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There are virtually no clinically available neuroprotective drugs for the treatment of

acute and chronic neurological disorders, hence there is an urgent need for the

development of new neuroprotective molecules. Cationic arginine-rich peptides (CARPs)

are an expanding and relatively novel class of compounds, which possess intrinsic

neuroprotective properties. Intriguingly, CARPs possess a combination of biological

properties unprecedented for a neuroprotective agent including the ability to traverse cell

membranes and enter the CNS, antagonize calcium influx, target mitochondria, stabilize

proteins, inhibit proteolytic enzymes, induce pro-survival signaling, scavenge toxic

molecules, and reduce oxidative stress as well as, having a range of anti-inflammatory,

analgesic, anti-microbial, and anti-cancer actions. CARPs have also been used as

carrier molecules for the delivery of other putative neuroprotective agents across the

blood-brain barrier and blood-spinal cord barrier. However, there is increasing evidence

that the neuroprotective efficacy of many, if not all these other agents delivered using

a cationic arginine-rich cell-penetrating peptide (CCPPs) carrier (e.g., TAT) may actually

be mediated largely by the properties of the carrier molecule, with overall efficacy further

enhanced according to the amino acid composition of the cargo peptide, in particular

its arginine content. Therefore, in reviewing the neuroprotective mechanisms of action

of CARPs we also consider studies using CCPPs fused to a putative neuroprotective

peptide. We review the history of CARPs in neuroprotection and discuss in detail the

intrinsic biological properties that may contribute to their cytoprotective effects and their

usefulness as a broad-acting class of neuroprotective drugs.

Keywords: cationic arginine-rich peptides, neuroprotection, cell-penetrating peptides, arginine, guanidinium head

group, TAT

INTRODUCTION

Despite the enormous global impact of neurological disorders and the extensive research overmany
decades, there is still a lack of proven clinically effective pharmacological neuroprotective therapies
capable of reducing the severity of brain or spinal cord tissue injury in acute (e.g., stroke, traumatic
brain injury and spinal cord injury, and hypoxic-ischemic encephalopathy) or chronic (Alzheimer’s
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disease, Parkinson’s disease, and amyotrophic lateral sclerosis)
neurological disorders. The few neuroprotective treatments that
are available, such as riluzole for amyotrophic lateral sclerosis and
memantine for Alzheimer’s disease provide only modest benefits.
While hypothermia is used as a neuroprotective therapy for
neonatal encephalopathy and for comatose survivors of cardiac
arrest, it is difficult to implement due to the need for specialized
equipment and intensive patient monitoring, and its efficacy is
also limited.

Hence, the development of effective neuroprotective drugs
for the treatment of a variety of neurological disorders remains
an urgent priority. To make matters worse, due to past clinical
failures, some researchers, physicians, and pharmaceutical
companies are reluctant to continue research focused on the
development of neuroprotective agents. However, most impartial
observers would agree that the benefits of continuing to pursue
the discovery of neuroprotective therapies far outweigh the
risks. With this in mind, it is also intuitive that in order to
increase the chances of achieving translational success at the
clinical level, it is preferable that any new neuroprotective drug
should have a multimodal mechanism of action. To this end,
cationic arginine-rich peptides (CARPs) represent a relatively
novel and expanding class of compounds, which possess an
array of intrinsic neuroprotective properties, and are thus ideal
molecules for development as therapies for a broad range of
neurological disorders.

FIGURE 1 | Positively charged amino acids arginine and lysine, and hydrogen bonding. (A) Arginine and lysine depicting positively charged guanindino head group

and amino head group, respectively. (B) Arginine guanindino head groups and lysine amino head groups forming bidentate hydrogen-bonding and monodentate

hydrogen-bonding, respectively, with phosphate, sulfate and carboxylate anionic moieties.

GENERAL ASPECTS OF CARPS

As the name suggests, critical factors for CARP neuroprotection
are their positive charge and arginine content as well as, the
ability to traverse membrane lipid bilayers. Whereas, cationic
charge can be imparted by the presence of the positively
charged amino acids arginine and lysine (Figure 1A), which
have a net charge of +1 at pH 7, arginine is the amino acid
essential for neuroprotection. Histidine, the other positively
charged amino acid only provides a modest contribution
to peptide charge with a net charge of +0.1 at pH 7.
Furthermore, CARPs represent a broader class of bioactive
peptides with a number of other properties that may contribute
to their neuroprotective actions, including the ability to reduce
intracellular calcium influx, antagonize cell surface receptor
function, target mitochondria, scavenge reactive molecules,
induce cell signaling, stabilize proteins, inhibit proteolytic
enzymes, and reduce inflammation, and in addition to being
neuroprotective also have anti-nociceptive, cardioprotective,
anti-microbial and anti-cancer properties.

CARPs have demonstrated neuroprotection in in vitro
neuronal injury models (e.g., excitotoxicity, oxygen-glucose
deprivation), in in vivo models of acute central nervous system
(CNS) injury (e.g., stroke, traumatic brain injury, perinatal
hypoxia-ischemia, traumatic brain injury, spinal cord injury, and
epilepsy) and in models of chronic neurodegenerative disorders
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(e.g., Parkinson’s and Alzheimer’s disease) and neuropathic
pain (Tables 1–3). Furthermore, it is important to acknowledge
that neuroprotective CARPs can be categorized into three
main groups; (i) poly-arginine peptides, cationic arginine-rich
cell-penetrating peptides (CCPPs) or peptides derived from
proteins (Table 1); (ii) putative neuroprotective peptides fused to
CCPPs (Table 2); and (iii) endogenous peptides (Table 3).

The aim of this review is to highlight the recognition of
CARPs as a novel class of peptide with great promise for the
treatment of acute and chronic neurological disorders, and in
so doing summarize their known neuroprotective mechanisms
of action, as well as other potential actions whereby they may
exert beneficial effects in injured or affected cells. Within this
group of compounds are includedmany putative neuroprotective

peptides fused to CCPPs (e.g., TAT, R9, penetratin) that have
been developed (Table 2). In this review, such peptides are also
classified as CARPs, and we propose that in many, if not all
instances their putative neuroprotective effects may actually be
mediated by the arginine content and positive charge of the
carrier and/or cargo peptide, rather than the cargo peptide itself.

GENERIC FEATURES OF
NEUROPROTECTIVE CARPs

In general terms, neuroprotective CARPs typically possess the
following properties: (i) range in size from 4 to 40 amino acids;
(ii) positive net charge ≥ +2 to +20; (iii) one or more positively

TABLE 1 | CARPs with neuroprotective and other neuroactive properties.

Peptide name Peptide sequence % Arginine Net charge

at pH 7

Neuronal injury

model

References

R6 and CARP 6-mers RRRRRR-NH2, RRRRWW-NH2, rrrrrw-NH2, rrrrww-NH2,

Ac-MCRRKR-NH2, Ac-LCRRKF-NH2, Ac-RRWWIR-NH2

33–100% +4 to +6 Excitotoxicity, pain (1, 2)

SS-31, SS-20 rDmtKF-NH2, FrFK-NH2 25% +3 Stroke, MPTP, SCI,

AD, pain

(3–7)

TAT, TAT-D YGRKKRRQRRRG, ygrkkrrqrrrg 50% +8 Excitotoxicity, stroke (8–13)

Penetratin RQIKIWFQNRRMKWKK 19% +7 Excitotoxicity (12)

R7, C-R5, C-R7,

C-r7

RRRRRRR-NH2, C-s-s-CRRRRR-NH2, C-s-s-CRRRRRRR-NH2,

C-s-s-crrrrr-NH2

71–100% +6 to +8 Excitotoxicity (14)

R8 to R15,

R9D, R18, R18D,

R22

RRRRRRRR to RRRRRRRRRRRRRRR,

rrrrrrrrr-NH2, RRRRRRRRRRRRRRRRRR, rrrrrrrrrrrrrrrrrr,

RRRRRRRRRRRRRRRRRRRRRR

100% +6 to +22 Excitotoxicity, stroke, HIE,

TBI, AD

(12, 15–27)

BEN2540, BEN0540,

BEN1079

Ac-WGCCGRSSRRRRTR-NH2,

Ac-PFLKRVPACLRLRR-NH2,

Ac-RCGRASRCRVRWMRRRRI-NH2

29–44% +4.9 to +8.9 Excitotoxicity (15)

XIP, R9/X7/R9,

NCXBP3

RRLLFYKYVYKRYRAGKQRG, RRRRRRRRRPGRVVGGRRRRRRRRR,

RRERRRRSCAGCSRARGSCRSCRR-NH2

25–80% +8 to +19 Excitotoxicity (15)

LMWP VSRRRRRRGGRRRR 71% +10 Excitotoxicity (16)

R10W4D, R10W8,

R12W8a, R12F8,

R12Y8

wwrrrrrwwrrrrr-NH2, WWRRRWWRRRRWWRRRWW,

WWRRRRWWRRRRWWRRRRWW, FFRRRRFFRRRRFFRRRRFF,

YYRRRRYYRRRRYYRRRRYY

55–71% +11 to +12 Excitotoxicity (16)

D3, D3D3, RD2 rprtrlhthrnr-NH2, rprtrlhthrnrrprtrlhthrnr-NH2, ptlhthnrrrrr-NH2 42% +6.2 to +11.4 AD (28–30)

IDR-1018 VRLIVAVRIWRR-NH2 33% +5 HIE (31)

Hi1a NECIRKWLSCVDRKNDCCEGLECYKRRHSFEVCVPIPGFCLVKWKQC

DGRERDCCAGLECWKRSGNKSSVCAPIT

9% +3.3 Stroke (32)

APP96-110 Ac-NWCKRGRQCKTHPH-NH2 14% +4 TBI (33–35)

COG133 Ac-LRVRLASHLRKLRKRLL-NH2 29% +7.1 Excitotoxicity, HIE, TBI,

EAE, LPS, AD

(36–41)

COG1410 Ac-ASAibLRKLAibKRLL-NH2 17% +4 Stroke, SAH, TBI, ICH, SCI (24, 42–52)

CN-105 Ac-VSRRR-NH2 60% +3 Stroke, TBI, ICH (53–55)

PRARIY PRARIY 33% +2 Stroke, SCI (56, 57)

Syn 1020 Ac-RY(3-Cl)YRWR-NH2 50% +3 Pain (58)

At the N-terminus, Ac indicates acetyl and at the C-terminus NH2 indicates amide. Lower case single letter code indicates D-isoform of the amino acid. Aib, 2-Aminoisobutyric acid or

2-methylalanine; s-s, disulfide bond; Y(3-Cl), 3-chloro-L-tyrosine. AD, Alzheimer’s disease; CARPs, cationic arginine-rich peptides; Dmt, 2
′

,6
′

-dimethyl-L-tyrosine; EAE, Experimental

autoimmune encephalomyelitis; HIE, hypoxia-ischaemia encephalopathy; ICH, intracerebral hemorrhage; LMWP, Low molecular weight protamine; LPS, Lipopolysaccharide; MPTP,

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MS, multiple sclerosis; PNI, peripheral nerve injury; SAH, subarachnoid hemorrhage; SCI, spinal cord injury; stroke, ischaemic stroke;

TBI, traumatic brain injury.
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TABLE 2 | Studies demonstrating neuroprotective and other neuroactive properties of peptides fused to TAT and other cell penetrating peptides.

Peptide name Peptide sequence % Arginine Net charge

at pH 7

Neuronal injury model References

TAT-NR2B9c (NA-1) YGRKKRRQRRR-KLSSIESDV 30% +7 Excitotoxicity, stroke,

HIE, ICH, AD, epilepsy,

pain

(59–68)

JNKI-1D-TAT,

JNKI-1-TAT

dqsrpvqpflnlttprkprpp-rrrqrrkkrg-NH2,

GRKKRRQRRR-PP-RPKRPTTLNLFPQVPRSQD-NH2

29% +12 Excitotoxicity, stroke,

HIE, ICH, TBI, AD, SCI,

SMA, epilepsy, pain

(60, 69–83)

TAT-JIP-1 GRKKRRQRRR-RPKRPTTLNLF 38% +11 Excitotoxicity, stroke,

GCI, PD

(84–86)

δSV1-1-TAT YGRKKRRQRRR-SFNSYELGSL 28% +7 Stroke (87, 88)

TAT-JBD GRKKRRQRRR-PP-RPKRPTTLNLFPQVPRSQDT 28% +11 HIE, GCI (89, 90)

TAT-NPEG4-(IETDV)2 YGRKKRRQRRR-(Peg)4-(IESDV)2 28% +9 Stroke, pain, epilepsy,

cortical spreading

depression

(91–95)

JNK3-N-TAT YGRKKRRQRR-RCSEPTLDVKI 29% +6.9 PD (96, 97)

Src40–49Tat KPASADGHRGY-GRKKRRQRRR 33% +9.1 Pain (98)

TAT-SabKIM1 GFESLSVPSPLDLSGPRVVAPP-RRRQRRKKRG-NH2 22% +8 PD (99)

TAT-CBD3 YGRKKRRQRRR-ARSRLAELRGVPRGL 38% +11 Excitotoxicity, stroke, TBI,

pain

(100–105)

R9-CBD3 RRRRRRRRR-ARSRLAELRGVPRGL 54% +12

TAT-CBD3A6K YGRKKRRQRRR-ARSRLKELRGVPRGL 38% +12

TAT-CRMP-2 YGRKKRRQRR-GVPRGLYDGVCEV 26% +6.9 Excitotoxicity, stroke,

OGD

(106–108)

TAT-NR2Bct YGRKKRRQRRR-KKNRNKLRRQHSY 37% +14.1 Excitotoxicity, stroke (109–111)

TAT-NR2Bcts YGRKKRRQRRR-NRRRNSKLQHKKY 35% +14.1 Excitotoxicity (109, 110)

Tat-D2LIL3−29−2 YGRKKRRQRRR-MKSNGSFPVNRRRMD 34% +11 Depression (112)

Penetratin-COG133

(COG112)

Ac-RQIKIWFQNRRMKWKK-LRVRLASHLRKLRKRLL-NH2 24% +14.1 TBI, EAE, AD, axonal

regeneration, spinal cord

demyelination

(40, 41, 47, 113–115)

TAT-NR2Bct-CTM YGRKKRRQRRR-KKNRNKLRRQHSY-KFERQKILDQRFFE 35% +15.1 Stroke (116)

CN2097 RRRRRRRC-s-s-CKNYKKTEV (cyclic or linear) 41% +9 Excitotoxicity, pain (14, 117)

P42-TAT AASSGVSTPGSAGHDIITEQPRS-GG-YGRKKRRQRRR 19% +7.1 Huntington’s disease (118)

TAT-p53DM YGRKKRRQRRR-RVCACPGRDRRT 43% +11 288,289 (14, 109, 119, 120)

TAT-p53DMs YGRKKRRQRRR-CCPGECVRTRRR 43% +11 Excitotoxicity (109)

TAT-CN21 YGRKKRRQRR-KRPPKLGQIGRSKRVVIEDDR 29% +11 Excitotoxicity, stroke, GCI (121–123)

PYC36-TAT,

PYC36D-TAT

GRKKRRQRRRGG-LQGRRRQGYQSIKP,

pkisqygqrrrgqlgg-rrrqrrkkrg

35% +12 Excitotoxicity (10)

TAT-GluR6-9c YGRKKRRQRR-RLPGKETMA 32% +8 Excitotoxicity, GCI,

stroke, OGD

(124–126)

TAT-mGluR1 YGRKKRRQRRR-VIKPLTKSYQGSGK 24% +11 Excitotoxicity, HIE, SAH (127–129)

TAT-K13 YGRKKRRQRR-KEIVSRNKRRYQED 33% +9 Stroke (130)

TAT-Indip YGRKKRRQRRR-GEPHKFKREW 33% +9.1 Excitotoxicity, ALS (109, 131)

TAT-Indip-K/R YGRKKRRQRRR-GEPHRFRREW 43% +9.1 Excitotoxicity (109)

TAT-GESV,

D-TAT-GESV

RRRQRRKKRG-YAGQWGESV,

rrrqrrkkrg-yagqwgesv

32% +7 Excitotoxicity, HIE, pain (132–134)

TAT-NEP1-40 YGRKKRRQRRR-RIYKGVIQAIQKSDEGHPFRAYLESEVAISEELVQK

YSNS

16% +7.1 Stroke, OGD (135, 136)

TAT-NBD YGRKKRRQRRR-TALDWSLWQTE 27% +6 HIE (137)

TAT-ψεHSP90 YGRKKRRQRRR-PKDNEER 39% +8 Stroke, OGD (138)

TAT-Bec YGRKKRRQRRR-GG-TNVFNATFEIWHDGEFGT 19% +6.1 SCI (139)

TAT-gp91ds GRKKRRQRRR-CSTRIRRQL-NH2 47% +12 SCI, TBI, SAH (140–142)

TAT-ISP GRKKRRQRRR-CDMAEHMERLKANDSLKLSQEYESI-NH2 20% +6 SCI (143)

Tat-Cav3.2-III-IV YGRKKRRQRRR-EARRREEKRLRRLERRRRKAQ 50% +16 Pain (144)

(Continued)
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TABLE 2 | Continued

Peptide name Peptide sequence % Arginine Net charge

at pH 7

Neuronal injury model References

TAT-µCL YGRKKRRQRRR-PPQPDALKSRTLR 33% +10 Retinal degeneration (145)

ST2-104 RRRRRRRRR-ARSRLAELRGVPRGL 54% +12 Pain (146)

TAT-STEP YGRKKRRQRRR -GLQERRGSNVSLTLDM 30% +8 Excitotoxicity, stroke,

OGD

(147)

TAT-K YGRKKRRQRRR-PP-LNRTPSTVTLNNNT 26% +9 Excitotoxicity (148)

TAT-P110 YGRKKRRQRRR-GG-DLLPRGT 35% +9 Stroke, Huntington’s

disease

(149, 150)

TAT-C6 GRKKRRQRRR-CRRGGSLKAAPGAGTRR 37% +14 Stroke (151)

Analog 4 and 5 Y-βP-WFGG-RRRRR, YaWFGG-RRRRR 45% +5 Pain (152)

Aβ1-6A2VTAT(D) grkkrrqrrr-gggg-dvefrh 35% +8.1 AD (153)

DEETGE-CAL-TAT RKKRRQRRR-PLFAER-LDEETGEFLP-NH2 28% +5 GCI (154)

TAT-T406 RKKRRQRR-IAYSSSETPNRHDML 29% +7.1 Pain (155)

TAT-21-40 RKKRRQRRR-RIPLSKREGIKWQRPRFTRQ 38% +14 Excitotoxicity, stroke,

OGD

(156)

TAT-C1aB YGRKKRRQRRR-HLSPNKWKW 30% +10.1 Excitotoxicity, stroke (157)

TAT-2ASCV YGRKKRRQRRR-TVNEKVSC 31% +8 Pain (158)

TAT-NTS YGRKKRRQRRR-RSFPHLRRVF-NH2 43% +12.1 Stroke, OGD (159)

TAT-CBD3M5L YGRKKRRQRR-ARSRMA 44% +9 Pain (160)

TDP-r8 YrFG-rrrrrrrr-G 69% +9 Pain (161)

TAT-Pro-ADAM10 YGRKKRRQRR-PKLPPPKPLPGTLKRRRPPQP 27% +14 Huntington’s disease (162)

At the N-terminus, Ac indicates acetyl and at the C-terminus NH2 indicates amide. Lower case single letter code indicates D-isoform of the amino acid. Aib, 2-Aminoisobutyric acid

or 2-methylalanine; s-s, disulfide bond; AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; EAE, Experimental autoimmune encephalomyelitis; GCI, global cerebral ischaemia;

HIE, hypoxia-ischaemia encephalopathy; ICH, intracerebral hemorrhage; OGD, oxygen glucose deprivation; PD, Parkinson’s disease; SAH, subarachnoid hemorrhage; SCI, spinal cord

injury; SMA, spinal muscular atrophy; stroke, ischaemic stroke; TBI, traumatic brain injury.

TABLE 3 | Endogenous CARPs with neuroprotective and cytoprotective properties.

Peptide name Peptide sequence % Arginine Net charge

at pH 7

Neural/cell injury model References

Apelin-13 QRPRLSHKGPMPF 15% +3.1 Excitotoxicity, stroke, TBI, ICH, SCI, pain (163–176)

Apelin-17 KFRRQRPRLSHKGPMPF 23% +6.1

Apelin-36 LVQPRGSRNGPGPWQGGRRKFRRQRPRLSHKGPMPF 20% +10.1

Dynorphin A 1-13, YGGFLRRIRPKLK,

YGGFLRRIRPKLKWDNQ

23% +5 Pain, stroke, LPS (177–179)

Dynorphin A 1-17

PACAP38 HSDGIFTDSYSRYRKQMAVKKYLAAVLGKRYKQRVKNK 11% +9.1 Excitotoxicity, stroke, GCI, TBI, PD, pain (180–185)

Ghrelin GSSFLSPEHQRVQQRKESKKPPAKLQPR 11% +5.1 Stroke, PD, AD, SAH, epilepsy, TBI, pain (186–192)

Humanin MAPRGFSCLLLLTSEIDLPVKRRA 12% +2 Excitotoxicity, stroke, AD, SAH, HIE (193–197)

PR-39

PR-11

RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPPRFPPRFP

RRRPRPPYLPR

25%

45+

+10

+5

Hypoxia, ischaemia/reperfusion, oxidative

stress: endothelial cells, HeLa cells,

myocardial infarction

(198–200)

Protamine PRRRRSSSRPVRRRRRPRVSRRRRRRGGRRR 66% +21 Excitotoxicity, stroke (16)

AD, Alzheimer’s disease; GCI, global cerebral ischaemia; HIE, hypoxia-ischaemia encephalopathy; ICH, intracerebral hemorrhage; LPS, Lipopolysaccharide; SAH, subarachnoid

hemorrhage; SCI, spinal cord injury; PD, Parkinson’s disease; stroke, ischaemic stroke; TBI, traumatic brain injury.

charged arginine residues that comprise between 20 and 100%
of the peptide; (iv) other positively charged amino acids namely
lysine and histidine; (v) amphiphilicity due to the presence
of both hydrophilic (e.g., arginine, lysine) and hydrophobic
(e.g., tryptophan, phenylalanine, tyrosine) amino acids; and
(vi) endocytic and/or non-endocytic cell membrane traversing
properties, including the ability to cross the blood-brain and
blood-spinal cord barriers (BBB/BSCB). Invariably, CARPs

are commercially or chemically synthesized using solid-phase
peptide synthesis. One exception is the CARP, protamine
(Table 3), which is purified from salmon milt or generated
recombinantly. Due to the capacity of CARPs to traverse cellular
membranes and localize to different organs within the body,
they have been the subject of several experimental and review
articles examining their bioavailability (201–203) and therefore
this subject is not covered in this review.
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HISTORICAL OVERVIEW OF CARPS AND
NEUROPROTECTION STUDIES

Key historical events in the recognition and application of CARPs
as neuroprotective agents are summarized in Figure 2. The
first study to identify the neuroprotective properties of CARPs
was in 1998 when Ferrer-Montiel et al. (1) screened a 6-mer
peptide library containing over 49,000 different peptides for
their ability to block glutamate-evoked ionic currents in Xenopus
oocytes expressing the NR1 andNR2ANMDA receptor subunits.
Hexapeptides containing at least two arginine (R) residues at any
position as well as one or more lysine (K), tryptophan (W), and
cysteine (C) residues displayed ionic current blocking activity.
Further analysis revealed that C-carboxyl amidated (-NH2; note
C-carboxyl amidation removes the negatively charged COO− C-
terminus thereby increasing peptide net charge by+1) dipeptides
RR-NH2 (net charge +3) and RW-NH2 (net charge +2) were
also capable of blocking NMDA receptor activity. Similarly,
certain amino acid residues within arginine-rich hexapeptides
inhibited the NMDA receptor blocking ability of the peptide (e.g.,
RFMRNR-NH2; net charge +4, was ineffective; M, methionine;
N, asparagine). In addition, increasing oligo-arginine peptide
length from 2 to 6 resides (e.g., R2-NH2 vs. R3-NH2 vs. R6-
NH2) increased blocking activity. In a NMDA excitotoxicity
model (NMDA: 200 µM/20min) using cultured hippocampal
neurons, arginine-rich hexapeptides (Table 1), especially those
also containing one or two tryptophan residues displayed high-
levels of neuroprotection, and the neuroprotective action of
the peptides was not stereo-selective with L- and D-isoform
peptides showing similar efficacy. The ability of tryptophan to
improve peptide neuroprotective efficacy is of particular interest
as tryptophan residues also increase the uptake efficacy of
CCPPs (204–208).

Other observations concluded that: (i) whereas cationic
arginine-rich hexapeptides were highly efficient at blocking
NMDA receptor evoked ionic currents (80–100%), some peptides
(e.g., RRRCWW-NH2 and RYYRRW-NH2) also blocked AMPA
receptor currents by over 60%. In subsequent studies, the peptide
RRRRWW-NH2 was demonstrated to antagonize the vanilloid
receptor 1 (VR1; also known as the transient receptor potential
cation channel subfamily V member 1; TRPV1) mediated
currents in a Xenopus expression system and reduce calcium
influx in rat dorsal root ganglion neurons following capsaicin or
resiniferatoxin VR1 receptor stimulation (2, 209).

Neuroprotective Properties of Cationic
Arginine-Rich Cell-Penetrating Peptides
TAT, R9, and Penetratin
Shortly after the work of Ferrer-Montiel et al. (1), the CCPP TAT
(see Table 1 for sequence and net charge) was demonstrated to
have the capacity to transport large protein cargos across the
BBB (210). Subsequently, the TAT peptide became increasingly
utilized as a carrier molecule to deliver various cargos into the
brain, including putative neuroprotective peptides and proteins
(Figure 2). To date over fifty different TAT-fused neuroprotective
peptides have been shown to have positive effects in different
in vitro and/or animal CNS injury models (Table 2). However,
not surprisingly in light of the Ferrer-Montiel et al. (1) findings,
experiments in other laboratories demonstrated that the TAT
peptide itself possesses modest neuroprotective actions in in
vitro excitotoxicity and in vivo ischemic injury models (8–11).
Subsequently, it was reported that the CCPPs, R9 (Table 1),
and penetratin (Table 1) were 17- and 4.6-fold, respectively
more neuroprotective than TAT in a severe cortical neuronal
glutamic acid excitotoxicity cell death model (glutamic acid: 100

FIGURE 2 | Historical time-line for the recognition of CARPs as neuroprotective agents.
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µM/5min; Figure 3) (12). These findings also raised the first
clues that the neuroprotective actions of putative neuroprotective
peptides fused to CCPPs may in fact be mediated by the
carrier peptide.

Further Validation and Characterization of
CARPs as Neuroprotective Agents
Later, in vitro studies confirmed that other CARPs (e.g.,
protamine, LMWP, XIP; Tables 1, 3) and long-chain poly-
arginine peptides (Table 1) were also highly neuroprotective,
with efficacy increasing with increasing arginine content and
peptide positive charge, plateauing at around 15–18 arginine
residues for arginine polymers (15, 16). Furthermore, the
requirement for arginine residues, rather than lysine residues,
was demonstrated to be critical for neuroprotection, with the K10
peptide (10-mer of lysine; net charge +10) displaying limited
efficacy in a neuronal glutamic acid excitotoxic model (15). In
addition, the importance of peptide charge was confirmed by the
finding that the glutamic acid containing neutrally charged R9/E9
peptide (RRRRRRRRREEEEEEEEE; net charge 0; E = glutamic
acid) displayed no neuroprotection in the excitotoxic model (15).

Based on the above findings, it was hypothesized that
CARP neuroprotection is largely mediated by the positively
charged guanidinium head-group, which is unique to arginine
(Figure 1A) (note: lysine possesses a positively charged amide
group; Figure 1A) (15, 109). These findings also support the
notion that peptide neuroprotective efficacy appears to be
correlated with the same features that are critical for the
endocytic and/or non-endocytic membrane traversing properties
of CCPPs (14, 15, 109, 211). It was also demonstrated in an in
vitro glutamic acid excitotoxicity model that the hydrophobic
aromatic amino acids tryptophan, and to a lesser extent
phenylalanine and tyrosine can significantly improve CARP
neuroprotective efficacy. In contrast, alanine and glycine resides
reduce peptide neuroprotective efficacy (15, 16). Importantly,
tryptophan residues are also known to increase the cell-
penetrating properties of CCPPs, providing further evidence
that neuroprotection is closely linked to the peptide membrane
traversing capacity of the peptides.

Studies have also demonstrated that a 10-min pre-treatment
of neuronal cultures with CARPs induces a pre-conditioning
neuroprotective response lasting up to 2–5 h post-treatment
(15–17). Similar to the findings of Ferrer-Montiel et al. (1), it
was also observed that there was no stereo-selectivity in terms
of neuroprotective efficacy of L- and D-enantiomer CARPs,
which suggests that with respect to neuroprotection, peptide
electrostatic interactions are more important than peptide
structural interactions of the peptide with specific biological
targets. Importantly, CARPs have the capacity to significantly
inhibit neuronal intracellular calcium influx in the glutamic acid
excitotoxicity model (15–17, 109).

Consistent with in vitro findings, CARPs (e.g., R9D, R12, R18,
R18D, protamine; Tables 1, 3) were also demonstrated to provide
significant neuroprotection and improve functional outcomes in
rat models of permanent and/or transient middle cerebral artery
occlusion (MCAO), perinatal hypoxia-ischemia and traumatic

FIGURE 3 | Neuroprotective efficacy of cationic arginine-rich cell-penetrating

peptides in glutamic acid excitotoxicity model. Peptides present in neuronal

cultures for 10min before and during (half concentration) 5-min glutamic acid

exposure. Neuronal viability measured 24 h following glutamic acid exposure.

Concentration of peptide in µM. MTS assay data were expressed as

percentage neuronal viability with no insult control taken as 100% viability and

glutamic acid control (Glut.) taken as 5% (mean ± SE; n = 4; *P < 0.05).

Adapted from Meloni et al. (12).

brain injury (15, 16, 18–24, 212) and a non-human primate
MCAO stroke model (26). Positive neuroprotective effects with
R9D and R18D, which are the D-enantiomers of R9 and R18, also
confirmed the lack of stereo-specificity for CARP efficacy in vivo.

In 2015, Marshall et al. (14) also confirmed the in vivo
neuroprotective properties of CARPs including poly-arginine R7
(Table 1), as well as the TAT and TAT-NR2B9c (also known as
NA-1; Table 2) peptides in rat retinal ganglion cells exposed to
NMDA (20 nmol; 3 µL intravitreal injection). The study also
demonstrated that CARPs containing a terminal cysteine residue
improved neuroprotective efficacy; this could be due to the
cysteine residue improving peptide stability and/or enhancing
anti-oxidant properties. Marshall et al. (14) also considered that
it was likely that the cell-penetrating properties of the CARPs
along with the guanidinium head group of arginine and peptide
positive charge were the “driving force” for neuroprotection.
Furthermore, and as proposed by Meloni et al. (211), Marshall
et al. (14) also suggested that cargo peptides designed to inhibit
cell death following NMDA excitotoxicity (e.g., peptides CN2097;
CKNYKKTEV and NR2B9c; KLSSIESDV) and fused to a CCPP
(e.g., R7 for CN2097 and TAT for NR2B9c) were unlikely to be
the active component mediating neuroprotection in the retinal
ganglion cell NMDA excitotoxic injury model.

In 2017, McQueen et al. (110) re-evaluated the
neuroprotective mechanism of action of the death-associated
protein kinase 1 protein (DAPK1) blocking peptide TAT-NR2Bct
(Table 2) and its scrambled control TAT-NR2Bcts (Table 2).
DAPK1 is a calcium-calmodulin regulated protein activated in
neurons following NMDA receptor over-stimulation as occurs
in ischemia mediated excitotoxicity. TAT-NR2Bct was designed
to competitively inhibit activated DAPK1 binding to the NR2B
subunit protein, and thereby block subsequent downstream
damaging cellular events caused by NMDA receptor over-
activation. Interestingly, Meloni et al. (109) had earlier examined
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the TAT-NR2Bct and TAT-NR2Bcts peptides and demonstrated
high neuroprotective efficacy for both peptides in the glutamic
acid excitotoxicity model. Therefore, it was not surprising
that McQueen et al. (110) also found that both TAT-NR2Bct
and TAT-NR2Bcts, along with a randomly designed CARP
(RRRTQNRRNRRTSRQNRRRSRRRR; net charge +15) were
neuroprotective in a neuronal NMDA excitotoxicity model. On
the basis of their findings they concluded that neuroprotection
was dependent on peptide positive charge and independent of
peptide sequence and DAPK1 signaling.

Taken together, the above studies provide irrefutable
evidence of the neuroprotective properties of CARPs in various
experimental situations and in doing so, raise two important
issues in regard their application in neuroprotection: (i) what
are the precise neuroprotective mechanisms operating; and (ii)
the need to re-evaluate studies using CARPs and CCPPs for the
delivery of neuroactive cargos into the CNS, particularly putative
neuroprotective peptides. Both these topics are discussed below.
Also, because it is likely that CARPs interact with negatively
charged cell membrane structures, an interaction that appears to
be critical for neuroprotection, the mechanisms associated with
the affinity of CARPs to cell membranes will also be discussed.
Interestingly, it is the interaction of CARPs with negatively
charged bacterial and cancer cell cytoplasmic membrane
structures that is considered to be one of the mechanisms
responsible for their anti-bacterial and anti-cancer properties
(213, 214).

PUTATIVE NEUROACTIVE PEPTIDES
FUSED TO CATIONIC ARGININE-RICH
CELL-PENETRATING PEPTIDES AND
NEUROPROTECTION

Given that CARPs possess intrinsic neuroprotective properties
raises questions regarding the mode of action of other putative
neuroprotective peptides when they are fused to a carrier CCPP
(Table 2). As alluded to above, it is likely that the neuroprotection
provided by such putative neuroprotective peptides fused to
CCPPs, is mediated not by the actions of the cargo molecule
per se, but by the carrier itself with potency being further
enhanced by the amino acid content (e.g., arginine, lysine,
cysteine, and tryptophan resides) and/or stability provided by
the cargo peptide. In essence, a putative neuroprotective peptide
fused to an arginine-rich cell-penetrating carrier peptide will
possess the properties of a CARP; the only exception being if a
negatively charged cargo peptide neutralizes the positive charge
of the carrier peptide.

In 2015 we published a review article (109) highlighting
the likelihood of the neuroprotective mechanism of action of
putative neuroprotective peptide fused to cell-penetrating carrier
peptides being mediated by the carrier molecule. Three of
the most commonly used TAT-fused neuroprotective peptides
TAT-NR2B9c, TAT-JNKI-1 and TAT-CBD3, as well as several
other less characterized TAT-fused peptides (e.g., TAT-p53DM,
TAT-s-p53DM, TAT-NR2Bct, TAT-NR2Bcts, Indip/IndipK-R)
were analyzed based on theoretical grounds, and on our

own and other previous experimental studies in relation to
neuroprotective mechanism of action. Following this analysis, we
provided several lines of evidence to support the view that TAT-
fused neuroprotective peptides are behaving as neuroprotective
CARPs, and not by the proposed intended mechanism of action
of the cargo peptide. This evidence included: (1) the ability
of the peptides to reduce intracellular calcium influx, even
though this was never an intended mechanism of action of
the cargo peptide; (2) despite targeting intracellular proteins,
the peptides often reduced surface expression or interfered
with plasma membrane ion channel receptors; (3) lack of
efficacy and inability of the peptide to reduce neuronal calcium
influx when introduced directly into the cell; (4) improved
peptide efficacy when TAT was replaced with R9 (increasing
peptide positive charge and arginine content) or replacing
neutral or negatively charged amino acids with positively
charged arginine or lysine; (5) decreased peptide efficacy when
replacing amino acids with alanine, which is known to reduce
membrane traversing properties of cell-penetrating peptides;
(6) demonstrating neuroprotective properties of CCPP-fused
scrambled cargo control peptides; and (7) due to endosomal
entrapment and/or peptide degradation it is possible cargo
peptides have a limited capacity to interact with their intended
intracellular target. Importantly, the subsequent studies of
Marshall et al. (14) and McQueen et al. (110) (described above)
further validate the view that the mechanism of action of TAT-
fused neuroprotective peptides is likely to be mediated by the
carrier peptide, and by extension the arginine content and
positive charge of the peptide.

In order to confirm the specific action of a neuroactive
peptide cargo fused to a carrier CCPP, we recommend that
the neuroprotective or other intended neuroactive actions of
the peptide should be reassessed after the introduction of
arginine substitutions into the cargo peptide. The introduction
of arginine residues into the cargo peptide should abolish the
proposed/intended neuroprotective action of the cargo peptide.
However, if the action of the carrier-cargo peptide is maintained
or enhanced it is likely that the neuroprotective action of the
peptide wasmediated by the cationic and arginine-rich properties
of the peptide. Alternatively, the peptide could be synthesized in
the same amino acid sequence (as opposed to retro-inversely)
with D-isoform amino acids, which would drastically alter the
peptide’s steric structure and binding specificity/affinity to its
intended target, whereas its electro-physiochemical properties
would be similar. Finally, the CCPP carrier molecule could be
replaced with a non-arginine containing cell-penetrating peptide
(e.g., TP10 or MAP).

CARPS AND THEIR INTERACTION WITH
CELLULAR MEMBRANES

CARPs have the capacity to form electrostatic interactions with
anionic phosphate, sulfate and carboxylate moieties (Figure 1B)
present on structures found in the plasma membrane and in
membranes of cellular organelles (e.g., mitochondria, nucleus,
endoplasmic reticulum, golgi, endosomes). These anionic
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chemical moieties are located within membrane proteoglycans
(heparin sulfate proteoglycans: HSPGs; chondroitin sulfate
proteoglycans: CSPGs; dermatan sulfate proteoglycans:
DSPGs; keratin sulfate proteoglycans: KSPGs), glycoproteins,
glycosphingolipids, and phospholipids as well as negatively
charged aspartate and glutamate residues within protein
receptors and other protein structures embedded in cellular
membranes (Supplementary Table 1).

Negatively charged phosphate groups are a component
of phospholipids that make-up cellular membrane bilayers
(e.g., plasma membrane, inner and outer mitochondrial
membrane, nuclear membrane, and endoplasmic reticulum
membrane). There are at least five negatively charged membrane
phospholipids including the mitochondrial membrane specific
phospholipid cardiolipin, which possess a net charge of between
−1 to−4 at pH 7 (Supplementary Table 1).

Proteoglycans a type of glycoprotein found on the surface of
most cells and consist of a protein core and glycosaminoglycans
(GAGs), which are long un-branched polysaccharides consisting
of a repeating disaccharide subunit. Negatively charged sulfate
groups are located on the polysaccharide repeating disaccharide
subunits. In addition, the monosaccharide sialic acid is located
at the end of the sugar chains attached to glycoproteins and
has a negatively charged carboxyl group. Glycoproteins have
important cellular functions, such as cell surface ligand receptor
binding, cell signaling, cell adhesion, endocytosis, and binding
extracellular matrix molecules (e.g., growth factors, enzymes,
protease inhibitors, chemokines).

Glycolipids consist of a membrane lipid moiety covalently
attached to a monosaccharide or polysaccharide. Glycolipids,
namely glycosphingolipids, are negatively charged due to the
presence of sialic acid. A glycosphingolipid containing one
or more sialic acid residues is also known as a ganglioside.
Gangliosides are expressed on most cells, but are more
abundantly expressed on the cell surface of neurons, and are
found ubiquitously throughout the CNS (215). They play a key
role in modulating ion channel function, receptor signaling,
cell-to-cell recognition and adhesion and regulation of neuronal
excitability (216, 217). Membrane protein receptors rich in
the acidic amino acids aspartate and glutamate also possess a
negatively charged carboxylic moiety on their side chain.

With respect to the interaction of CARPs with anionic
moieties, the positively charged arginine guanidinium
head group forms bidentate hydrogen bonds with sulfates,
carboxylates and phosphates, whereas the positively charged
lysine amide head group forms weaker monodentate hydrogen
bonds (Figure 1B). In addition, arginine and lysine cationic
side chains can form salt bridges with the negatively charged
aspartate and glutamate carboxylate C-termini, and cation-
π interactions with the aromatic amino acids tryptophan,
phenylalanine and tyrosine in proteins (218, 219). Interestingly,
many neurotransmitters and drug-receptor interactions involve
cation-π interactions (219). Together, the different electrostatic
interaction between CARPs and plasma membrane structures
can induce cellular uptake of the peptide by endocytic and non-
endocytic pathways (220–224). Furthermore, peptide charge,
arginine content and arginine distribution within the peptide,

and the extent and density of the negatively charged moieties
present on the cell surface play a significant role in terms of
uptake efficacy (225–227). Peptide positive charge and arginine
guanidinium head groups are also critical elements responsible
for the ability of CARPs to target organelle membranes, such as
the outer and inner mitochondrial membranes, which contain
the negatively charged phospholipids cardiolipin (charge −2)
and phosphatidylinositol 4, 5-bisphosphate (PIP2; charge −4)
(Supplementary Table 1).

Importantly, studies have demonstrated that peptide
characteristics that are known to increase the cell membrane
traversing properties of CARPs, such as arginine content, peptide
charge and presence of the aromatic amino acid tryptophan
are also linked to increased peptide neuroprotective potency
(1, 15, 16, 211).

CARPS HAVE MULTIMODAL
NEUROPROTECTIVE MECHANISMS OF
ACTION

Data obtained in our laboratory and others using neuronal
and non-neuronal cells indicate that CARPs have multimodal
mechanisms of action targeting cell surface ion channel receptors
and other receptors, mitochondria, proteolytic enzymes,
oxidative stress/free radical molecules, protein stability, and
pro-survival signaling, as well as having anti-inflammatory and
immune regulatory actions (Figure 4). Evidence supporting
these different neuroprotective mechanisms is provided below.

Inhibition of Excitotoxic Neuronal Death
and Excitotoxic Neuronal Calcium Influx
Our laboratory has established that CARPs are highly effective
at reducing excitotoxic neuronal death and that they have the
capacity to reduce glutamic acid induced neuronal calcium
influx (9, 10, 15, 19, 109). These findings provide a mechanism
in which CARPs inhibit glutamate-evoked ionic currents in
Xenopus oocytes expressing NMDA receptors (1), and NMDA
excitotoxic neuronal death in neuronal cultures in vitro and
retinal ganglion cells in vivo (14, 59, 69, 110). In addition, other
CARPs reduce potassium depolarization-induced calcium-influx
(e.g., R9-CBD3-A6K, TAT-L1, TAT-ct-dis) and sodium currents
and sodium influx (e.g., t-CSM) in cultured dorsal root ganglion
neurons (see Supplementary Table 2 for details).

The ability of CARPs to reduce glutamate receptor and other
receptor mediated intracellular neuronal calcium influx is likely
to be a primary mechanism accounting for their neuroprotective
efficacy in protecting neurons in injury models associated with
excitotoxicity and excessive neuronal intracellular calcium influx.
As a mechanism whereby CARPs act to reduce the intracellular
influx of calcium and potentially other ions, we hypothesized
(109) that CARPs have the capacity to induce the endocytic
internalization of cell surface ion channel receptors (Figure 4).
In support of this hypothesis we subsequently showed that R12,
as well as the TAT-fused neuroprotective peptide TAT-NR2B9c,
reduces neuronal cell surface expression of the glutamate
receptor subunit protein, NR2B (228). Importantly, several
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FIGURE 4 | Schematic representation of CARP neuroprotective mechanisms of action. Model applies to neurons and potentially astrocytes, brain endothelial cells,

oligodendrocytes, pericytes, and microglia. AGE, advanced glycation end products; RAGE, AGE receptors; AIF, apoptosis inducing factor; AKT, protein kinase B; Cyt

c, cytochrome c; ERK, extracellular signal–regulated kinase; HIF-1, hypoxia-inducible factor-1; MMPs, matrix metalloproteinases; 1ψ, mitochondrial transmembrane

potential; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; Nrf2, nuclear factor erythroid 2-related factor 2; RNS, reactive nitrogen species; ROS,

reactive oxygen species. NMDAR, N-methyl-D-aspartate receptor; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; NCX, sodium calcium

exchanger; VGCC, voltage-gated calcium channels; ASIC, acid-sensing ion channels; TRPM2/7, transient receptor potential cation channels 2 and 7; mGluR,

metabotropic glutamate receptor; TNFR, tumor necrosis factor receptor.

CCPPs (e.g., TAT, penetratin, R9) have also been demonstrated
to reduce TNF (tumor necrosis factor) and EGF (epidermal
growth factor) receptors in non-neuronal cells via an endocytic
internalization mechanism (Supplementary Table 2) (229).

Interaction With Membrane Ion
Receptors/Channels/Transporters
Many other studies have described the ability of CARPs to reduce
neuronal and non-neuronal cell surface levels and/or activity of
NMDA receptors, and other ion and non-ion channel receptors
(see Supplementary Table 2). While these studies provide ample
evidence for the ability of CARPs to perturb cell surface receptors
it raises the question how different peptides with diverse amino
acid sequences possess the ability to reduce cell surface levels
and/or antagonize receptor function. As mentioned above, one
mechanism involves CARP induced internalization of cell surface
receptors. However, it is also possible CARPs antagonize ion
channel receptor function by electrostatic interactions. For
example, CARP electrostatic interactions with receptor anionic
moieties may alter receptor function or interfere with ion
transport within the receptor pore. In support of this, the
guanidine moiety in arginine residues and in other molecules
play a critical role in voltage-gated and ligand-gated ion channel
function (see section Compounds Containing the Guanidinium

Moiety and Neuroprotection) (230–237). For example, the
guanidino moiety in agmatine, a molecule with neuroprotective
properties (Supplementary Table 3), has been identified as being
capable of interacting with a site within the NMDA receptor
channel and calcium voltage channels and blocking their
function (238). Interestingly, polyamines (e.g., putrescine and
spermine) a class of compounds that also contain positively
charged amino groups also have the capacity to block ion
channels, including glutamate receptor and potassium channels
(239). Given that positive charge is a critical factor for CARP
neuroprotection and charge is independent of peptide amino acid
sequence, provides additional support for a mechanism involving
an electrostatic interaction perturbing ion channel function.
Hence, there is good evidence to indicate that the structure and
charge of the guanidine moieties in CARPs have the capacity
to block ion channel receptor function, providing an additional
mechanism whereby the peptides can reduce the toxic effects
of intracellular ion influx associated with excitotoxicity and ion
channel over-stimulation.

Mitochondrial Targeting and Maintenance
of Mitochondrial Integrity
CARPs have the capacity to target mitochondria and exert
positive effects on the organelle, with potential neuroprotective
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outcomes. This topic has been the subject of several reviews
by the developers of the mitochondrial targeting SS cationic
arginine-containing tetrapeptides (240), and more recently by
our own laboratory (241), and therefore will be discussed only
briefly here.

After entering cells, CARPs target and enter mitochondria due
to the presence in the outer and inner mitochondrial membranes
of negatively charged phospholipids (e.g., cardiolipin, PIP2), and
because of the mitochondrial transmembrane potential (19m).
It is also possible that electrostatic interactions of CARPs with
negatively charged free mitochondrial DNA contributes to the
retention of the peptides in the organelle. At the site of the
outer mitochondrial membrane, CARPs can inhibit the toxic
influx of calcium into mitochondria, possibly by perturbing
ion channel receptors (e.g., MCU, VDAC, NCX) and other
membrane proteins (e.g., mitochondrial permeability transition
pore proteins) responsible for the movement of calcium ions
into mitochondria.

CARPs can also perturb other outer membrane proteins that
are detrimental to mitochondrial function and cell survival.
For example, CARPs interfere with BAX, the mitochondrial
permeability transition pore and other pro-apoptotic proteins
that localize to the outer mitochondrial membrane during cell
death or interfere with proteins that promote mitochondrial
fission and mitophagy. Inhibition of mitochondrial fission
enables maintenance of mitochondria as filamentous structures,
which enables toxic products generated by dysfunctional
mitochondria to be distributed over a large organelle volume and
thereby minimizing any detrimental effects. Furthermore, due
to their interactions with cardiolipin, CARPs assist in stabilizing
and preserving cristae architecture and the electron transport
chain with positive effects on ATP maintenance, reduced
reactive nitrogen species/reactive oxygen species (ROS/RNS)
generation, as well as maintenance of cytochrome c native
tertiary structure, function, oxidation state and location within
the inner mitochondrial membrane. In addition, the anti-oxidant
and free radical scavenging properties of CARPs (discussed
below) would also have positive influences in reducing the toxic
effects of excessive ROS/RNS generation by mitochondria during
cellular stress.

Anti-oxidant and Free Radical Scavenging
Properties
Due to the amino acid arginine, CARPs are likely to act as anti-
oxidant and/or free radical scavenging molecules in their own
right. Although L-arginine is utilized by nitric oxide synthase as
a substrate for nitric oxide generation, which is a key regulator
of endothelial cell function and blood flow, the amino acid
has other properties. Arginine is unique in possessing a N-
terminal guanidinium head group (Figure 1A) and guanidinium
containing small molecules are known to possess properties
that mitigate the effects of oxidative stress. For example, L-
and D-arginine, along with aminoguanidine, methylguanidine,
guanidine, and creatine, which are all structurally related to
arginine have the ability to scavenge one or more of the following
reactive molecules: superoxide, peroxynitrate, hydroxyl radicals,
hydrogen peroxide, hypochlorous acid, and breakdown products

of lipid peroxidation (e.g., reactive aldehydes: malondialdehyde
and 4-hydroxynonenal) (242–249).

The anti-oxidant properties of aminoguanidine, which
also possesses neuroprotective actions (Supplementary Table 3),
were demonstrated in vitro with the agent reducing rat retinal
Muller cell hydrogen peroxide oxidant induced apoptosis, ROS
production and lipid peroxidation, and in vivo by reducing
the level of lipid peroxides in the vitreous of diabetic rats
(246). Furthermore, both L- and D-arginine reduced oxidative
impairment to myocardial contractility of perfused rat hearts
subjected to oxygen radical generation (249). L- and D-arginine
and L- and D-arginine polymers (e.g., poly-arginine R9) have
beneficial effects on vascular endothelial cell and cardiovascular
function and have anti-atherosclerotic properties (242, 250–252).
These positive effects have also been observed with D-arginine
containing peptides and therefore are likely to be independent of
the nitric oxide pathway, as D-arginine is not readily metabolized
by nitric oxide synthase. In support of this, in Caenorhabditis
elegans, which lacks nitric oxide synthase (NOS), exposure to
exogenous L-arginine prolongs worm lifespan under oxidative
stress growth conditions (253).

Szeto-Schiller (SS) peptides are short tetrapeptides with
alternating basic (e.g., arginine, lysine, or ornithine) and aromatic
(e.g., tyrosine, dimethyltyrosine, tryptophan, or phenylalanine)
amino acids, but usually containing at least one arginine and one
tyrosine or dimethyltyrosine residue (240). Several SS peptides
(e.g., SS-31, SS-20, mCPP-1; Table 1) have demonstrated anti-
oxidant properties by way of reducing ROS levels in cells grown
under normal or oxidative stress conditions. Whereas, the anti-
oxidant action of SS peptides has been attributable to the
tyrosine and dimethyltyrosine residues, based on the free radial
scavenging properties of guanidinium containing molecules it
is likely that the arginine residue also contributes to the anti-
oxidant property of SS peptides.

Larger CARP’s also have anti-oxidant and lipid peroxidation
reducing properties. A lactoferrin derived peptide f8 (GRRRR
SVQWCAVSQPEATKCFQWQRNMRKVRGPPVSCIKRDSP
IQCIQ; net charge +8.7) and a casein derived peptide f12 YP
YYGTNLYQRRPAIAINNPYVPRTYYANPAVVRPHAQIPQ
RQYLPNSHPPTVVRRP; net charge +7.2) have demonstrated
anti-oxidant activity in an in vitro free radical scavenging
assay (254). While both f8 and f12 are large peptides with
interspersed arginine residues, molecular modeling revealed
the peptides display a configuration with a highly cationic
electrostatic surface, with arginine residues facing on the
outside of the peptide. In addition, the human cathelicidin
anti-microbial peptide LL-27 (LGDFFRKSKEKIGKEFKRIVQ
RIKDFL; net charge +5) inhibits the oxidation of low density
(LDL) and high density (HDL) lipoproteins and can reduce
fatty acid hydroperoxides in in vitro oxidation models (255).
As demonstrated with protamine, CARPs also bind negatively
charged oxidized-LDLs, inhibit their engagement to the lectin-
like oxidized low-density lipoprotein receptor-1 (LOX-1), which
can stimulate intracellular signaling cascades detrimental in
ischemia-reperfusion cerebral injury (256, 257). Similarly, the
cathelicidin PR-39 (RRRPRPPYLPRPRPPPFFPPRLPPRIPP
GFPPRFPPRFP; net charge +10) protects HeLa cells from
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apoptotic cell death induced by the oxidizing agent tert-butyl
hydroperoxide (198), and inhibits hypoxia induced cell death of
endothelial cells (199).

Another mechanism how CARPs can reduce oxidative
stress is by inhibiting the activity of the plasma membrane
superoxide generating enzyme complex nicotinamide adenine
dinucleotide phosphate oxidase (NADPH oxidase), with one
study indicating inhibition is associated with the presence
of poly basic amino acid consisting of arginine, lysine or
histidine motifs (258). The CARPs PR-39, PR-26 (amino
acids 1–26 of PR-39; net charge +8), gp91ds-tat (Table 2),
and TAT-NR2B9c all inhibit NADPH oxidase function or
superoxide generation in cell free systems and/or in different
cells both in vitro and in vivo (259–261). The NADPH oxidase
complex consists of 5 subunits with PR-39 and PR-26 binding
to the SH3 (SRC homology 3) domain within the p47phox

subunit, which disrupts binding to the p22phox subunit (261).
The gp91ds-tat is derived from the NADPH oxidase Nox2
cytosolic B loop (mouse Nox2; amino acids 86–94) subunit
and was designed to inhibit Nox2 interacting with p47phox

(260). TAT-NR2B9c inhibits the generation of superoxide and
phosphorylation of p47phox in cultured neurons exposed to
NMDA (259). It was concluded that inhibition of NMDA
receptor-PDS-95 mediated signaling by TAT-NR2B9c prevented
phosphorylation of p47phox and activation of NADPH oxidase.
However, for both the gp91ds-tat and TAT-NR2B9c peptides
a direct inhibitory action on NADPH oxidase associated with
the arginine content and positive charge of the peptides cannot
be ruled out. In addition, given all four peptides have cell-
penetrating properties, it is possible that these and other CARPs
disrupt the membrane assembly of NADPH oxidase units within
the plasma membrane. Since superoxide generation is also
associated with inflammatory responses, inhibition of NADPH
oxidase activity would also contribute to the anti-inflammatory
properties of CARPs.

While the anti-oxidant properties of CARPs need to be
further investigated, available evidence suggests that arginine
residues within the peptide have the potential to exert anti-
oxidant and/or free radical scavenging actions. Furthermore,
it could be hypothesized that the multiple arginine resides
within CARPs will act as a multivalent anti-oxidant compound,
which depending on the number and arrangement of the
guanidinium moieties would provide considerably more potency
per molecule than arginine alone or a molecule containing a
single guanidine moiety.

Methylglyoxal Scavenging and Glycation
End-Products
Glyoxal compounds are highly reactive cell permeable
dicarbonyls produced predominantly as a by-product of
glycolysis, and are precursors in the formation of advanced
glycation end-products (AGEs). An important dicarbonyl
with respect to cellular toxicity is methylglyoxal, which
reacts irreversibly with arginine and lysine residues and
reversibly with cysteine resides on proteins causing functional
impairment (262). Methylgyloxal also reacts with nucleic acids

and lipids, and its production is associated with oxidative
stress and ROS generation. The glycation of arginine and
lysine by methylglyoxal forms the AGEs hydro-imidazolone,
methylglyoxal-hydroimdazolone 1 (MG-H1), argpyrimidine,
and MG-derived lysine dimer. In addition, to altering protein
function, AGE-modified proteins interact with AGE receptors
(RAGE), which stimulate the expression of inflammatory genes
and ROS generation. AGEs are increased in diabetes, vascular
disease, cerebral ischemia, renal failure, aging and chronic
disorders, such as Alzheimer’s disease, Parkinson’s disease and
liver cirrhosis. Methylgyloxal can affect mitochondrial function,
up-regulate vascular adhesion molecules (e.g., P-selectin and
E-selectin) that contribute to leucocyte adhesion (263), and cause
glycation of the BBB vascular tight junction protein occluding
(264) and the basement membrane extracellular protein
fibronectin (265) resulting in altered endothelial function.

Given that methylglyoxal readily targets basic amino acids,
it is likely that arginine (and lysine/cysteine) residues within
CARPs react with and act as methylglyoxal scavengers, thereby
reducing their toxic effects on intra- and extra-cellular proteins,
and RAGE activation. Methylgloxal is normally detoxified by the
glyoxalase system (glyoxalase-1 and glyoxalase-2), which utilizes
glutathione as a co-factor, however neurons are particularly
susceptible to methylgloxal due to the high glycolytic activity
of the brain and the reduced capacity of the glyoxalase system
in neurons. The capacity of the glyoxalase system in the brain
deceases with age, especially after the fifth decade of life, and an
increase in MG-H1 modified mitochondrial proteins is linked to
aging and increased ROS production (266); increasing glyoxalase
capacity in C. elegan increases life span in this organism (267).
Furthermore, any additional stress within the brain as occurs in
cerebral ischemia/reperfusion, as well as in chronic neurological
disorders is likely to lead to an excessive production of
methylgloxal and/or reduced capacity to detoxify methylgloxal.

Importantly, arginine and other guanidinium containing
molecules (e.g., aminoguanidine, metformin) have the capacity
to scavenge methylglyoxal and prevent AGEs (268, 269). For
example, at one stage aminoguanidine was being developed as
a therapeutic agent for the prevention of AGEs in diabetes, and
both L- and D-arginine can effectively scavenge and attenuate
the harmful effects of methylgloxal on cultured endothelial
cells (270). However, it is considered that small molecule
methylglyoxal scavengers are not sufficiently potent and/or suffer
from short half-lives to be effective in vivo. In contrast, arginine-
containing penta-peptides peptides (CycK[Myr]RRRRE; Cyc,
cyclic peptide; Myr, myristic acid; and myr-KRRRRE; net
charge +4) also possess methylglyoxal scavenging activity (271),
and CycK(Myr)RRRRE prevents methylglyoxal induced pain
in mice, and is being considered as a therapy for pain and
other diabetic complications associated with methylglyoxal
toxicity (271).

Inhibition of Matrix Metalloproteinase
Activation and the Proteasome
Another mechanism whereby CARPs may exert a
neuroprotective effect is by their ability to indirectly prevent the
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activation of matrix metalloproteinases (MMPs) by inhibiting
proprotein convertase (PC) activation. Proprotein convertase
consists of a family of proteolytic enzymes that cleave inactive
proteins, including MMPs into an active state. Poly-arginine
peptides and other CARPs are potent inhibitors of convertases,
such as furin, PC1, PC4, PC5/6, and PC7 (272–276).

Furin is a ubiquitously expressed convertase that is regulated
by hypoxia-inducible factor-1 (HIF-1) (277) and up-regulated in
the ischemic brain (278, 279), and can activate MMP2, MMP3,
and MMP14 (280). Furthermore, MMP3 can activate MMP1,
MMP7 and MMP9, and MMP14 can activate MMP2 and MMP2
can activate MMP9 (281, 282). Significantly, following ischemic
stroke MMP2, MMP3, MMP7, MMP9, and MMP14 are either
up-regulated or activated in the brain.Moreover,MMP activation
is associated with degradation of the neurovascular unit and
BBB disruption, which in turn can result in cerebral edema,
leukocyte infiltration and secondary hemorrhage after ischemia
(279, 281, 282). It is also possible that proprotein convertases have
other protein substrates, which when activated are potentially
neuro-damaging, however this is an area that has as yet not
been explored.

The ability of poly-arginine peptides to inhibit proprotein
convertases, similar to peptide neuroprotection (15), increases
with increasing polymer length (e.g., R9 > R8 > R7 > R6)
(272). In addition, convertase inhibition is not stereospecific
with both to L- and D-isoform peptides having the capacity
to inhibit enzyme activity. The electrostatic interaction between
CARPs and the negatively charged surface of convertases is
believed to be the mechanism responsible for the inhibitory
actions of the peptides. Interestingly, a penetratin-fused peptide
(P-IQACRH: RQIKIWFQNRRMKWKK-IQACRG; net charge
+7.9) that mimics the active site of caspases 1, 2, 3, 6, 7
and 14 and acts as a competitive inhibitor for these enzymes,
inhibited caspase and MMP9 activation following NMDA-
induced excitotoxicity in an in vivo retinal ganglion cell injury
model (283). However, the peptide also reduced NMDA-induced
retinal ganglion cell death in culture and in vivo, and hence it is
possible that the anti-excitotoxic properties of P-IQACRH, rather
than a direct down-stream inhibition of caspases and MMP9
was responsible for blocking the activation of the enzymes. The
P-IQACRH study highlights the caution that is needed when
analyzing the neuroprotective actions of CARPs.

CARPs can also inhibit other proteolytic enzymes, such as
cathepsin C (284) as well as, the activity of the proteasome (285–
289). Importantly, treatments known to inhibit the proteasome,
which is responsible for the degradation of short-lived cytosolic
proteins, is known to reduce the severity of brain injury after
stroke (290–293).

With respect to proteasomal inhibition, the CARP PR-39
(see above) can reversibly bind to the α7 subunit of the 26S
proteasome and block degradation of the nuclear factor-κB (NF-
κB) inhibitor protein IκBα. Interestingly, studies utilizing PR-
39 indicate that proteasomal inhibition occurs via a unique
allosteric, reversible and substrate selective mechanism without
inhibiting overall-proteasome proteolytic activity, which in itself
could be deleterious by interfering with normal cellular processes.
In contrast, mild levels of proteasome inhibition can induce

a protective pre-conditioning response that can protect cells
from oxidative stress (294). Similarly, ischemic pre-conditioning,
which can reduce brain injury following stroke is associated with
proteasomal inhibition (293). PR-39 abolished NF-κB-dependent
gene expression in cultured endothelial cells exposed to TNF-α,
and in the pancreases and hearts of mice following induction
of acute pancreatitis and myocardial infarction, including the
up-regulation of vascular cell adhesion molecule-1 (VCAM-1)
and intercellular adhesion molecule-1 (ICAM-1) (285). Other
studies have also demonstrated that PR-39 can reduce infarct size
and have beneficial effects on microvascular cells in myocardial
reperfusion injury models by blocking proteasome-mediated
degradation of IκBα (200).

In contrast to blocking activation of the NF-κB, inhibition
of the proteasome is likely to enhance activation of the
transcription factor HIF-1, which is considered one of the
most critical adaptive gene expression responses to low
oxygen concentrations. Hypoxia-inducible factor-1 consists
of the HIF-α and HIF-β subunits, the former undergoing
proteasomal degradation during normoxia, and the latter being
constitutively expressed. Therefore, inhibition of the proteasome
will enhance and/or prolong HIF-1 activation in the brain
during and following cerebral ischemia, thereby enhancing any
neuroprotective actions of the transcription factor. For example,
PR-39 was demonstrated to inhibit the proteasome-dependent
degradation of HIF-α and stimulate angiogenesis by accelerating
the formation of vascular structures in cultured endothelial cells
and in vivo in the myocardium (295). A similar effect was
demonstrated in the brain after stroke with a small molecule
proteasome inhibitor resulting in accumulation of HIF-α and
enhanced angio-neurogenesis (291).

Inhibition of the proteasome can also enhance the activity
of the transcription factor nuclear factor E2-related factor 2
(Nrf2), which regulates the expression of multiple cytoprotective
genes, particularly those involved in mitigating oxidative stress
(e.g., HO-1, SOD1, NAD[P]H dehydrogenase, glutathione S-
transferase) (296). Under normal conditions, cytoplasmic Nrf2 is
bound to kelch-like ECH-associated protein 1 (Keap1), in which
it is subject to proteasomal degradation, however oxidative stress
disables keap1, allowing Nrf2 to accumulate, translocate to the
nucleus and activate gene expression. Interestingly, a Nrf2 amino
acid derived sequence (LQLDEETGEFLPIQ) has been developed
that disrupts the Nrf2-Keap1 interaction, and when fused to TAT
(TAT-14: YGRKKRRQRRR-LQLDEETGEFLPIQ; charge +4) or
R7 (7R-ETGE: RRRRRRRR-LQLDEETGEFLPIQ; net charge+4)
has been demonstrated to activate Nrf2 and cytoprotective gene
expression in THP-1 monocyte and RAW 264.7 macrophage
cell lines (297, 298). Furthermore, the TAT-14 peptide modified
to contain a calpain cleavage sequence (TAT-CAL-DEETGE:
Table 2) increased Nrf2-regulated gene expression in the brain
(299) and is beneficial when administered to rodents after global
cerebral ischemia and TBI (154, 299). It remains to be determined
if the Nrf2 peptides are activating Nrf2 by directly disrupting
the Nrf2-Keap1 interaction or by inhibiting the proteasome. Also
of interest is the demonstration that in rats, oral treatment with
arginine, resulted in the up-regulation of proteins associated with
the Nrf2 pathway in liver and plasma (300).
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Reducing the Inflammatory Response
Whereas, few studies have specifically examined neuroprotective
CARPs in the setting of neuro-inflammation, this class of
peptide has well-established anti-inflammatory properties that
are potentially beneficial in neurodegenerative disorders. It is
likely CARPs exert differential effects on the immune response
by targeting both the CNS and peripheral immune responses by
several mechanisms. As explained above, the ability of CARPs
to inhibit the proteasome will reduce NF-κB activation and
the expression of genes involved in pro-inflammatory pathways.
Interestingly, the CARP AIP6 (RLRWR; net charge +3) can
inhibit NF-κB activity by an alternative mechanism, by binding
to and blocking NF-κβ p65 sub-unit binding to DNA and
inhibiting its transcriptional activity (301). The p65 subunit
is a negatively charged protein, and hence it is possible that
CARPs have the capacity to interfere with this NF-κβ sub-unit
through an electrostatic interaction. Similarly, because CARPs
can interfere with cell surface receptors levels and/or function, it
is also possible they reduce the inflammatory response associated
with ligands (e.g., cytokines, chemokines, intracellularmolecules)
binding to receptors on immune cells.

Proteins regulated by NF-κB and involved in the
inflammatory response include cytokines (e.g., IL-1, TNF-
α), chemokines (e.g., MCP-1, CXCL1) and vascular adhesion
molecules (e.g., ICAM-1, VAM-1) (302). To this end, NF-κB
is responsible for up-regulating cerebral vascular adhesion
molecules VCAM-1 and ICAM-1, which during cerebral
reperfusion promotes macrophage and neutrophil infiltration
into the brain. Although the ability of CARPs to reduce vascular
adhesion molecule expression in the cerebral vasculature has not
been examined, PR-39 can reduce VCAM-1 and ICAM-1 protein
levels in heart tissue following myocardial infarction in mice
and in cultured vascular endothelial cells following exposure
to TNF-α (285), and leukocyte adhesion to rat mesenteric
venules after ischemia and reperfusion (303). In addition, the
TAT peptide reduces the production of multiple cytokines (e.g.,
G-CSF, IL-6, MIP1α, TNF-α, and IFN-γ) in cultured human
lung epithelial cells following protein kinase C stimulation by
phorbol 12, 13-dibutyrate, a stimulus associated with NF-κβ

activation (304). In line with the ability of CARPs to inhibit the
proteasome, TAT reduced degradation of the NF-κβ inhibitory
subunit IK-κβ in lung epithelial cells following protein kinase
C activation. Similarly, AIP6 demonstrated anti-inflammatory
effects in cultured activated macrophages by decreasing TNF-α
and prostaglandin-E secretion and in a mouse model of paw
inflammation reduced levels of TNF-α, IL-1β, and IL-6 protein
in affected tissue (301).

CARPs can also bind to oxidized phospholipids (e.g.,
ox-LDLs) which are known pro-inflammatory molecules
and play an important role in atherosclerosis and other
inflammatory disorders. Due to the high lipid content of
the brain, any conditions that increase oxidative stress will
generate oxidized phospholipids. Binding of CARPs to oxidized
phospholipids is believed to enhance their clearance, as
well as reduce their inflammatory potential and inhibitory
effects on anti-oxidant enzymes associated with lipoproteins

and the cell membrane (255, 305). The CARP E5 (Ac-
SHLRKLRKRLLRDADDKRLA-NH2; net charge +6) was
demonstrated to bind oxidized phospholipids and inhibit
their pro-inflammatory function in human blood (305). In
addition, pre-treatment of macrophage (RAW264.7) and
endothelial (HUVEC) cell lines with the LL-27 reduces pro-
inflammatory gene expression, whereas pre-incubation of
oxidized phospholipid with the peptide prior to administration
to mice reduces serum IL-6 and TNF-α levels (255). Similarly, the
Apolipoprotein E (ApoE) protein derived CARP Ac-hE18A-NH2

(Ac-RKLRKRLLRDWLKAFYDKVAEKLKEAF-NH2; net charge
+6) can bind bacterial lipopolysaccharides (LPS) and reduce its
inflammatory (e.g., TNF-α, IL-6 production) inducing properties
in human blood and primary leukocytes and a monocyte cell line
(306). Ac-hE18A-NH2 can also inhibit LPS-induced VCAM-1
expression, and reduce monocyte adhesion in HUVECs, as well
as the secretion of IL-6 and monocyte chemoattractant protein-1
(MCP-1) from THP-1 monocyte cells exposed to LPS (307).
Also, the CARP TAT-14 (see above), which while developed to
activate Nrf-2, reduces TNF-α production in THP-1 monocyte
cells following LPS stimulation (297).

Other ApoE derived peptides have also demonstrated
anti-inflammatory properties. The two almost identical
ApoE derived peptides, ApoE-133–150 (ApoE-133–150:
Ac-LRVRLASHLRKLRKRLLR-NH2; net charge +8.1) and
COG-133 (Table 1) suppress cytokine expression (IL-8 or
TNF-α) and other inflammatory mediators (e.g., COX or NO)
in THP-1 monocytes or BV-2 microglia cells stimulated with
LPS (308, 309). COG-133 treatment can suppress systemic and
brain levels of TNF-α and IL-6 in mice after LPS administration
(36). The COG112 peptide, which comprises COG133 fused
to the CCPP penetratin (Table 2) inhibits the inflammatory
response in mouse models of pathogen or injury induced colitis
by reducing several pro-inflammatory mediators. For example,
COG112 attenuated cytokine and chemokine expression, iNOS
expression and nitric oxide production in mouse colon epithelial
cell cultures and in colon tissue in mice following exposure to
Citrobacter rodentium (310, 311). It was also demonstrated that
COG112 inhibited NF-κB activation in colon cells and tissue
following bacterial stimulation (310, 311).

The CARP PACAP38 (Table 3), which is derived from the
neuropeptide pituitary adenylate cyclase-activating polypeptide
(PACAP) binds the adenylate-cyclase-activating receptor
stimulating adenylate cyclase and subsequently increases
intracellular cAMP, which is a signaling molecule important
in many biological processes. PACAP38 is a predominant
cleavage product of PACAP, which exerts several functions
within the CNS, including acting as a neurotransmitter and
neuromodulator and modulating inflammatory responses.
The peptide has cell-penetrating properties (312), is widely
distributed within the CNS and has neuroprotective actions
in excitotoxicity, retinal ischemia, stroke and traumatic brain
injury models (313–318). With respect to its anti-inflammatory
actions, PACAP38 can reduce the activation of cultured primary
microglia to hypoxia by inhibiting induction of nitric oxide,
iNOS, and p38 as well as reducing TNF-α secretion (315).
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Furthermore, following traumatic brain injury, PACAP38
treatment reduces cerebral inflammation by reducing toll-
like receptor-4 (TLR-4) up-regulation, and its downstream
mediators. For example, treatment reduced TNF-α and IL-1β
levels, reduced NF-κβ p65 sub-unit levels in nuclei, and increased
levels of the NF-κβ inhibitory subunit IκB-α in the brain (318).
Additionally, PACAP38 ablated TLR-4 up-regulation in the
brain and in BV-2 microglia following exposure to the TLR-4
agonist LPS (319). Similarly, the LL-37 anti-microbial CARP
(LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES; net
charge +6) attenuates activation of cultured dendritic cells to
different TLR ligands (320).

The CARP dRK (rrkrrr; net charge +6; lower case indicates
D-isoform amino acids) was identified based on its ability to
block the interaction between VEGF and the VEGF receptor. The
dRK peptide can reduce TNF-α and IL-6 production in normal
peripheral blood monocytes and synovial fluid mononuclear
cells of rheumatoid arthritis patients following VEGF stimulation
(321). In a mouse model of collagen-induced arthritis, dKR
reduced paw inflammation and serum levels of IL-6 (321).
While it was believed that dKR was directly inhibiting the pro-
inflammatory effects of VEGF and its receptor, it is possible the
peptide was inhibiting VEGF induced activation of NF-κβ. In
a different collagen-induced arthritis mouse model, the CARPs
IG-19 (IGKEFKRIVQRIKDFLRNL-NH2; net charge +5) and
IDR-1018 (Table 1) both reduced the number of limbs affected,
and IG-19 reduced overall disease severity (322). Subsequent
examination of IG-19 treated mice revealed reduced serum
levels of the pro-inflammatory cytokines TNF-α and IFN-γ
and reduced cellular infiltration and cartilage degradation in
arthritic joints. Interestingly, in a more recent study, IDR-
108 prolonged anti-inflammatory TGFβ gene expression and
suppressed early pro-inflammatory IL-1β gene expression levels
in a human endothelial cell line (EA.hy926) cultivated in a high
glucose environment to induce cell stress (323). In another study,
treatment of arthritic mice with a peptide developed to mimic
the action of Bcl-2 homology 3 (BH3) domain-only proteins
(TAT-BH3: Ac-RKKRR-O-RRR-EIWIAQELRRIGDEFNAYYAR;
net charge +6) ameliorated arthritis development and reduced
the number of myeloid cells in the affected joint (324).

The CARP R9-SOCS1-KIR (RRRRRRRRR-
DTHFRTFRSHSDYRRI; net charge +11.2) was developed
to inhibit suppressor of cytokine signaling 1 (SOCS1) signaling,
which can result in JAK/STAT or NF-κβ activation. This
peptide blocked the activation and nuclear translocation of
STAT1α, STAT3, and NF-κB p65 and inflammatory effects
induced by IFN-γ, TNF-α, and IL-17A in the ARPE-19 human
retinal pigment epithelial cell line (325). Topical delivery of
R9-SOCS1-KIR also reduced inflammatory cell infiltration into
the eye in a mouse model of experimental autoimmune uveitis.
Furthermore, in a mouse model of Pseudomonas aeruginosa
induced keratitis, R9D (Table 1) treatment reduced disease
severity and concentrations of corneal TNF-α, IFN-γ, IL-10, and
GM-CSF (326).

The cationic arginine-rich human beta-defensin derived
peptide hBD3-3 (GKCSTRGRKCCRRKK; net charge +8) has
demonstrated in vitro and in vivo anti-inflammatory actions. In

a macrophage cell line (RAW264.7) pre-treatment with hBD3-
3 reduced iNOS, TNF-α, and IL-6 protein expression (327).
In addition, mice treated with hBD3-3 and injected with LPS
had reduced plasma levels of TNF-α and IL-1β and reduced
neutrophil infiltration into lung regions affected by LPS induced
inflammation. Finally, as NF-κβ activation is involved in iNOS,
TNF-α and IL-6 expression, studies in RAW264.7 cells revealed
that hBD3-3 significantly inhibited degradation of the NF-κβ

inhibitory subunit IκB-α, as well as the translocation of the NF-κβ

p65 subunit to the nucleus.
CARPs may also inhibit inflammation by reducing activation

of components of the complement system. Protamine (Table 1)
and large poly-L-arginine peptides antagonize complement
protein C5a binding to its receptor C5aR1 (or CD88) in
leukocytes (328). C5aR is a transmembrane G-protein-coupled
receptor expressed on neutrophils, monocytes, eosinophils,
and non-myeloid cells, including liver cells and alveolar
and kidney tubular epithelial cells, some classes of neurons
and microglia and astrocytes. Importantly activation of the
complement system following stroke/cerebral ischemia and other
neurological conditions is associated with unfavorable outcomes
and inhibition of C5a improves outcomes (329). Antagonism
of the C5aR is thought to be due to an electrostatic interaction
between the CARP and anionic sites within the receptor (328).

In some situations, CARPs may induce pro-inflammatory
responses. For example, a large poly-arginine peptide (R100; 100-
mer, 12.5–13.5 kDa) can bind to TLR-4 and induce cytokine
and interferon gene expression in mouse splenocytes comprising
mostly of B-cells, but also T-cells and monocytes (330). The
peptides ApoE-133–150 and IDR-1018 increase secretion of the
cytokine MCP-1 in human blood mononuclear cells (309). In
one study, IDR-1018 also increased neutrophil adherence to
EA.hy926 endothelial cells and promoted neutrophil migration
and cytokine production (e.g., IL-8, MCP-1, MCP-3) (331).

Pro-survival Signaling
Due to the ability of CARPs to interact with cell surface receptors
it appears they also have the capacity to stimulate receptor
mediated pro-survival signaling pathways. The best example
of CARP pro-survival signaling has been demonstrated with
apelin peptides.

Apelin is a highly conserved arginine-rich peptide first
identified in 1998 following its isolation in bovine stomach
extracts. The peptide is expressed as a 77 amino acid preprotein,
which can be processed into at least three bioactive carboxy-
terminal fragments including apelin-36, apelin-17, and apelin-13
(Table 3). All apelin peptides can bind the G-protein coupled
apelin receptor (originally named APJ) and induce cell signaling
(332), with positively charged arginine and lysine resides in
apelin, and negatively charged aspartate and glutamate resides
in the extracellular N-terminal region of the apelin receptor
important for receptor binding and internalization (333, 334).
Apelin peptides and the apelin receptor are widely expressed
throughout the body including brain, heart, adipose, skeletal
muscle, kidney, and lung. The apelin/apelin receptor system
regulates cardiac and vascular function, glucose metabolism,
fluid homeostasis, cell survival, and angiogenesis. Other CARPs
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including poly-arginine peptide R9D and protamine can bind
to the apelin receptor (333, 335). Interestingly, pre-treatment
of cells with R9D and protamine appears to inhibit subsequent
apelin receptor signaling. However, this is likely due to the R9D
and protamine peptides desensitizing the receptor or inducing
receptor internalization because pre-treatment of cells with
apelin peptides also decreases apelin receptor cell signaling (336).
The apelin receptor can dimerise with the κ-opioid G-protein-
coupled receptor (KOR) and bind both apelin and dynorphin
A peptides (Table 3) and activate extracellular signal–regulated
kinase 1/2 (ERK1/2) signaling (337).

Established signaling events activated by the apelin receptor
are the AMP-activated protein kinase (AMPK), ERK1/2 and
phosphatidyl inositol 3-kinase/protein kinase B (PI3K/AKT)
pathways (338–340). The AMPK pathway is a major energy
sensing system that monitors for low levels of energy molecules,
such as ATP and AMP to induce cellular adaptive metabolic
changes to preserve and better utilize remaining energy
substrates and maintain mitochondrial function. In addition,
AMPK can activate the transcription factor Nrf2, resulting
in the expression of anti-oxidant proteins. The ERK pathway
has diverse actions including cell survival mediated by the
expression of pro-survival proteins (e.g., BCL2) and inhibition
of pro-apoptotic proteins (e.g., BAD). Similarly, the PI3K/AKT
pathway promotes cell survival by targeting and phosphorylating
proteins that regulate cell death and survival, cell migration and
metabolism and angiogenesis.

With respect to neuroprotection, apelin peptides reduce
intracellular calcium influx and neuronal death following
NMDA receptor mediated excitotoxicity (163–166, 341),
and improve outcomes in animal stroke, perinatal hypoxia-
ischemia, traumatic brain injury, intracerebral hemorrhage and
Alzheimer’s disease models (see Table 3). The neuroprotective
mechanism of action of apelin peptides have been attributed
to AMPK, ERK, and/or AKT mediated signaling by inhibiting
apoptosis, suppressing inflammation, reducing ER stress,
preserving BBB integrity and stimulating angiogenesis (163, 166–
170, 340–342), as well as mechanisms independent of apelin
receptor signaling (164, 165).

The endogenous CARP toddler (also known as elabela/apela;
QRPVNLTMRRKLRKHNCLQRRCMPLHSRVPFP; net charge
+9.1) can also bind the apelin receptor and induce ERK
signaling (343). Whereas, an anti-microbial CARP SR-0379
(MLKLIFLHRLKRMRKRLKRK; net charge +11) can stimulate
ERK and AKT phosphorylation in dermal fibroblasts via a cell
surface integrin receptor (344). In addition, the anti-microbial
LL-37 peptide can bind to cell surface receptors in different
cells, and activate downstream ERK, AKT, or P38 signaling (345,
346). Finally, protamine and polycationic arginine and lysine
peptides interact with and enhance the EGF receptor tyrosine
kinase activity and thereby enhance cell signaling activated by the
receptor (347, 348).

Inhibiting Protein Aggregation in
Neurodegenerative Disorders
Protein misfolding can lead to protein aggregation, and the
accumulation of specific protein oligomers, aggregates and

fibrils is the hallmark of several chronic neurodegenerative
disorders, such as Alzheimer’s disease (e.g., Aβ peptide, tau),
Parkinson’s disease (e.g., α-synuclein), Huntington’s disease (e.g.,
Huntingtin), and amyotrophic lateral sclerosis (e.g., SOD1).
Arginine is a common additive to protein solutions to facilitate
protein folding, and to help maintain protein stability and
inhibit protein aggregation (349, 350). Since arginine can
stabilize proteins and inhibit self-aggregation, it is possible
CARPs can also reduce protein misfolding and aggregation, and
is a mechanism through which CARPs may be beneficial in
animal models of human neurodegenerative disorders associated
with proteinopathies.

The guanidinium head group of arginine and the ability
of arginine to self-associate to form clusters (n-mers; n > 2)
is considered a critical mechanism responsible for suppressing
protein aggregation (349). Arginine clusters associate with
the surface of proteins, namely aromatic (e.g., tryptophan)
and negatively charged (e.g., glutamate) amino acid residues
via cation-π interactions and hydrogen bonding, respectively.
The interaction of arginine clusters with hydrophobic residues
not normally exposed in the native state stabilizes partially
unfolded proteins and act to “crowd around” proteins to prevent
aggregation (350). Hence, it is conceivable that CARPs, such
as poly-arginine molecules due to their multivalent arginine
arrangement behave in a similar fashion to arginine clusters to
prevent protein aggregation. For example, CARPs that inhibit
Aβ oligomer formation, which is considered neurotoxic include
KLVFFRRRRRR (net charge +7) and R5 (RRRRRR: net charge
+5) (351), 15M (Ac-VITNPNRRNRTPQMLKR-NH2: net charge
+5) (352) SRPGLRR (net charge +3) (353), RR-7-animo-4-
trifluromethylcoumarin (net charge +3) (354) RI-OR2-TAT
(Ac-rGffvlkGrrrrkkrGy-NH2: charge +9) (355) R8-Aβ (25–35)
(rrrrrrrr-gsnkgaiiglm: net charge +10) (356), and the related
D3 and RD2 peptides (Table 1) (28, 29). In a mouse model
of Alzheimer’s disease, R9 administered subcutaneously over 4
weeks, decreased brain Aβ deposits by 15%, albeit the reduction
was not statistically significant (357). In addition, poly-arginine
(5–15 kDa; 32–96-mers) can inhibit the aggregation of a tau
mutant protein (P301L) commonly associated with tauopathy
(358), and the CARPs P42-TAT (Table 2) (118) and TAT-P110
(Table 2) (149) inhibit aggregation ofmutant Huntingtin protein.
Interestingly, several of the key proteins that accumulate in
the CNS in chronic neurodegenerative disorders are negatively-
charged (e.g., Aβ 1–42: −2.7; tau: −6.2; α-synuclein: −8.9;
Huntington: −59.7; SOD1: −5.5), which would increase their
electrostatic affinity to positively-charged molecules, and make
them ideal therapeutic targets for CARPs.

ENDOGENOUS CARPS AND
NEUROPROTECTION

The endogenous PACAP38 peptide is a member of the
secretin/glucagon/growth hormone-releasing hormone
superfamily, and its neuroprotective properties have been
discussed above. Dynorphins are widely distributed in the CNS
and consist of two main peptides dynorphin A (Table 3) and
dynorphin B (Table 3) that bind the κ-opioid receptor to induce
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analgesia (359). Interestingly, many other synthetic CARPs
also have analgesic properties (see Tables 1, 2). Dynorphin
A and dynorphin B are synthesized as the precursor protein
predynorphin, which is then proteolytically cleaved to the
smaller peptides. The dynorphin A peptide has also been shown
to be neuroprotective in a rat stroke model (177).

Similarly, different classes of endogenous anti-microbial
peptides (e.g., defensins, cathelicidins, bactenecin) have been
derived from mammals, many of which are cationic and
arginine-rich. Anti-microbial peptides are mainly produced by
leukocytes and act as a defense against bacteria, fungi and
viruses, and act either directly or by modulating inflammatory
responses. Interestingly, several cationic arginine-rich anti-
microbial peptides have also been shown to have neuroprotective
properties in stroke, perinatal hypoxia-ischemia and traumatic
brain injury animal models (Table 2).

COMPOUNDS CONTAINING THE
GUANIDINIUM MOIETY AND
NEUROPROTECTION

As mentioned above, arginine is unique in possessing a
guanidinium head group, and most likely the critical element
imparting the neuroprotective properties of CARPs. It is
therefore not surprising that compounds containing the
guanidinium moiety including arginine, arginine-based NOS
inhibitors (e.g., L-NNA, L-NAME), the drugs metformin,
phenformin, amiloride, and aminoguanidine, the toxin
tetrodotoxin and the endogenous neuroactive molecule
agmatine have neuroprotective properties in in vitro neuronal
injury models (e.g., excitotoxicity, oxygen-glucose deprivation)
and in animal models of stroke, perinatal hypoxia-ischemia,
spinal cord injury, traumatic brain injury Parkinson’s disease
and Alzheimer’s disease (Supplementary Table 3). It is thus
conceivable that CARPs and other guanidinium moiety
containing small molecules, at least in part, share the same
neuroprotective mechanism of actions including anti-excitotoxic
properties. In support of their anti-excitotoxic properties
different guanidinium moiety containing molecules have been
demonstrated to inhibit voltage gated and ligand-gated ion
channels (230–237). However, because CARPs are multivalent
guanidinium-agents they are likely to possess greater potency at
the molar level than molecules that contain only one or several
guanidine moieties, and have a greater capacity to traverse
cell membranes.

Metformin and phenformin are biguanindine anti-
hyperglycemic agents, which have been used for the treatment of
diabetes for over 50 years. Like CARPs, metformin can activate
AMPK signaling, target and suppress mitochondrial ROS
production, limit calcium induced intracellular toxicity,
scavenge methylglyoxal and reduce neuroinflammation
(269). Aminoguanidine can also scavenge methylglyoxal
and other dicarbynols (25). Agmatine is an endogenous divalent
cationic guanidine. In the brain it is considered a putative
neurotransmitter, in which it can be released from synaptic
vesicles following membrane depolarization. It binds to various

receptors (e.g., α2 adrenergic receptor) and can block NMDA
receptors and other cation ligand-gated channels, with studies
indicating that agmatine binds to the receptor near the channel
pore and that the guanidinium group is critical for binding (360).

Arginine-based nitric oxide inhibitors, such as L-NNA and L-
NAME are commonly used in in vitro excitotoxic and animal
stroke studies to determine the neurodamaging role of nitric
oxide over-production in neuronal death and ischemic brain
tissue injury. However, given the potential anti-excitotoxic action
of the guanidine moiety, it is possible that arginine-based
NOS inhibitors in the setting of excitotoxicity are actually
suppressing the activation of NMDA receptors and ion voltage
gated channels, thereby indirectly rather than directly inhibiting
NOS activation. There are several lines of evidence that support
this hypothesis. Following excitotoxicity, it is difficult to imagine
that by blocking neuronal nitric oxide production, but not the
toxic intracellular influx of calcium is able to provide high
level neuroprotection (361). In addition, arginine-based NOS
inhibitors are not readily taken up by cells and possess slow
NOS binding kinetics (362), but are neuroprotective when added
at the same time as the excitotoxic agent, which favors an
extracellular (i.e., cell surface) rather than an intracellular (i.e.,
NOS) mechanism of action. In addition, L-NAME is a weak NOS
inhibitor, which is hydrolyzed by ubiquitous esterases to themore
potent L-NNA, thus requiring additional time for the inhibitor to
exert its NOS inhibitory effects.

CONCLUDING REMARKS

There is now overwhelming evidence from experimental studies
that CARPs represent a novel class of neuroprotective agent
with great potential for the treatment of neurological disorders.
However, only twoCARPs with neuroprotective properties (TAT-
NR2B9c/NA-1 and CN-105) have so far progressed to clinical
trials for a neurological condition (363–365). Further studies
are required to obtain a more complete understanding of the
neuroprotective mechanisms of action of CARPs in acute CNS
injury and chronic neurodegenerative disease models. Despite
this, based on experimental studies to date it appears that
CARPs have the potential to be developed as therapeutics for the
treatment of a diverse range of neurological disorders including
stroke, perinatal hypoxia-ischemia, traumatic brain injury and
spinal cord injury as well as, epilepsy and pain, and potentially
even chronic degenerative neurological disorders, such as
Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral
sclerosis, and Huntington’s disease. Importantly, CARPs have
properties that greatly enhance the likelihood of translational
success at the clinical level including possessing a pluripotent
mechanism of action, the capacity to enter the CNS, and
the ability to exert a broad range of beneficial extracellular,
intracellular and intra-organelle effects. Based on human studies
with TAT-fused peptides, such as TAT-NR2B9c/NA-1 (366),
the poly-arginine peptide R9/ALX40-4C (367), and arginine-
rich peptides CN-105 (365), protamine (368) and RD2 (369),
it appears this class of peptide has a favorable safety profile.
Moreover, our recent experimental neuroprotection study with
the poly-arginine peptide R18 in a non-human primate stroke
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model (26), has not disclosed any neurological or other toxic
effects, which also augurs well for the translational potential of
other CARPs to the clinical arena.

With respect to previous studies using cationic and arginine-
rich peptides including those fused to a CCPP in neuroprotective,
neuroactive or cytoprotective studies we believe that due to
the cofounding effects of peptide positive charge and arginine
residues, the mechanisms of action of theses peptides need to be
critically re-evaluated.

Finally, given that CARPs with different amino acid sequences
or modifications will have different physio-chemical and
biological properties, future studies should focus on examining if
new CARPs withmore targetedmolecular mechanisms of actions
can be designed to improve therapeutic efficacy for specific
neurological disorders.
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