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Purpose: Mesial temporal lobe epilepsy (MTLE) and Alzheimer’s disease (AD) are two

distinct neurological disorders associated with hippocampal atrophy. Our goal is to

analyze the morphologic patterns of hippocampal atrophy to better understand the

underlying pathological and clinical characteristics of the two conditions.

Methods: Twenty-five patients with AD and 20 healthy controls with matched age

and gender were recruited into the AD group. Twenty-three MTLE patients and 28

healthy controls with matched age and gender were recruited into the MTLE group.

All subjects were scanned on 3T-MRI scanner. Automated volumetric analysis was

applied to measure and compare the hippocampal volume of the two respective

groups. Vertex-based morphologic analysis was applied to characterize the morphologic

patterns of hippocampal atrophy within and between groups, and a correlation analysis

was performed.

Results: Volumetric analysis revealed significantly decreased hippocampal volume in

both AD and MTLE patients compared to the controls. In the patients with AD, the mean

total hippocampal volume was 32.70% smaller than that of healthy controls, without a

significant difference between the left and the right hippocampus (p < 0.05). In patients

with MTLE, a significant reduction in unilateral hippocampal volume was observed, with

a mean volume reduction of 28.38% as compared with healthy controls (p < 0.05).

Vertex-based morphologic analysis revealed a generalized shrinkage of the hippocampi

in AD patients, especially in bilateral medial and lateral regions. In MTLE group, atrophy

was seen in the ipsilateral head, ipsilateral lateral body and slightly contralateral tail of the

hippocampus (FWE-corrected, p < 0.05).

Conclusions: MTLE and AD have distinctive morphologic patterns of hippocampal

atrophy, which provide new insight into the radiology-pathology correlation in

these diseases.

Keywords: hippocampus, mesial temporal lobe epilepsy, Alzheimer’s disease, volumetric analysis, morphologic

analysis
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INTRODUCTION

Mesial temporal lobe epilepsy (MTLE) is a common type of
focal epilepsy, and affects people of all ages (1). Alzheimer’s
disease (AD) is a neurodegenerative disorder characterized
by progressive memory impairment, typically affecting people
aged ≥65 years old (2). Subclinical epileptic discharges can
cause significant cognitive impairment in MTLE patients (3).
Therefore, a large proportion of epilepsy patients also suffer
from memory dysfunction and cognitive impairment (4, 5).
With the progression of dementia, the incidence of seizure
ranges from 8 to 64% (6–8). Unilateral temporal epileptic
discharges have also been reported in AD patients (9). Brain
magnetic resonance imaging (MRI) has revealed hippocampal
atrophy in both of these disorders (10–13). However, MTLE
and AD are fundamentally two different disorders with distinct
pathological findings. The characteristic pathologic changes in
AD are the extracellular deposition of amyloid beta (Aβ) and
intracellular accumulation of tau protein (14), especially in
the hippocampi, with bilateral distribution (15, 16). Unilateral
hippocampal sclerosis (HS) caused by hippocampal neuronal
loss and gliosis is the major pathological finding of MTLE (17).
Therefore, we hypothesize that the different pathological changes
of the two diseases would contribute to different patterns of
hippocampal atrophy.

Recent structural MRI analysis techniques, such as volumetric
analysis and subfields-segmentation analysis, have been able to
quantitatively assess hippocampal atrophy (18–21). However,
neither volumetric measurements nor subfields segmentation
can fully demonstrate the specific structural and morphological
abnormalities of the hippocampus. Morphologic analysis, as a
complementary tool to the volumetric analysis and subfields
analysis, provides qualitative information about the specific
subcortical gray matter changes in neurological disorders, which
may help us to depict the detailed neuroimaging difference
between the two diseases (22–24).

In this study, we applied volumetric analysis to quantitatively
measure hippocampal atrophy, and morphologic analysis to
qualitatively identify the patterns of hippocampal atrophy in
patients with AD and MTLE. We hope to better understand the

correlation between the underlying pathological process and the
distinctive radiological finding of each disease.

MATERIALS AND METHODS

All procedures of the study were approved by the Ethics
Committee of Xuanwu Hospital. Participants were recruited
from the Department of Neurology of Xuanwu Hospital, Capital
Medical University, between September 2010 and July 2017. All
participants received appropriate information about the study
protocol and gave written informed consent for the study and
publication in accordance with the Helsinki Declaration.

MTLE Group
Twenty-three right-handed patients with unilateral MTLE were
recruited (13 males, 10 females, ages 32 ± 7.6 years). All the
patients fulfilled the diagnostic criteria for MTLE according

to the ILAE criteria (25): (a) clinical right-handed unilateral
MTLEwith typical mesial-temporal auras and ictal semiology; (b)
interictal temporal spikes and/or intermittent rhythmic activities
on electroencephalography (EEG); (c) unilateral HS on MRI
with hippocampal atrophy on T1-weighted images, increased
mesial temporal signal intensity on T2-weighted and/or fluid
attenuation and inversion recovery (FLAIR)-weighted images
(26); (d) no abnormal MRI findings other than HS; (e) no
mass lesions (malformations of cortical development, vascular
malformations, tumor); (f) no history of severe brain trauma.

Twenty-eight right-handed healthy controls with matched age
and gender (13 males, 15 females, ages 28 ± 8.8 years) were
recruited. Controls with any initial precipitating injury (IPI) or
neurological disorder comorbidity were excluded.

Demographic and clinical data include history of initial
precipitating injury (IPI) and clinical event. IPIs were defined
by significant seizure and non-seizure events before age of
5, and were necessary to generate the pattern and profile
of hippocampal sclerosis, including: febrile seizures, afebrile
seizures, encephalitis, anoxia, head trauma, birth trauma,
intracerebral bleeding (27). In our study, two of 23 patients
with MTLE had febrile seizures, two patients had a history of
afebrile seizures, one patient had anoxia during the perinatal
period, and none of the patients had other IPIs. The clinical
event showed different clinical-pathological findings of the
hippocampus, including: genetic susceptibility, age of IPI, age of
habitual seizure onset, latent period from IPI to habitual seizure,
duration of epilepsy, frequency of epilepsy. None of our patients
had family history of seizure indicating no genetic susceptibility.
Our age of IPI was 4 ± 2.9, age of habitual seizure onset was
20 ± 12.6, duration of epilepsy was 12 ± 5.2, latent period
was 16± 13.1.

AD Group
Twenty-five patients with AD were recruited (14 males, 11
females, ages 67 ± 7.5 years). Patients were included if they
had (a) Mini-Mental State Examination (MMSE) scores of 20–
26, (b) Clinical Dementia Rating (CDR) score of 1, (c) Related
Disorders Association criteria for AD, (d) Geriatric Depression
Scale score less than or equal to 6, and (e) no other significant
neurological disorder.

Twenty healthy controls with matched age and gender (12
males, 8 females, ages 64 ± 7.1 years) were recruited. Inclusion
criteria were the following: no current history of depression or
dementia, MMSE scores of 24 to 30 and a CDR score of zero.

MRI Acquisition
MRI scans were obtained using a Siemens (Erlangen, Germany)
3T trio scanner. For the identification of hippocampal atrophy,
the routine MR images were obtained by the following
parameters. Transverse conventional T1-weighted images:
repetition time (TR) = 600ms, echo time (TE) = 8.10ms,
flip angle (FA) = 8◦, field of view (FOV)= 230mm ×

180mm, matrix = 256 × 174. Transverse turbo spin echo
T2-weighted images: TR = 4,704ms, TE = 80ms, FA= 90◦,
FOV= 230mm × 180mm, matrix = 368 × 215. Coronal fluid-
attenuated inversion recovery (FLAIR) images: TR = 9,900ms,
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TE= 120ms, FA = 120◦, FOV = 230mm × 180mm, matrix =
276 × 136. All participants underwent the MRI scan with the
same parameters. The images from patients with MTLE were
visually confirmed to have HS according to the ILAE criteria, and
the images from the patients with AD were visually confirmed
to have bilateral hippocampal atrophy. All the MR images from
healthy controls did not show any structural abnormalities.

For volumetric analysis, the T1-weighted images were
acquired using a 3D magnetization prepared rapid acquisition
with gradient echo (MPRAGE) sequence. The imaging
parameters were: TR = 2,400ms, TE = 3.16ms, FA = 8◦,
FOV = 256mm × 256mm, matrix = 256 × 256, voxel size
= 1 × 1 × 1mm3. All the 3D T1-weighted MPRAGE images
underwent automated volumetric processing.

ANALYSIS PROCEDURE

Volumetric Analysis
Volumetric measurement and comparison of the hippocampus
in two groups were performed using the FreeSurfer image
analysis suite (version 5.3.0, https://surfer.nmr.mgh.harvard.
edu). The process included motion correction, removal of
non-brain tissue by applying a hybrid watershed procedure,
automated Talairach transformation, and segmentation of the
subcortical gray matter volumetric structures (28, 29).

The volumetric analysis was conducted by the FreeSurfer
as follows:

(1) Automated segmentation and normalization. The subcortical
gray matter structures underwent automated segmentation
using Bayesian inference and a probabilistic atlas of
hippocampal formation based on manual delineations
of ultra-high resolution T1-weighted images (30). The
hippocampus was defined as the region of interest (ROI),
the accuracy of ROI in each subject was visually verified,
and the data with segmentation errors were excluded before
subsequent analyses. The most fitting hippocampal model
was chosen for display (Figure 1A). Total intracranial
volume (TIV) was calculated by summing the volumes of

FIGURE 1 | Hippocampus and subcortical structure delineation by different

image segmentation tools. (A) Segmentation of hippocampus using the

FreeSurfer surface delineation (blue) and manual delineation of the

hippocampus (red) on coronal slices. (B) Automated segmentation of

subcortical structures (including hippocampus, amygdala, caudate, nucleus

accumbens, putamen, globus pallidus, and thalamus) by FSL-FIRST.

the gray matter, white matter, and cerebrospinal fluid. The
raw hippocampal volume was normalized to the TIV, and
to compensate for inter-individual variability in head size.
Normalized hippocampal values were calculated as follows:
[Raw hippocampal volume/total intracranial volume] ×

1,000 (31).
(2) Statistical analysis. To evaluate the hippocampal volumetric

differences between groups, independent sample t-
test and analysis were performed after adjusting for
covariates (age, gender, and TIV) by a general linear
model, with a priori determined significance level of
p < 0.05 considered to be statistically significant. All
data was analyzed and confirmed using the Statistical
Package for Social Science Software (Version 21; IBM,
Armonk, New York).

Morphologic Analysis
Registration
Morphologic analysis of the hippocampus was carried out by the
FSL-FIRST software (version 5.0.6, http://www.fmrib.ox.ac.uk/
fsl). FSL-FIRST is a model-based registration and segmentation
tool. The subcortical structures (viz. unilateral hippocampus)
in volumetric T1-weighted MRI images were transformed into
MNI 152 standard space to maintain the correspondence of
the vertex in the following mesh models, called the registration
in FIRST.

Standard-Flipping
In patients with MTLE, we used the standard-flipping of
FSL-FISRT to quantify the differences between the right and
the left portions of the hippocampi. The right hippocampal
transformation of right-MTLE was coregistered to the
left hippocampal transformation. The differences were
parametrically tested by a minimum mean squared error and the
final results were projected on the normal control hippocampus.
The shapes of the ipsilateral and the contralateral hippocampi
were separately compared with the normal hippocampus.

Automated Segmentation and Comparison
These subcortical structures were automatically segmented based
on mesh models and voxel intensities. The mesh is composed of
a group of triangles, and the apex of the adjoining triangles is
called a vertex. The number of vertices in each mesh matched
for the subcortical structure is fixed, so that corresponding vertex
can be compared across subjects and between groups (i.e., MTLE
group and AD group). The expected vertex correspondence is
optimized by constraining within-surface motion and smoothed
within the 3D deformable model (19). The shape of the
model is expressed as the modes of variation (principal
components), based on multivariate Gaussian assumptions
(Figure 1B). After automated segmentation by FIRST, all
subcortical-structure segmentations were manually double-
checked to confirm the accuracy of the image registration
and hippocampal segmentation. Group comparisons of vertices
(control vs. MTLE, control vs. AD) were carried out using
multivariate F-statistics. TIV, age, and gender are covariates
of no interest (32). Statistical analysis was then performed by
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FIGURE 2 | Comparisons of hippocampal volume between patients and controls. (A) The average volume of the ipsilateral hippocampus of the patients with MTLE

was 28.38% (1,050mm3 ) less than that of the healthy controls (p < 0.05). (B) The average volume of the hippocampi in patients with AD was 32.70% (817.44mm3 )

less than that of the healthy controls (p < 0.05). MTLE, mesial temporal lobe epilepsy; AD, Alzheimer’s disease.

non-parametric permutation testing with the threshold set at
cluster-level p < 0.05, corrected for multiple comparisons using
family-wise error (FWE). The regional morphological changes
of the hippocampus within the groups were explored (FWE-
corrected, p < 0.05) (19, 33, 34).

RESULTS

Volumetric Analysis
MTLE Group
Twenty-three MTLE patients and 28 healthy controls underwent
automatic volumetric analysis of the hippocampus. After
correcting for TIV, age, and gender, the unilateral hippocampal
volume of the patients with MTLE was significantly reduced.
The mean ipsilateral hippocampal volume of the patients was
2,650mm3, which was on average 28.38% smaller as compared
to the controls (the average volume of 3,700mm3) (p = 0.015)
(Figure 2A), while the mean contralateral hippocampal volume

of the patients was 3624.83mm3, similar to that of the control
group (the average volume of 3,667mm3) (p= 0.137).

AD Group
In patients with AD, significant differences in hippocampal
volume were observed between the AD patients and the
healthy controls after adjusting for TIV, age, and gender as
covariates. The bilateral mean total hippocampal volume of
patients with AD was 1682.56mm3, whereas that of the controls
was 2,500mm3, 32.70% less than that of the healthy controls
(p = 0.026) (Figure 2B). There was no significant difference
observed between the volume of the left hippocampus and the
right hippocampus (p= 0.183).

Morphologic Analysis
MTLE Group
Vertex-based morphologic analysis of the hippocampus
between the patients with MTLE and the healthy controls
showed significant ipsilateral (left) hippocampal atrophy in

the anterior region, corresponding to the anatomical head of
the hippocampus. A part of the ipsilateral lateral body of the
hippocampus also had atrophy, which could be detected in
Figures 3F,H (FWE-corrected, p < 0.05). The contralateral
(right) hippocampus showed slight deformation in the posterior
region, which is corresponded to the tail of the hippocampus
(FWE-corrected, p < 0.05) (Figures 3B,D,F,H).

AD Group
Morphologic analysis revealed generalized deformation of
bilateral hippocampi in patients with AD as compared to the
healthy controls. Almost the entire hippocampi had significant
atrophy in patients with AD, predominantly in the medial
and lateral regions (FWE-corrected, p < 0.05). Although
atrophy was also detected in the anterior and posterior of
hippocampi, most of these regions were spared. No regional
expansions were observed in comparison with the healthy
controls (Figures 3A,C,E,G).

DISCUSSION

Quantitative Atrophy of Hippocampus
The hippocampal atrophy in both MTLE and AD can be
quantitatively measured by volumetric analysis using structural
MRI techniques. We examined and measured the overall volume
of the hippocampus in patients with MTLE and AD. Both
showed the significant decreased volume of the hippocampus
compared to their respective controls. Patients with MTLE
had a 28.38% reduction of hippocampal volume unilaterally as
compared with their healthy controls (p < 0.05), consistent with
previous findings (33, 35). Patients with AD had an average
32.70% reduction of hippocampal volume bilaterally as compared
with healthy controls (p < 0.05), without significant differences
between the left and right sides. The degree of hippocampal
volume loss in patients with AD was consistent with previous
studies (34, 36–38). The hippocampal volume loss observed in
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FIGURE 3 | Morphologic views of hippocampi in patients with MTLE (B,D,F,H) and AD (A,C,E,G) from a superior, inferior, right lateral side and left lateral side. The

results were color-coded by uncorrected F-statistic values. The transition from red to blue indicates an increase from lower to higher statistical significance, with blue

(Continued)
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FIGURE 3 | indicating p < 0.05. Patients with MTLE had hippocampal atrophy predominantly in the ipsilateral head, partly in the ipsilateral lateral body and slightly in

the contralateral tail (blue). The right-sided atrophic hippocampi of patients with MTLE were flipped to the left to facilitate comparison with those of the patients with

AD. Patients with AD had generalized bilateral hippocampal atrophy, primarily in the medial and lateral regions and a small proportion of anterior and posterior regions

(blue), most of the anterior and posterior regions had no significant atrophy (green and red). MTLE, mesial temporal lobe epilepsy; AD, Alzheimer’s disease; FWE,

Family-Wise Error.

our study confirms that the degree of hippocampal atrophy in
these two diseases can be objectively and quantitatively measured
by volumetric analysis.

Distinctive Morphological Atrophy of
Hippocampus
The vertex-based morphologic analysis using fully automated
methods can provide qualitative information about the
subcortical structures. Anatomically, the hippocampus can be
divided into the head, body, and tail (22–24). On the horizontal
view of a structural MRI, the head is located in the anterior
region of the hippocampus, the body is in the medial and lateral
regions, and the tail is in the posterior region.

The MTLE with HS is a progressive pathological injury
in which clinical-pathological studies found more than one
pathogenic factors. The injury factors may include IPI, genetic
susceptibility, and more than one excitotoxic event occurring
during or after IPI. Although IPI is a surrogate marker of cerebral
injury, and some HS types are linked to specific IPI types (17),
the duration of epilepsy is associated with the secondary neuron
losses and hippocampal atrophy. Previous studies showed: higher
prevalence of febrile convulsions [9 of 20 TLE patients (39),15
of 40 TLE patients (40)], secondary generalized tonic-clonic
seizures [14 of 20 TLE patients (39)], and longer duration of
epilepsy [17 ± 11 years (39), 20.0 ± 15.5 years (40)] presented
extensive ipsilateral or contralateral hippocampal atrophy, some
with highest effect sizes in anterior divisions. Recent studies
also demonstrated that longer duration of seizures [21.3 ± 9.6
years (41), 20.8 ± 19.6 years (33), 17 ± 11 years (39)] were
associated with decreased neuron densities in all hippocampal
subfields and the time course to detect damage was very long
(over 30 years or more). While a milder clinical course, such as a
relatively shorter duration of epilepsy [14.6± 12.7 years (41)] was
associated with marked diffused areas of hippocampal atrophy,
including ipsilateral head, medioventral body, and contralateral
lateral tail. In our study, the duration of epilepsy played a
more important role in the pattern of hippocampal atrophy and
added to different clinical-pathological findings. The patients
with MTLE in our study had a shorter duration of epilepsy (12±
5.2 years), corresponding to the finding described above, showed
more diffused hippocampal atrophies: ipsilateral head atrophy,
partly ipsilateral lateral body atrophy and slightly contralateral
tail atrophy.

In the AD patients, almost the entire hippocampus
was atrophied, including the bilateral medial and lateral
regions, while most of the anterior and posterior regions of
hippocampi were spared. Cross-sectional studies showed that
the hippocampus was completely atrophied in patients with late-
stage of AD, whereas the atrophy in patients with mild cognitive

impairment (MCI) was mostly restricted to the anterior and
adjacent medial aspects of the hippocampus (42, 43). More
profound hippocampal atrophy was observed on the medial and
lateral aspects of hippocampus in patients with middle-stage
of AD as compared to those with MCI (44–46). The patients
in our group had mild-stage of AD, with CDR scores of 1,
and demonstrated significant medial and lateral atrophy of the
hippocampus. This pattern matches their clinical stage and also
corresponds with the known pathophysiology of AD. Tau protein
deposition typically started from the medial and lateral regions of
the hippocampus (47). A higher burden of tau protein deposition
indicated a higher severity of hippocampal atrophy (48). The
neurofibrillary tangles (NFT) primarily appeared in the medial
portion of the hippocampus, and then spread generally (49).
These mechanisms result in neuronal loss in the hippocampus
which may explain the progressive synaptic degeneration and
hippocampal circuit remodeling (50).

Morphologic Analysis Compared to the
Subfields Analysis
Subfields analysis, using advanced automated structural MRI
techniques, can provide useful and qualitative information
about the hippocampus. According to histopathological studies,
the hippocampus is divided into different subfields: the gyrus
dentate (GD), and the Cornu Ammonis (CA1, CA2, CA3,
and CA4), which correspond to different arrangements and
shapes of pyramidal neurons (17, 41, 51). Subfields analysis can
anatomically delineate these subfields, measure the volume of
each subfield and detect the most significant subfield atrophy.
Subfields analysis revealed that atrophy in the CA1 subfield was
more prominent in MTLE patients than in healthy controls
(41, 51). The CA1 subfield was vulnerable to IPI which led to
the pyramidal cell loss in MTLE with HS (52, 53). In patients
with AD, subfields analysis also found the evident atrophy in
CA1 subfield compared to elderly controls (36, 54, 55), and
the neuronal loss in CA1 subfield had been described as being
primarily caused by accumulation of tau protein (56).

It is important to note that the subfield analysis had
been shown to be more sensitive with the outer subfields
of the hippocampus, such as CA1 and subiculum, and less
sensitive with the inner subfields, such as CA3-4 and DG
(57). The subfield volume estimated by this method was larger
than the actual volume confirmed by manual measurement
(18). Instead, we divided the hippocampus into head, body,
and tail according to well-established anatomical landmarks,
and assessed HS subtypes indicated gradual feature changes,
particularly concerning columnar volume. In conclusion, the
morphologic analysis is more accurate to describe the external
shape of the hippocampus qualitatively (36, 41).
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LIMITATIONS

Limitations of this study include its relatively small sample sizes
and variable clinical characteristics within and among the groups.
The patients with MTLE were variable in epilepsy duration,
seizure onset age, seizure frequency, seizure intractability, and
medications (33, 35). The patients with AD had variability in
their dementia onset age, disease duration, APOE ε4 genotype
and education years (44–46). The APOE ε4 genotypes of all
the AD patients were not collected and included in our study.
Better controlling for these factors in further studies may help
to further define the correlations between these diseases and
specific patterns of hippocampal atrophy. Also, age differences
between the two groups may lead to bias in outcome. Our study
focused on MTLE with HS, and the mean seizure onset age
of these patients was 20, consistent with the epidemiological
distribution of the MTLE with HS (52). Our study recruited AD
patients with average onset age at 67. We compared the patients
with MTLE and AD with respective age-matched controls.
Furthermore, our retrospective analysis of hippocampal atrophy
was not designed to assess changes associated with disease
progression. Future longitudinal prospective studies may provide
more information about the relationship between hippocampal
atrophy and disease progression.

CONCLUSIONS

The distinct hippocampal atrophy patterns between MTLE and
AD, as assessed by volumetric analysis and morphologic analysis,
may serve as structural identifiers and provide new insight into
the correlation between radiological findings and the underlying
pathologies in each.
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