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The orphan receptor APJ and its endogenous ligand apelin, which are expressed in the

brain, are the major components of the apelin/APJ system. Growing evidence shows

that the apelin/APJ system plays a vital role in the pathophysiology of cerebral ischemic

injury. Targeting the apelin/APJ system may have protective effects on cerebral ischemic

injury. In this review, we sum up the latest research progress relating to the actions

and therapeutic potential of the apelin/APJ system in ischemic stroke. An in-depth

knowledge of the pathophysiological effects of the apelin/APJ system and the underlying

mechanisms will help to develop novel therapeutic interventions for ischemic stroke.
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INTRODUCTION

In 1993, O’Dowd discovered the orphan G protein–coupled receptor (GPCR) APJ while searching
for vasopressin receptor subtypes (1). APJ is encoded by a gene located on chromosome 11q12.
AlthoughAPJ shares 54% homology with angiotensin II receptor type-1 (AT1R) in the hydrophobic
transmembrane region, there’s no binding site for angiotensin II (1). Tatemoto et al. isolated apelin,
the cognate ligand for APJ receptor, from bovine stomach tissue extracts in 1998 (2). The apelin
gene, which is located on chromosome Xq25-26.1, encodes the preproapelin of 77 amino acids
(apelin-77). Various bioactive isoforms of apelin are derived from apelin-77, including apelin-55,
apelin-36, apelin-17, apelin-13, and apelin-12 (3, 4). Recently Chng et al. discovered apela, another
endogenous ligand for APJ, which is encoded by a gene located on chromosome 11 and is critical
in embryonic development (5, 6). However, in humans, the apela is only expressed in pluripotent
cells and kidney (7). The apelin/APJ systemmainly refers to APJ and its endogenous ligand, apelin.

Stroke, which ismainly caused by cerebral vascular occlusion and cerebral blood supply disorder,
is one of the leading causes of death and disability worldwide, and 87% of cases are ischemic stroke
(8). The cerebral infarction area is composed of the ischemic core and penumbra; apoptosis is the
main cause of neuronal damage in the penumbra region, which also provides an opportunity for the
treatment of ischemic stroke andmakes it possible to use drugs to alleviate neuronal injury since the
apoptosis is delayed and reversible (9, 10). Neuronal apoptosis in ischemic penumbra is triggered
by diffusion of toxic substances released by the dead neurons of the ischemic core in the acute stage
of ischemia, while ischemia injury is aggravated after reperfusion, namely ischemia/reperfusion
(I/R) injury, which contributes to the neuron apoptosis in the penumbra via numerous biological
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mechanisms, including excitotoxicity, oxidative and nitrative
stress, inflammatory responses, endoplasmic reticulum stress
(ERS), and so on (11–14).

The apelin/APJ system is widely expressed in the central
nervous system, especially in neurons and oligodendrocytes (15,
16). Growing evidence indicates that the apelin/APJ system is
involved in the pathophysiology of ischemic stroke (17, 18).
Targeting the apelin/APJ system may have protective effects on
cerebral ischemic injury. In this review, we mainly focus on the
latest research progress related to the biological functions and
therapeutic potential of the apelin/APJ system in ischemic stroke.

CELLULAR SIGNALING PATHWAYS OF
APELIN/APJ SYSTEM

The apelin/APJ system mediates signal transduction mainly
by coupling to G protein (Figure 1). Gαi participates in
the activation of phosphatidylinositide 3-kinase (PI3K)/protein
kinase B (PKB, also known as AKT) or contributes to
protein kinase C (PKC) activation, initiating the mitogenic
extracellular signal-regulated kinase (ERK) signaling pathway;
it can also inhibit the activation of protein kinase A (PKA) by
inhibiting adenylyl cyclase (AC) to produce cyclic adenosine
monophosphate (cAMP) (19, 20). Meanwhile, Gαq activates
phospholipase C beta (PLCβ), inducing the production of
diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3),
facilitating the activation of PKC cascade and the release of
intracellular Ca2+ respectively (19). Ca2+ release in turn activates
calmodulin, which subsequently exerts vasodilatory effects via
activating nitrous oxide synthase (NOS). Besides that, endothelial
NOS (eNOS) can be induced by AKT activation via Gαi, also
presenting a vasodilation effect of the apelin/APJ system (21).
In addition to the canonical pathways, Kang et al. found a novel
APJ signaling route in endothelial cells through Gα13, leading to
phosphorylation and cytoplasmic translocation of class II histone
deacetylases (HDACs) 4 and 5, thereby activating myocyte
enhancer factor-2 (MEF2), which induces the expression of
MEF2 target gene Kruppel-like factor 2 (KLF2) (Figure 1) (22).

Apart from the canonical G protein–dependent pathways,
stimulation of APJ by apelin leads to phosphorylation of
APJ via G protein–coupled receptor kinase (GRK) and the
subsequent recruitment of β-arrestin, causing desensitization and
internalization of APJ, which can activate G protein–independent
signaling pathways (Figure 1) (23).

All apelin isoforms share the same 12 C-terminal residues
(RPRLSHKGPMPF), which are required for bioactivity (24–28).
The smaller apelin isoforms play a unique role in activating
certain downstream signaling of APJ, which often induces APJ
to be quickly recycled back to the cell surface, while the larger
ones with higher affinity for APJ usually account for increased
intracellular retention or even degradation (20, 29).

EXPRESSION CHANGES OF APELIN/APJ
SYSTEM IN ISCHEMIC STROKE

The expression of the apelin/APJ system components in different
stages of ischemic stroke is temporally altered (18). A number

of transcription factors, including Sp1 transcription factor
(SP1), hypoxia inducible factor 1 alpha (HIF-1α), activating
transcription factor 4 (ATF4), signal transducer and activator of
transcription 3 (STAT3), and so on, are involved in regulating the
expression of the apelin/APJ system (30–34).

Oxygen and glucose deprivation are the main consequences
of ischemia, which are related to the abnormal expression of
the apelin/APJ system (32, 35). During cerebral ischemia phase,
the expression of the apelin/APJ system is upregulated, which is
induced by HIF-1α and SP1 (30–32). Growing evidence shows
that HIF-1α can bind to hypoxia response elements located in
the promoter region of apelin and APJ genes under hypoxic
conditions, which then significantly enhances the expression of
the apelin/APJ system (32, 36). Moreover, the expressions of
apelin and APJ in neurons in the early stage of ischemia are
induced by increased SP1, which is possibly mediated by HIF-1α
(30, 31, 37, 38).

However, the apelin/APJ system expression is downregulated
during the reperfusion phase. Compared with the normoxia
control group, the expression of APJ in the mouse hippocampus
is significantly reduced after 4 weeks of chronic normobaric
hypoxia treatment, which can be reversed by apelin-13 (39).
Oxidative stress, ERS, autophagy, and inflammatory responses
and the interaction between them may be related to the
downregulated expression of the apelin/APJ system (18, 40, 41).
For example, ERS, which is activated only during the reperfusion
phase rather than the ischemic phase, plays critical roles in
cerebral I/R injury (42–44). As an important regulator of ERS,
ATF4 negatively regulates the expression of the apelin gene via
the pro-apoptotic p38 mitogen-activated protein kinase (MAPK)
pathway, which indicates that ERS may promote the repression
of apelin at the reperfusion stage (34). Consistently, one recent
study showed that apelin-12 could reduce neuron apoptosis
of the ischemic penumbra in middle cerebral artery occlusion
(MCAO)–induced ischemic mice by inhibiting the C-Jun N-
terminal kinase (JNK) and P38MAPK signaling pathways (45).

To sum up, the expression of the apelin/APJ system in
ischemic stroke is altered in different phases with complex
mechanisms, indicating that targeting the apelin/APJ systemmay
provide novel therapeutic interventions for ischemic stroke.

NEUROPROTECTION OF APELIN/APJ
SIGNALING IN ISCHEMIC STROKE AND
THE UNDERLYING MECHANISMS

Recently, numerous studies show that the apelin/APJ axis
possesses neuroprotective effects by inhibiting neuronal
apoptosis and improving functional recovery through diverse
pathways in ischemic stroke (Table 1).

Blocking Excitotoxicity
Excitotoxicity occurs immediately after the onset of ischemia.
During the excitotoxic phase with energy being depleted,
membrane potential is lost, and neurons and glia depolarize,
which is followed by the activation of somatodendritic and
presynaptic voltage-dependent Ca2+ channels and the diffusion
of excitatory amino acids in the extracellular space (53, 54).
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FIGURE 1 | Overview of apelin/APJ system–mediated signaling pathways. Canonical ligand-dependent APJ signaling via Gαi and Gαq leads to the activation of

protein kinase C (PKC), phosphatidylinositide 3-kinase (PI3K), and nitrous oxide synthase (NOS) pathways and the inhibition of adenylyl cyclase (AC) (19). In endothelial

cells, ligand activates a Gα13-dependent pathway that allows the transcription of myocyte enhancer factor-2 (MEF2). Moreover, the G protein–independent pathway of

the apelin/APJ system is mediated by G protein–coupled receptor kinase (GRK) and β-arrestin. Arrowheads indicate activation, and blunted arrows indicate inhibition.

Meanwhile, the extracellular accumulation of excitatory amino
acids (especially glutamate) was further increased, since the
presynaptic reuptake of excitatory amino acids is obstructed,
leading to over-activation of two distinct ionotropic receptors,
namely the N-methyl-D-aspartate (NMDA) receptor and the α-
amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) receptor, which
facilitates an excessive Ca2+ influx into neurons and initiates
neuronal damage or death (55).

Substantial research showed that apelin could protect neurons
against excitotoxicity induced by quinolinic acid (QUIN)
and HIV-infected human macrophages through activating the
Raf/ERK1/2 and AKT pathways (56–58). Cook et al. found
that apelin/APJ signaling could prevent neuronal excitotoxic
signaling by activating pro-survival pathways, including IP3,
PKC, mitogen-activated protein kinase kinase 1/2 (MEK1/2), and
ERK1/2, and concurrently by inhibiting NMDA receptor activity
via regulating NMDA-induced ionic currents as well as Ca2+

accumulation, calpain activation, and NMDA receptor subunit
NR2B phosphorylation at S1480 in cerebrocortical neurons (59).
Similarly, studies from Zeng et al. indicated that NMDA-induced
excitotoxicity in cortical neurons could be attenuated by apelin-
13 (60). All of this evidence suggests that NMDA receptor can be
used as a therapeutic target for ischemic stroke.

Suppressing Oxidative and Nitrative
Stresses
If the production of free radicals, mainly referring to reactive
oxygen/nitrogen species (ROS/RNS), exceeds the intrinsic
scavenging capacity of the antioxidative system, oxidative and
nitrative stresses will occur, which play deleterious roles in
cerebral ischemia (61–63). These stresses are part of the

downstream consequences of neuronal excitotoxicity due to
increased generation of free radicals via several oxidases, which
is influenced by Ca2+ overload (64, 65). Substantial experiments
indicate that the formation of free radicals increases in all types
of stroke (66, 67).

Considerable research has shown that the apelin/APJ system
can promote neuron survival by reducing oxidative and
nitrative stresses. Apelin-13 can reduce I/R injury–induced
oxidative stress by decreasing malondialdehyde (MDA) level
and increasing superoxide dismutase (SOD) activity, which may
be associated with the ERK1/2 signaling pathway (48). In a
recent study, apelin-13 intervention significantly reduced the
levels of ROS and MDA and increased the antioxidant proteins’
expressions at the same time [glutathione (GSH), GSH-Px,
catalase (CAT), and SOD] in a dose-dependent manner by
activating adenosine monophosphate (AMP)-activated protein
kinase (AMPK)/glycogen synthase kinase 3 β (GSK-3β)/nuclear
factor erythroid 2–related factor 2 (Nrf2) signaling (52). The
aforementioned evidence strongly suggests that the novel
protective effect of the apelin/APJ system on cell death induced
by oxidative stress may be achieved by inhibiting production of
ROS and facilitating scavenging of ROS.

Nitric oxide (NO) plays dual roles in ischemic injury: when
generated by eNOS, it exerts vasodilation and neuroprotective
effects, but when produced by neuronal NOS (nNOS)
and inducible NOS (iNOS), it is the main mediator of
oxidative/nitrosative injury (61, 62, 68). Similarly, apelin
has dual vascular effects. For example, activating the apelin/APJ
axis induces endothelium- and NO-dependent peripheral
arterial relaxation (69, 70). However, apelin/APJ signal can
inhibit NO-induced cerebral artery relaxation by blocking
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TABLE 1 | Effects of apelin/APJ signaling on ischemic stroke.

Experimental model Pathway Effect References

Mice in vivo (MCAO) ↑PI3K/AKT, ↑ERK Protection (46, 47)

Rats in vivo (MCAO) ↑ERK Protection (48)

Mice in vivo (MCAO) ↑AMPK Protection (49)

Rats in vivo

(MCAO)/OGD/R cell model

neurons

↑Gαi/Gαq-CK2,

↓eIF2-ATF4-

CHOP

Protection (14)

Rats in vivo (MCAO) ↓ERS/UPR Protection (13)

Mice in vivo

(MCAO)/neonatal H/I injury

rat model

↑PI3K/AKT Protection (50)

Mice in vivo (MCAO) ↓JNK, ↓P38MAPK Protection (45)

Rats in vivo

(MCAO)/OGD/R cell model

neurons

↑VEGF–VEGFR2,

↑ERK, ↑PI3K/AKT

Protection (51)

Rats in vivo (MCAO)/PC12

cells

↑AMPK/GSK-

3β/Nrf2

Protection (52)

MCAO, middle cerebral artery occlusion; P13K, phosphatidylinositide 3-kinase; ERK,

extracellular signal-regulated kinase; AMPK, AMP-activated protein kinase; CK2, casein

kinase 2; OGD/R, oxygen-glucose deprivation/reperfusion; ATF4, activating transcription

factor 4; CHOP, CCAAT/enhancer binding protein homologous protein; ERS, endoplasmic

reticulum stress; UPR, unfolded protein response; H/I, hypoxia/ischemia; JNK, C-Jun

N-terminal kinase; P38MAPK, p38 mitogen-activated protein kinase; VEGF, vascular

endothelial growth factor; VEGFR, VEGF receptor; GSK-3β, glycogen synthase kinase

3 β; Nrf2, nuclear factor erythroid 2–related factor 2.

calcium-activated K (BKCa) channels in male rats, which can be
mediated by a PI3K/AKT-dependent signaling pathway (71, 72).
Meanwhile, the specific effect of apelin on oxidative/nitrosative
stresses in ischemic stroke remains to be further determined.

Inhibiting Inflammatory Responses
Inflammation plays a key role in the pathophysiological process
of ischemic stroke, which may contribute to ischemic brain
injury. Soon after the ischemic onset, inflammatory cells
(e.g., microglia, astrocytes) are activated by multiple factors,
including ROS, necrotic cells, and damaged tissues, which trigger
inflammatory responses (73–76). Moreover, a number of studies
have suggested that postischemic neuroinflammation plays a
crucial role in the long-term prognosis of ischemia (77, 78).

The apelin/APJ system can inhibit inflammatory responses
after ischemic stroke via reducing the generation of inflammatory
mediators. For example, Chen et al. found that apelin-13 could
reduce the expressions of chemokines and proinflammatory
cytokines, including monocyte chemoattractant protein 1 (MCP-
1), macrophage inflammatory protein 1α (MIP-1α), tumor
necrosis factor α (TNF-α), and interleukin 1β (IL-1β), while
the anti-apoptotic cytokine IL-10 was increased by apelin-13 in
adult male C57/BL6mice with ischemic stroke (79). Consistently,
when compared with the I/R group, the expressions of many
inflammatory cytokines such as TNF-α, IL-1β, and as well as
intercellular adhesion molecule 1 (ICAM-1) are significantly
reduced by apelin-13 treatment in a dose-dependent way, which
is mediated by activating the AMPK/GSK-3β/Nrf2 pathway (12,
52). Additionally, apelin-13 remarkably decreases the activation

and recruitment to the ischemic penumbra of microglia, which
is related to the increase of cell survival (79). The most recent
research indicates that apelin-13 ameliorated neuroinflammation
by shifting N9 microglial M1 polarization toward the M2
phenotype, which may be related to the STAT3 signaling pathway
(80). The above data indicate that apelin may be a potential target
for regulating inflammation in ischemic stroke.

Preventing ERS
Neuronal apoptosis induced by cerebral I/R injury includes
many mechanisms, in which ERS and subsequent unfolded
protein response (UPR) play important roles (13, 44, 81). Under
conditions of ERS, glucose-regulated protein 78 (GRP78) is
isolated from three membrane proteins, i.e., inositol-requiring
enzyme 1 (IRE1), phosphorylation of protein kinase–like
endoplasmic reticulum kinase (PERK), and ATF6, which initiates
UPR, resulting in cell apoptosis (14, 44, 82).

Apelin gene expression is repressed by ATF4 via a p38
MAPK–dependent pathway under ERS (34). Meanwhile, apelin
treatment can protect cells from apoptosis by preventing ERS
induced by I/R injury in the brain (13, 14). For example,
Qiu et al. reported that apelin-36 could inhibit the activation
of ERS/UPR by markedly reducing CCAAT/enhancer binding
protein homologous protein (CHOP) and GRP78 expression
induced by cerebral I/R injury in the rat cortex (13). Moreover,
apelin-13 can suppress eukaryotic translation initiation factor 2
(eIF2)-ATF4-CHOP–induced neuronal apoptosis via activating
Gαi/Gαq-casein kinase 2 (CK2) signaling (14). Notably, ERS
is initiated only in the reperfusion phase rather than in the
ischemic phase, indicating that apelin intervention in the
reperfusion phase may protect neurons from ERS-mediated
apoptosis (42, 43).

Modulating Autophagy
Like ERS, autophagy is also activated after ischemic stroke, and
excessive ERS can induce autophagy and ultimately leads to
neuronal apoptosis (83). Growing evidence indicates that the
apelin/APJ system can inhibit apoptosis by regulating autophagy.
First, apelin-13 pretreatment attenuates glucose deprivation-
induced cardiomyocyte injury and decreases the autophagosome
number and the ratio of microtubule-associated protein 1
light chain 3 (LC3)-II/LC3-I, which may be mediated by the
PI3K/AKT/mechanistic target of rapamycin (mTOR) signaling
pathway (84). Consistently, activating the PI3K/AKT/mTOR
pathway by exogenous apelin can prevent hypoxia-induced
autophagy and decrease cell proliferation and migration in
an APJ receptor–dependent manner (85). In addition, apelin-
13 suppresses traumatic brain injury (TBI) by decreasing
autophagy-associated protein levels, such as LC3-II/I, Beclin-1,
and Beclin-1/Bcl-2, which are expressed in the injured cortex and
hippocampus in mice (86).

Up to now, there is no report about the role of apelin/APJ
signaling in autophagy in ischemic stroke. However, the
regulation of the apelin/APJ system in autophagy in the above
diseases suggests that the apelin/APJ system may participate in
autophagy induced by brain I/R injury.
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Promoting Angiogenesis
Post-stroke angiogenesis facilitates the recovery of cerebral
blood flow (CBF) and the supply of substances and energy
for neurogenesis (87). A number of studies have shown that
vascular endothelial growth factor (VEGF), which is known to
have neuroprotective effects in stroke, can improve the neuronal
survival and the number of microvessels after cerebral ischemia
(88–90). Chen et al. reported that apelin-13 could dramatically
accelerate the expression of VEGF andmatrix metalloproteinase-
9 (MMP-9), which contribute to angiogenesis in mice with focal
cerebral ischemic stroke (79). Recent studies suggest that apelin-
13 protects the neurovascular unit against ischemic injuries,
which is dependent on an increase of VEGF–VEGF receptor 2
(VEGFR2) signaling, possibly by activating ERK and PI3K/AKT
pathways (51). Moreover, the apelin/APJ system may work
in coordination with VEGF to trigger vascular sprouting and
CBF recovery from human urinary kallidinogenase (HUK)–
treated stroke patients in an ERK1/2-dependent manner (91,
92). On the contrary, the expression of VEGF in cultured
endothelial cells is partially suppressed by the apelin/APJ
system inhibitor, suggesting that the apelin/APJ system may
cooperate with VEGF to promote vascular growth in ischemic
stroke (92). Similarly, apelin deficiency causes compromised
angiogenesis and functional recovery and increased susceptibility
to ischemic injury (93). Apelin-13 protects the blood–brain
barrier (BBB) from ischemic injury by upregulating aquaporin-
4 (AQP4) and VEGF via the ERK and PI3K/AKT pathways
(46). In conclusion, the apelin/APJ system not only protects
neurons from ischemic injury but also facilitates angiogenesis
and prognosis of stroke, which may be mediated by the VEGF–
VEGFR2 signaling pathway.

RELATIONSHIP BETWEEN APELIN/APJ
SYSTEM POLYMORPHISM AND
SUSCEPTIBILITY TO ISCHEMIC STROKE

Growing evidence has indicated that genetic factors exert
important roles in stroke and that people with a family history
of stroke are more likely to suffer from stroke (17, 94, 95). Data
from genomewide association studies suggest that the heritability
in all types of ischemic stroke is 37.9% (96). Hata et al. reported
that rs9943582, a single-nucleotide polymorphism (SNP) which
is located in the promoter region of the APJ gene and can enhance
the expression level of APJ mRNA, could increase the risk of
ischemic stroke in Japanese, and that the risk of ischemic stroke
in the GG genotype was significantly higher than other genotypes
(97–99). Meanwhile, there was no significant correlation between
rs9943582 and ischemic stroke in the Chinese Han GeneID
population in a case–control study including 1,158 patients
and 1,265 controls (100). Consistently, in another study on
the Chinese population from Zhang et al. no associations were
detected between rs9943582 and the age of onset and prognosis
of ischemic stroke (101). Further intensive study and repeated
validation of the relationship between gene polymorphism of
apelin/APJ system and ischemic stroke can predict the risk of
ischemic stroke, which will provide strategies for prevention and
treatment of ischemic stroke.

CONCLUSIONS

The apelin/APJ system is widely distributed in the central
nervous system, participating in many pathophysiological
regulations of some brain diseases, including ischemic stroke
(4, 15, 16). The apelin/APJ system shows a neuroprotective
effect by blocking cell apoptosis or death and improving
behavioral performance via various mechanisms including
suppressing excitotoxicity, inflammatory responses, ERS, and
oxidative and nitrative stresses, and at the same time modulating
autophagy, promoting angiogenesis. Recently, researchers have
found another endogenous ligand of APJ, apela, which
enriches the functions of the system and complicates it as
well (5, 6).

Ischemic stroke, known to be a devastating cerebrovascular
disease with high morbidity, includes cerebral thrombosis,
cerebral embolism, lacunar infarction, transient ischemic attack,
and other types. The MCAO model is the most commonly
used cerebral ischemia model (Table 1). Electroacupuncture-
induced expression of apelin/APJ mRNA and protein of
cerebral vascular endothelial cells in rats with cerebral infarction
has an important role in the establishment of blood vessel
regeneration and collateral circulation (102). In a transient
model of focal cerebral ischemia, apelin-13 reduces brain
injuries and postischemic cerebral edema in a dose-dependent
manner, likely through inhibiting neuronal apoptosis, which
may be mediated by many mechanisms, such as activating
AMPK, PI3K/AKT, and ERK1/2 signaling pathways (47, 49,
50, 103). However, the specific effects of the apelin/APJ
system on other types of ischemic stroke are rarely reported.
And at the same time, due to the diversity of the active
forms and signal pathways of apelin, it is a long way to go
before the apelin/APJ system can be used in clinical practice.
Further in-depth study of the physiological and pathological
effects of the apelin/APJ system on ischemic stroke and the
potential mechanisms will help to guide clinical prevention of
and intervention in ischemic stroke and develop a series of
drugs targeting different subtypes and phases of the disease,
providing good news for patients, which will reduce family and
social burdens.
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