch percentage
of 110%, a density of 0.06 g/cm3, and a thickness of 3.5 cm.
Two-legged stance tasks were performed with both arms at the
subject’s side under four conditions: eyes open or eyes closed,
with or without the foam rubber. The distal ends of the big toes
were positioned 45 degrees apart with the heels of both feet close
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to each other. The recording time was 60 s or until the subject
required assistance to prevent falling. In the eyes-open condition,
the subjects were asked to watch a small red circle 2m away
from where they were standing in a quiet, well-lit room. We
measured the mean velocity of movement of the COP for 60 s,
which was termed “the velocity,” and the envelopment area traced
by themovement of the COP, which was termed “the area.” These
parameters can indirectly reflect the function of the peripheral
and central vestibular system due to the reduction of visual and
somatosensory inputs.

We estimated the power spectrum of the acceleration signal
for the anterior-posterior (AP) and the medial-lateral (ML)
axes by using the maximum entropy method (MEM), which is
superior to a fast Fourier transform for analyzing relatively short
samples. Frequency resolution was set at 0.001Hz, and the lag
value was set at 120. The area under the curve (AUC) of the
power spectral density (PSD) of the COP were calculated for
each axis across three frequency ranges: between 0.02 and 0.1Hz
(low-frequency range, LF-AUC), between 0.1 and 1Hz (middle-
frequency range, MF-AUC) and between 1 and 10Hz (high-
frequency range, HF-AUC). The sum of these individual AUCs
was also calculated (total AUC) (14).

The dataset included the presence of peripheral vestibular
dysfunction (VD) evaluated with the method above, the subject’s
age and the posturography parameters, which were the velocity,
the area, the MF-AUC of the AP and ML axes and the total AUC
of the AP and ML axes.

Training and analysis were completed using Python 3.5
with scipy 0.18 and scikit-learn 0.18, and R version 3.4.4
(15). The applied supervised machine learning algorithms were
ensemblemethods (adaptive boosting classifier, bagging classifier,
extra trees classifier, gradient boosting classifier, random forest
classifier), support vector classification (SVC) [c-support vector
classification (SVC), nu-support vector classification (Nu SVC)],
decision trees (decision tree classifier, extra tree classifier), multi-
layer perceptron classifier (MLPClassifier, neural network, deep
learning) and generalized linear models [logistic regression,
stochastic gradient descent (SGD) classifier]. The dataset was
separated into the training dataset and the validation dataset
with the split ratio of 80 and 20%. Then each machine learning
algorithm was trained with the training dataset, and vestibular
dysfunction in the validation dataset was predicted using trained
algorithms from the validation dataset. The recall and the AUC of

ROC were calculated (Figure 1). The validation and comparison
of the algorithms were performed using K-fold cross-validation
with the Wilcoxon signed-rank test, and p < 0.05 was considered
to be significant (16, 17).

RESULTS

All of the healthy control subjects were able to complete
posturography tests. The 10 patients were unable to stand for
60 s in eyes closed/foam rubber condition and to complete the
exam. Eight of them were patients with unilateral peripheral
vestibulopathy, and the other two were patients with bilateral
peripheral vestibulopathy. We analyzed the data obtained from
the remaining 75 patients. The basic physical parameters and
posturography results of 75 patients with peripheral vestibular
dysfunction and 163 healthy controls are shown in Table 1 and
Figure 2. There were no significant differences in age, height, or
body weight between the patients and the healthy controls (p >

0.05, respectively). On the other hand, the velocity and the area in
the eyes-closed condition on the foam rubber were significantly
greater in patients compared to controls (p < 0.0001).

TABLE 1 | The basic physical parameters and posturography results.

Parameters Average ± standard deviation Significant

difference
Healthy

subjects

Patients

with CP

Age 48.7 ± 22.5 52.6 ± 15.4 p > 0.05

Height 160.6 ± 11.9 cm 161.7 ± 7.7 cm p > 0.05

Body weight 59.4 ± 11.7 k 59.7 ± 15.3 k p > 0.05

MF-AUC of AP axis with

eyes closed and with rubber

0.6 ± 0.3 cm2 1.5 ± 1.0 cm2 p < 0.0001

MF-AUC of LR axis with

eyes closed and with rubber

0.5 ± 0.3 cm2 1.2 ± 0.9 cm2 p < 0.0001

Total AUC of AP axis with

eyes closed and with rubber

1.0 ± 0.6 cm2 1.9 ± 1.2 cm2 p < 0.0001

Total AUC of LR with eyes

closed and with rubber

0.7 ± 0.5 cm2 1.6 ± 1.1 cm2 p < 0.0001

Velocity with eyes closed

and with rubber

3.7 ± 1.8 cm/s 5.6 ± 2.1 cm/s p < 0.0001

Area with eyes closed and

with rubber

13.6 ± 7.8 cm2 28.9 ± 20.7 cm2 p < 0.0001

FIGURE 1 | Overview of the machine learning analysis from posturography data.
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First, we fed the age and the posturography data into
the various machine-learning algorithms, and compared the
AUC and the recall regarding the presence of peripheral
vestibular dysfunction (Figure 3). Among the algorithms tested,
the gradient boosting classifier showed the highest AUC (0.89 ±
0.05) as well as the highest recall (0.82 ± 0.06). Both the AUC
and the recall were significantly higher in the gradient boosting
classifier than those of the logistic regression (AUC: 0.85 ± 0.06;
recall: 0.78 ± 0.06). The AUC and the recall of the SVC (AUC:
0.81; recall: 0.73) and MLPClassifier (AUC: 0.76; recall: 0.73)
were significantly lower than those of the logistic regression (p
< 0.05). The recall of the bagging classifier (0.81 ± 0.05) and
random forest classifier (0.81 ± 0.05) were also significantly
higher compared to the logistic regression (p < 0.05). The
comparisons of the AUC and the recall of all algorithms tested
are shown in Supplementary Table 1. The ROC curves of the
Gradient boosting classifier, Bagging classifier, logistic regression,
andMLPClassifier are shown in Figure 4. The ROC curves of the
all algorithms tested are shown in Supplementary Figure 2, and
the ROC curve of logistic regression using typical posturography
parameter are shown in Supplementary Figure 3. The sensitivity
as well as the specificity of the gradient boosting classifier, the
bagging classifier and the MLPClassifier were higher than those
of the logistic regression.

Then, we evaluated the learning curve of the Gradient
Boosting Classifier, which showed the best performance
(Figure 5A). The training accuracy of the gradient boosting
classifier was almost 1, and the validating accuracy tended to
improve up to 0.85 over 100 training instances. This result
indicates that higher predictability could be expected in the
gradient boosting classifier if the dataset is much larger.

In utilizing machine learning algorithms, it is important to
pay attention to the risk of overfitting. Changes in accuracy
during the optimization process must be carefully evaluated for
each hyperparameter. In ensemble learning algorithms including
the gradient boosting classifier, some models are built from
multiple decision trees (Supplementary Figure 1). We evaluated
how the accuracy changes as the size and the depth of the
decision trees were adjusted in the gradient boosting classifier.
Regarding the number of decision trees, the validating accuracy
was the highest when the number was about 50, while it tended
to decrease when the number was more than 100 (Figure 5B).
The training accuracy was 1 when the number was more than
100, and the gradient boosting classifier algorithm was the most
efficientmodel to predict peripheral vestibular dysfunction in this
dataset. Regarding the depth of the decision tree, the validating
accuracy was the highest at around 3, and the accuracy tended
to decline as the tree became deeper (Figure 5C). The training

FIGURE 2 | The parameter distribution of the dataset in control and patients with vestibular dysfunction (VD). (A) Histogram of age. (B) Scatter plot of age and

velocity of COP in the eyes-closed foam rubber condition. Greater VD cases at higher velocities. (C) Scatter plot of area and velocity in the eyes-closed foam rubber

condition. More VD cases where the area and velocity are large. (D) Scatter plot of middle frequency AUC in the back and forth direction and middle frequency AUC in

the left and right direction in the eyes-closed foam rubber condition. There are more VD patients in cases where each parameter is large.
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FIGURE 3 | Comparisons of classifiers in the AUC of ROC (A) and the recall (B).

accuracy was 1 when the depth was more than 5, and the gradient
boosting classifier algorithm was the most efficient model to
predict peripheral vestibular dysfunction in this dataset. In the
optimum parameter search of this dataset, the accuracy was the
highest when depth was 2 and the number of decision trees was
45. These results suggest that selecting optimal hyperparameters
is an important process in utilizing machine learning algorithms.

DISCUSSION

In the present study, we have evaluated multiple machine
learning algorithms to predict vestibular dysfunction from
datasets obtained from posturography. We have shown that

the ensemble learning algorithms such as the gradient boosting
classifier and bagging classifier can predict vestibular dysfunction
better than the generalized linear models. The prediction ability
of these ensemble learning algorithms are expected to be higher
than that of traditional statistical models.

Machine learning has recently become utilized in the field of

medicine (5, 18), including for the detection of hepatocellular
carcinoma (19), the prediction of urinary tract infections in the
emergency department (20), the prediction of hip fractures (21),
the diagnosis of diabetic retinopathy (22), and the prediction
of heart failure (23). Machine learning is also applied in the
field of neurotology where it has been evaluated for use as
a new diagnostic posturographic tool for disorders of stance,
with an overall sensitivity and specificity of about 0.9 (8).
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FIGURE 4 | The ROC curve of typical machine learning algorithms.

The vestibulo-ocular reflex rotational test has been evaluated
using machine learning for the assessment of vestibular function
and the accuracy was 93.4% (24).Machine learning is a promising
diagnostic tool for neurological disorders.

The gradient boosting classifier was the best algorithm in
our datasets. This algorithm has recently been studied in varied
medical fields (20, 21, 25, 26), and has shown highly predictive
performance. Other algorithms including SVC (24, 27–29),
decision trees (30), genetics-based algorithms (31), and themulti-
layer perceptron classifier (32) did not show the best predictive
performance in our datasets. The reason for the high predictive
score of the gradient boosting classifier is that this classifier
identifies the shortcomings of weak learners (multiple decision
trees) in the loss function (which measures the fitting of the
data to the model) to optimize the model. The neural network
algorithm which has been widely adopted in the research of
image-based diagnosis (6, 7) was not an effective method. The
reason for this was that the number of cases in our dataset was
not big enough to sufficiently train the model (33). The multiple
algorithms should be evaluated individually with each clinical
dataset because a specific algorithm does not necessarily fit any
dataset (34, 35).

The hyperparameters of the machine-learning algorithms
are set values which can greatly affect the performance
of the prediction model (34–36). Thus, optimization of
the hyperparameters is important for achieving the best
prediction results from machine learning algorithms.
Because there is no mathematical expression to calculate
the optimum hyperparameters, the calculation of the optimum
hyperparameters is simply based on the empirical method or
the exploratory method, in which various values are applied
to numerous model hyperparameters to obtain the maximum

FIGURE 5 | The learning curve of the gradient boosting classifier (A), the

validation curve of the number of trees in the gradient boosting classifier (B),

the validation curve of the depth of trees in the gradient boosting classifier (C).

prediction rate. The AUC of ROC and the recall vary depending
on the hyperparameters of the algorithm, and thus it is
important to search for the optimum hyperparameters. Each
machine learning algorithm has multiple hyperparameters that
can be adjusted to obtain better prediction performance.
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Some clinical parameters which have not been determined
to be effective for disease prediction by conventional
statistical methods may be effective for disease prediction
by bundling them with other data and processing with machine
learning algorithms.

There are some limitations in our study. First, the main
explanatory variables that were used to predict vestibular
dysfunctionmay change depending on the feature of the datasets,
and we need to prepare every parameter in each evaluation.
Second, the study was limited to the size of the datasets. The
optimum algorithm will differ depending on the numerous
aspects of the datasets. Third, not all hyperparameters were
evaluated in this study because calculation of all hyperparameters
is extremely resource consuming. Other advanced methods of
searching for the optimum hyperparameters are needed to
evaluate more types of algorithms.

In this study, the vestibular function was evaluated by caloric
test only because other reliable vestibular function tests including
video Head Impulse Test (vHIT) was not available. The database
including further vestibular functional studies will provide more
clinically useful tools for vestibular diagnosis.

CONCLUSION

The ensemble learning algorithms including the gradient
boosting classifier and bagging classifier can predict vestibular
dysfunction as identified using caloric testing from the datasets
better than traditional regression algorithms.

Because the human being is a complex biological system,
machine learning algorithms can build better classifiers than
traditional linear classifiers to predict diagnostic values from
clinical data and can be a useful tool to investigate the
information in the datasets.
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