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Neural stem cells (NSCs) have garnered significant scientific and commercial interest

in the last 15 years. Given their plasticity, defined as the ability to develop into different

phenotypes inside and outside of the nervous system, with a capacity of almost unlimited

self-renewal, of releasing trophic and immunomodulatory factors, and of exploiting

temporal and spatial dynamics, NSCs have been proposed for (i) neurotoxicity testing;

(ii) cellular therapies to treat CNS diseases; (iii) neural tissue engineering and repair; (iv)

drug target validation and testing; (v) personalized medicine. Moreover, given the growing

interest in developing cell-based therapies to target neurodegenerative diseases, recent

progress in developing NSCs from human-induced pluripotent stem cells has produced

an analog of endogenous NSCs. Herein, we will review the current understanding on

emerging conceptual and technological topics in the neural stem cell field, such as

deep characterization of the human compartment, single-cell spatial-temporal dynamics,

reprogramming from somatic cells, and NSC manipulation and monitoring. Together,

these aspects contribute to further disentangling NSC plasticity to better exploit the

potential of those cells, which, in the future, might offer new strategies for brain therapies.
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INTRODUCTION

The concept of the stem cell niche was officially used for the first time by Schofield (1) in
1978 to define local environments with specific molecular and cellular characteristics that are
required for the maintenance of hematopoietic stem cells. Ten years previously, Smart (2)
and Altman (3) identified tissue in the brain that was thought to be capable of self renewal,
namely two specific regions with proliferative capacity one localized in the subventricular zone
(SVZ) of the lateral ventricle and one in the subgranular zone (SGZ) of the dentate gyrus
of the hippocampus. The assay to test in vitro neural stem/progenitor cell (NPC)-self-renewal
and multi-potency consisted of assessing their ability to give rise to neurospheres (4). In vivo,
in mice, their self-renewal capacity was proved using targeted ablation of dividing GFAP-
positive cells and by genetic lineage tracing (5, 6). Similarly to the hematopoietic niche and
obviously in addition to the intrinsic and specific characteristics of neural stem cells (i.e.,
their ability to originate neuro-glia cells), the fate of NPCs and their (lifelong) self-renewal
and differentiation capacity are tightly regulated by complex interactions between intrinsic and
extrinsic signals provided by surrounding cells in the niche and by distant sources (7). The
microenvironment of the neurogenic niche includes multiple cell populations whose interplay,
including that between stem cells themselves, is still largely unknown and under active exploration.
Moreover, physical activity, stress, environmental enrichment, aging, and intrinsic factors, such as
cytokines, growth factors, hormones, or neurotrophins, finely regulate the fate of neural stem cells.
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These features are shared with all other stem niches, such as
the originally identified hematopoietic niche (8). A thorough
characterization of other niche components has recently been
provided in Andreotti et al. (9) and in Bacigaluppi et al. (10).

Understanding the potential of endogenous or administered
NPCs as well as the cross-talk between neural stem cells and
their niche components is essential for identifying what can be
modulated and how for the development of therapies against
neurological disorders in which neural stem cell function is
altered or in which its improvement might be of help.

In this review, we would like to focus on the intrinsic and
comprehensive added value of neural stem cell plasticity. NSC
plasticity indeed is per se fundamental for development but
represents an important asset in a therapeutic perspective since
the neurogenic niche remains an exception in the “static” brain
and represents a possible unique source of new neurons useful
for substantially incurable neurological disorders and brain aging
problems which are a heavy social and economic burden.

We will first frame NSCs in the stem cell context and
then illustrate their plasticity in a developmental perspective,
summarizing the current understanding of NSC modes of
division and their mechanisms of persistence in the adult.
We will compare NSCs in the two neurogenic regions of the
adult mammalian mouse and human brain and discuss recent
controversies on neurogenesis in the adult human brain. Last,
we will discuss the current therapeutic exploitation of NSC
plasticity along with the technological advancements that are
being implemented, to conclude with the pros and cons, the
benefits and hurdles, linked to taking advantage of these assets.

STEM CELLS

Stem cells (SC) are unspecialized, immature cells with self-
renewing capacity, namely the ability to produce nearly identical
copies of themselves for a long period of time without
differentiating and with the possibility to differentiate into
various cell lineages (11).

Totipotent stem cells, such as zygote cells and the first few
cells from their division, can differentiate into all possible cell
types. Pluripotent stem cells can instead differentiate into cells
of the three embryonic layers, i.e., mesoderm, endoderm, and
ectoderm, and can give rise to tissue and organ specialized cells.
Multipotent stem cells, such as adult hematopoietic or neural
stem cells, can differentiate into closely related families of cells
to renew tissue-specific cell populations in organs, such as liver,
intestinal tract, and skin. Exceptionally, this does not occur by
default for the brain. Last, unipotent stem cells can differentiate
only into a single cell type, usually of a single specialized tissue
or organ.

SCs can also be classified according to their source of
origin. Embryonic Stem Cells (ESCs) are totipotent, derive from
the inner cell mass of human blastocysts, and can potentially
proliferate indefinitely, giving rise to all types of cells in the
human body. Adult StemCells are undifferentiated, totipotent, or
multipotent cells able to replenish dying cells and to regenerate
damaged tissues (if possible). Induced Pluripotent Stem Cells

(iPSCs), recently developed by genetic reprogramming of adult,
non-pluripotent somatic cells, are comparable to human ES
cells, having differentiation potential in vitro and a capability
to generate in vivo teratomas. iPSCs can be generated by over-
expression through retro- or lenti-viral vector transduction of
four transcription factors: Oct3/4, Sox2, c-Myc, and Klf4 [c-Myc
is dispensable (12)]. These cells express human ES markers (such
as OCT3/4, SOX2, and NANOG) at the same or higher level than
ESCs and stain positive for markers of the three germ layers,
confirming their pluripotency and differentiation potential (13).
They can also be generated using small molecules that mimic
the effect of transcription factors (14) or by miRNAs (15). Last,
Cancer Stem Cells emerge from malignant transformation of
adult stem cells or from somatic cells that acquire self-renewing
potential. They have been proposed as the source of tumors
and of metastases and have been isolated from various tissue
types (16).

Stem cells gained value in the last 15 years for the development
of cell-based therapies for many serious diseases and injuries. For,
example, hematopoietic stem cell transplants became established
therapeutics for leukemia and for burns and corneal disorders
(11). For complex neurological diseases, unfortunately not all
stem cells can be exploited. In principle, ESCs would be
perfect for cell replacement therapy because they can proliferate
indefinitely (17), but there is also a risk of tumor formation and
immune rejection along with ethical, religious, and philosophical
problems. To reduce the tumor-forming potential, human ESCs
could be pre-differentiated in vitro in committed precursor cells
or neural precursor cells (NPCs) (18), which maintain self-
renewal capacity and at the same time are restricted to generate
only neural cells (neurons and glia) in vivo upon transplant, but
these still raise ethical concerns. ESCs might, in principle, be
directed to differentiate into specialized neuronal subtypes (19)
to further reduce the risk of tumorigenicity. But more than 200
distinct neuronal subtypes with regional specificity exist, and
the applicability of transplanted differentiated cells is still far
from realization.

An alternative strategy is to use neural stem/precursor cells
from aborted human fetuses at the gestational age of 6–20 weeks.
They can be maintained, expanded, and split without losing their
self-renewing and neurogenic capacity for a long period of time
in vitro. Their main drawback, however, is the limited availability
and the unpredictability of when, where, or in what conditions
the material will be obtained.

It is also possible to obtain NPCs from reprogrammed somatic
cells, hiPSCs, differentiated to generate NPCs with very high
neurogenic potential and virtually devoid of tumorigenicity if
intracerebrally transplanted (20). Moreover, iPSC-derived NSCs,
unlike adult fetal NPCs, which cannot be used as an autologous
cell source, offer the possibility of autologous transplantation.

Further, NPCs could also be generated via transdifferentiation
(iNPCs) of a cell type into another not following the “normal”
re-programmed differentiation path, because transdifferentiated
cells do not become pluripotent at any time (21–26). iNPCs,
similarly to NPC-derived iPSCs, are useful for transplantation
therapy, for establishing disease models, and for drug screening.
In principle, they hold a low risk of tumorigenesis, maintain
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the capacity of self-renewal, and give rise to multiple neuronal
subtypes in vitro and in vivo. Indeed, specifically for the
in vivo applicability, murine iNPCs transplanted into healthy
adult mouse brain survived for 6 months without overgrowths,
achieved functional integration (27), and could differentiate
into neuronal cells, although they retained a mixed neuro-
glia phenotype (M2+ and GFAP+) (28). In the context of
spinal cord injury, iNPCs generated by transfection with four
reprogramming factors and transplanted in rat spinal cord,
differentiate into all neuronal lineages (29). Direct cell conversion
has also been tested in vivo by transplanting human fibroblasts
and human astrocytes engineered to express inducible neural
reprogramming genes that converted fibroblasts and astrocyte
cells into neurons directly in the adult rodent brain (30).

This field is still in its infancy, and before considering
the development of personalized regenerative therapies
with iNPCs (31), further investigation is required to better
understand the detailed mechanisms occurring in the
transdifferentiation processes to improve the efficiency and
the maturation into desirable cells with neurotransmitter and
region-specific phenotypes.

Lastly, glial-restricted progenitor cells (GRPs) represent
another therapeutic alternative. They are self-renewing cells
derived from CNS tissue of 19–22 gestational weeks that have
a limited differentiation potential and are able to give rise to
oligodendrocytes and astrocytes but not neurons, as assessed in
the demyelinated shiver mouse model (32) and in transverse
myelitis, an inflammatory condition of the spinal cord that
leads to demyelination (33). GRPs have also been proposed for
multiple sclerosis (MS) because endogenous OPCs in the lesions
initially engage in remyelination (34), but with time, the number
of OPCs declines and remyelination becomes inefficient (35).
Isolation and expansion of GRPs were recently implemented by
Q Company (36), which started a phase I clinical trial (37).

NEURAL STEM CELLS IN THE
MAMMALIAN BRAIN: FETAL VS. ADULT
COMPARTMENT, MOUSE VS. HUMAN

A detailed characterization of the neural niches for both mouse
and human is now available (38). In the mouse, the central
nervous system (CNS) originates at E7.5–E8 with the neural plate
that folds into the neural tube and then divides along the rostro-
caudal axis into the rostral forebrain, midbrain, and hindbrain
vesicles, while the caudal vesicle gives rise to the spinal cord. The
cortical layer, adjacent to the lateral ventricles (LV) and known
as the ventricular zone (VZ) is made of highly proliferating
progenitors with apical basal polarity (neuroepithelial cells,
NECs) (38) that, before neurogenesis (E10.5–E12.5), undergo
extensive symmetric divisions to expand (Figures 1, 2). When
neurogenesis starts (E12.5 onwards), NECs become radial
glial cells (RGCs), express glial markers, assume an elongated
morphology, and divide asymmetrically, originating one RGC
and one neuron or one RGC and one intermediate progenitor (IP,
Tbr2+) (43). IPs themselves migrate radially to give rise to two
pyramidal neurons that establish connection and form synapses

(44). The CNS builds up in∼1 week during gestation, and NPCs
(RGC/IPs) are retained in the two distinct and small proliferative
areas of the SVZ and the SGZ (44, 45). During neurogenesis,
first-born neurons populate the deeper cortical layers (V–
VI), while later-born neurons progressively populate the more
superficial layers (II–IV). These layers contain neuronal subtypes
that are different in morphology, electrophysiological activity,
axonal connectivity, and gene expression. During embryonic
and late neurogenesis, RGCs, because of their elongated radial
morphology, sense extrinsic cues from meninges, vasculature,
newborn neurons, and cerebrospinal fluid, which regulate their
cell fate decision. During late embryonic development and
the first weeks after birth, radial glia also differentiate into
astrocytes and oligodendrocytes, which populate the different
brain structures, and ependymal cells will line on the ventricle
surface. Thus, adult SVZ NSCs are regionally specified during
the early embryonic stage and remain largely quiescent until,
post-natally, they are re-activated (46, 47); they have intrinsic
temporal programs linked to their positional characteristics
(dorsal-ventral, rostral-caudal) (48) that guide differentiation in
a cell-autonomous manner and cycle independently, but they
also sense extrinsic cues that tune temporal programs and help
indicate the ‘right’ time to progress (49, 50).

The functional integrity and behavior of the niche are
maintained by the extracellular membranes (ECMs) (51) of
both the basal and apical sides. They are rich in laminin, αβ

integrin glycoproteins, and tenascin C. Similarly, a fundamental
functional role for the VZ/SVZ is played by the CSF and by the
blood vessels that form in early stages of CNS development (E9)
(52, 53). Of note, neurogenesis and angiogenesis are regulated by
the same molecules, such as vascular endothelial growth factor
(VEGF), Notch, and Shh (54).

In humans, similarly to rodents, during early brain
development, the inner part of the neural tube that then
becomes the cerebrospinal fluid (CSF)-filled ventricular
structure consists of a layer of proliferative cells that originally
contributes to the expansion of the cerebral cortex along with
their descendant radial glia (GFAP+) and their intermediate
progenitor cells (Figures 3, 4). Radial glia bodies are in tight
contact with the monolayer of ependymal cells that covers the
ventricles (57), which serves both as barrier and transport system
between the interstitial fluid of the parenchyma and the CSF
(58, 59). Studying the behavior of human NPCs is difficult;
thus, to evaluate their properties, cells from 6.5- to 9-weeks-
old aborted embryonic human forebrains were expanded in
culture for up to 21 passages and were transplanted into the
dentate gyrus, the rostral migratory stream (RMS), the striatum,
or the SVZ of adult immunosuppressed rats. Migration was
modest in the dentate gyrus or in the striatum if compared
to rodent-in-rodent transplant and was considered a random
dispersion process during the implantation. Larger migration
was observed if transplant was into the SVZ or RMS. Cells did
not show tumor formation 6 weeks post-transplantation and
interestingly exclusively adopted a neuronal fate when in the
olfactory bulb or in the SGZ of the hippocampus (60). It is worth
mentioning also that both fetal/embryonic rodent and human
NPCs display regional differences in terms of proliferation and
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FIGURE 1 | Mouse developmental SVZ structure. Neurogenesis in humans begins with the expansion of the neuroepithelium and apical radial glia (aRG). Excitatory

neurons are directly generated from apical radial glia (aRG) in the dorsal VZ or are derived from multipolar basal intermediate progenitors (bIPs) that have delaminated

from the apical and basal surface and reside in the SVZ. At early stages of neurogenesis in mice, newborn deep-layer excitatory neurons move basally toward the

marginal zone (MZ) by somal translocation. Once the developing cortex becomes thicker, newborn neurons reach the intermediate zone (IZ), where they undergo a

multipolar-to-bipolar transition and pass through the IZ and CP. Neurons then migrate basally toward the pia, passing by earlier-born neurons; they then terminate their

migration in the MZ. Inhibitory GABAergic interneurons are specified in the distant medial and caudal ganglionic eminences, where RGs, intermediate progenitors (IPs),

and numerous subapical progenitors (SAPs) proliferate and migrate tangentially in two streams to integrate into the various cortical layers of the cerebral cortex (not

depicted in the figure). CSF, cerebrospinal fluid; SP, subplate (39–41).

differentiation potential according to the region of the brain
where they originate (cortex or striatum) (61, 62).

In comparison to the spatially and temporally regulated niches
of the developing brain, in the post-natal and adult rodent brain,
neurogenesis occurs and neural stem cells (NSCs) persist in the
ventricular-subventricular zone (V-SVZ) of the lateral ventricle
and in the SGZ of the dentate gyrus in the hippocampus.

Regarding the SVZ (Figure 5), the population of adult NSCs
is quite complex and heterogeneous, as demonstrated by single-
cell sequencing data (67) and by marker-specific analysis (GFAP,
EGFR, CD133, Nestin, CD9, CD81, CD24, and VEGF). NSCs of
embryonic origin are called B1 cells (68), and there are roughly
7,000 in each young lateral wall of lateral ventricle. Most of the
B1 cells generated between days E13.5 and E15.5 remain almost
quiescent until soon after birth, when they become reactivated
and start proliferating (46) or dividing very slowly (63, 69). NSCs

divide symmetrically to self-renew or to differentiate, which leads
to a decline in NSC number over time (69). B1 that face the
ventricle side give rise to B2 cells, a population of fusiform-
stellate proliferating V-SVZ astrocytes, that are non-neurogenic
and whose function is still unknown (70). They share many
astroglial characteristics with B1 cells, including contacts with
blood vessels (BV), but lack contact with the apical membrane.
B1 cells also generate transient-amplifying cells (type C cells) that
divide symmetrically three to four times (71) and ultimately give
rise to migrating neuroblasts that become young neurons (type A
cells) (72). In young adult mice, B1 cells produce around 10,000
young interneurons every day that migrate for 3–8mm along the
rostral migratory stream to the olfactory bulb (73). Ventral NSCs
produce deep granule cells and calbindin-positive periglomerular
cells, while dorsal NSCs produce superficial granule cells and
tyrosine hydroxylase-expressing periglomerular cells (74). They
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FIGURE 2 | Mouse developmental SGZ structure. At E14.5, in the VZ of the hippocampal neural epithelium (hNE), radial glial precursors give rise to hippocampal

pyramidal neurons. The DG originates from the dentate neuroepithelium (dNE), called the primary matrix, a part of the ventricular zone (VZ). At late gestational stages,

a heterogeneous mixture of stem cells and neuronal precursors at different stages of differentiation migrate from the VZ to the hippocampal fissure, constituting a new

migratory progenitor population called the secondary matrix. The process is guided by hem-derived Cajal-Retzius cells. Neural progenitors reach the hippocampal

fissure, where they accumulate and form a hub of proliferating cells called the tertiary matrix (SGZ). Granule cells generated during DG development from precursors of

all three matrices form the GCL. By early post-natal stages, the tertiary matrix becomes the only source of dentate progenitors and granule cells (39, 40, 42).

integrate into the existing olfactory bulb network and influence
the plasticity of olfactory-related behaviors (75). B1 cells on the
apical ends, which are completely surrounded by multiciliated
and biciliated ependymal cells (E1 and E2 cells, respectively),
which form pinwheel-like structures around them, sense the
cerebrospinal fluid of the ventricle through the apical primary
cilium. The choroid plexus is also considered part of the niche,
and its secreted factors into the CSF regulate B1 cells. Supra-
ependymal axons on the surface of the ventricular wall contact
both E and B1 cells. Mature neurons and astrocytes are found
below the V-SVZ (63).

The number of B1 cells drastically decreases in the first year of
life in mice, but the number of newborn neurons in the olfactory
bulb (OB) is not significantly affected by age, suggesting that
another population of NSCs that lack apical contact and that
can differentiate might exist in the adult rodent brain (69). B1
cells primarily give rise to neuro-glia cells. As regards astrocytes,
B1-cell ability to differentiate into astrocytes was, for example,
demonstrated upon photothrombotic ischemic cortical injury
(76) and upon chemical demyelination (77). Nonetheless, it has
been reported that B1 cells can also give rise to oligodendrocytes
(78) destined for the corpus callosum, where they myelinate
axons in both healthy (77) and demyelinating conditions (77,
79). Although dispensable in this latter condition, they protect
neurons from increased axonal loss (79). Notably, post-natal
and adult neurogenesis in the SVZ is carefully controlled by
microglial cells (80–82).

As regards the neural niche in the dentate gyrus (Figure 6),
neurogenesis occurs on the side of the granule cell (GC) layer
facing the hilum, in two or three-thin strata of the SGZ. NSCs

originate in the ventral hippocampus during late gestation and
then re-locate to the dorsal hippocampus. Here, quiescent NSCs,
called radial glia-like (rRGL, or Type 1) cells become activated
(aRGL) and divide to self-renew and to make intermediate
proliferating progenitors (IPCs) that then differentiate into
neuroblasts. About 25% of them survive and mature into granule
neurons of the DG (85) or into mature astrocytes (86, 87) with a
strategy that still needs to be fully elucidated (88–90).

While in the SVZ NSCs mainly give rise to inhibitory
interneurons, in the DG, they generate new excitatory neurons
that are involved in learning, memory, and pattern separation
(91). New-born neurons of the SGZ are mainly located in
the GC layer and do not migrate. Further, while in the
SVZ, depending on the position, progenitors develop toward
a different fate, the neural progenitors of the SGZ present
only a bipotential fate (6). The two neurogenic niches face
a 50–70% death rate during the first few days of birth, and
short-living new-born neurons not only have different electrical
properties than mature ones but may have their own functional
role (39).

In both adult mouse neurogenic niches, it has also been
reported that stem cells and differentiated daughter cells
act to regulate their respective maintenance. For example,
differentiated neurons release diffusible or contact-mediated
signals, such as the neurotransmitter GABA and the Notch ligand
Delta-like 1 (Dll1), which help to maintain NSC quiescence
(92, 93). On the other hand, Tang C. and coworkers recently
demonstrated a feed-forward mechanism between NSCs and
newly generated neurons through pleiotrophin (PTN) ligand,
whose release by NSCs supports the development of the
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FIGURE 3 | Human fetal SVZ structure. In the developing human gyrencephalic cerebral cortex, the SVZ is subdivided by the inner fiber layer (iFL) into the inner SVZ

(iSVZ) and the outer SVZ (oSVZ). Neurogenesis begins with expansion of the neuroepithelium and apical radial glia (aRG) via asymmetrical cell cycling. Human aRGs

divide to give rise to basal RG (bRGs), which delaminate from the apical surface (retaining their basal process and attachment to the pial surface), migrate basally, and

populate the oSVZ. The oSVZ is also populated by basal intermediate progenitors (bIPs) that proliferate and generate neurons. The oSVZ is the predominant germinal

region in the human neocortex. The basal processes of bRG act as guides for migrating newborn neurons that disperse in the tangential axis to expand the surface

area of the cerebral cortex (40, 41).

newly differentiated neurons (94). Down the line, this cross-
talk might impact the important role of striatal neurons in
cognitive functions and goal-directed behavior (the dorsomedial
striatum, DMS) (95), as well the sensorimotor territory and habit
formation [the dorsolateral striatum (DLS)] (96).

In humans, post-natal SVZ (Figure 7) is different from in
other mammals because it consists of a smaller inner and
expanded outer SVZ (iSVZ and oSVZ, respectively). The oSVZ
contains radial glia that support neurogenesis and cortical
expansion during fetal development (98). After corticogenesis,
the neurogenic niche of the iSVZ and oSVZ remains proliferative
in neonates along the wall of the lateral ventricle in the site of
former lateral ganglionic eminence, generating new neurons that
populate the pre-frontal cortex and, partially, the olfactory bulb
(81, 99) for a few months after birth. Subsequently, however,
this activity declines dramatically, and, within 2 years, there
is almost no detectable neurogenesis or migration (100–103).
Perinatally, SVZ stem cells differentiate and migrate along

three specific pathways toward the anterior forebrain: (i) to
the frontal lobe where they become interneurons (arc pathway)
(103); (ii) to the medial pre-frontal cortex along the medial
migratory stream (MMS); (iii) to the olfactory bulb along the
RMS (104). Moreover, while in many mammals newly SVZ-
generated neurons migrate specifically to the olfactory bulb
to guarantee olfaction throughout life (105), in the human
frontal cortex, only inhibitory neurons are born post-natally with
unclear function or contribute to neurocognitive maturation and
plasticity, important in infancy (103, 106).

Mature, adult human SVZ consists of four layers. Moving
from the ventricle side, Layer I consists of ependymal cells
in contact with the lumen, and this is followed by an almost
acellular layer (Layer II), which originates post-natally as a
consequence of neuroblast depletion. This layer includes a
dense network of astrocytes and ependymal cell processes,
where astrocytes and ependymal cells exchange signaling, and
the few microglial cells influence communication among the
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FIGURE 4 | Human fetal SGZ structure. Fetal development of the SGZ starts from the dentate neuroepithelium (dNE), which is located at the edge of the ammonic

neuroepithelium (aNE) close to the fimbria. SOX1+/SOX2+ precursors are organized in ribbons between dNE and GCL (granule cell layer) already at 14 gestational

weeks (GW) with PSA-NCAM and DCX positive cells. SOX1 and SOX2 cells are present in the GCL and hilus and between the GCL and the dNE. A coalesced

proliferative SGZ does not form in the human DG. NeuN-positive cells are seen along with SOX1 and SOX2 at 22 GW. The cellular network reported in the illustration

remains until soon after birth, when either hippocampal neurogenesis continues with aging (55) or completely disappears (9, 39, 40, 55, 56).

cell types (107). Adjacent to Layer II, there is a dense rim
of astrocytic cell bodies (Layer III) with variable morphology.
Finally, Layer IV consists of a transitional region with few cells,
similar to the brain parenchyma. Although some astrocytes can
proliferate (99, 108), neuroblasts are absent in the adult human
SVZ niche and in the rostral migratory stream toward the
olfactory bulb (101). Interestingly, in the adult human brain,
newly generated cells are mainly oligodendrocytes, not neurons
(109), suggesting that the oligodendrogenic process and myelin
maintenance is more important in the human brain compared to
other mammals.

Of note, comparing mouse and human adult SVZ, the
proportion of type A:B:C cells in the mouse brain is 3:2:1, while
in human, it is estimated at 1:3:1 (110).

Besides the differences between embryonic and adult niches,
we have already anticipated that the niche changes during
development. Indeed, a general comprehensive analysis of
NPCs in mice from post-natal age P7 and P28 revealed not
only that the number of NPCs decreases over the course of
development but also that the genetic profile of the NPCs at the
two ages was significantly different, suggesting early adulthood
senescence (111).

Interestingly, it has been shown that neurons born during
embryonic development (E19) and early adolescence (P21) (in
mice) survived throughout adulthood (up to 2–6 months),
while the cells generated at P6 displayed 15% cell death during
adulthood, suggesting that early post-natal granule cells have an
important unique function in terms of hippocampal plasticity
(112). Early-life post-natal hippocampal neurogenesis is crucial
to strengthen the ability to learn and to acquire new information

via a rapid and continuous generation of new granule cells at the
expense of existing memories and information storage.

Moreover, a recent report in mice showed that a population
of NSCs exists in the DG that contributes to neurogenesis
throughout development and adulthood and that the NSCs shift
from a quiescent to an active state at different time points
(84), suggesting that hippocampal neurogenesis is crucial for
maintaining tissue plasticity. Indeed, the technology of single-
cell RNA sequencing demonstrated that while there is an early
post-natal transformation of radial glia cells from embryonic
progenitors to adult quiescent stem cells maintained as such
through adulthood, intermediate progenitor cells, neuroblasts,
and immature granule cells are very similar at all ages (113).

Although the evidence that progenitor cells exist in the
human brain is robust (114, 115) (Figure 8), controversies still
persist about in vivo evidence that neurogenesis occurs in the
adult hippocampus and about its functional relevance. A first
landmark study on autoptic human brain tissue measured the
concentration of 14C in genomic deoxyribonucleic acid (DNA)
and estimated that 700 new neurons are generated each day
in the adult human hippocampus corresponding to an annual
turnover of 1.75% (118), comparable to what is seen in middle-
aged rodents.

In this process, aging, an altered immune-related molecular
and cellular status, is the most critical environmental driver that
can impair neurogenesis and contribute to its decline. Indeed,
when heterochronic parabiosis was attempted by exposing aged
animals to a young systemic environment, adult neurogenesis
increased through a-yet unknown precise mechanisms (119,
120). Moreover, Spalding et al. showed that neurogenesis also
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FIGURE 5 | Mouse adult SVZ structure. Adult NSCs (also called radial glia-like, RGL, pre-B1 cells) of SVZ derived from embryonic radial glial (RG) cells that make

neurons of the embryonic brain. The adult SVZ NSCs at embryonic day 14 (E14) upregulate p57kip2 to enter quiescence (qRGL, B1 cells). The qRGLs become

activated after birth to participate in adult neurogenesis in the SVZ. In the SVZ, the RGLs mostly undergo symmetric cell division. The SVZ RGL symmetric self-renewal

could occasionally also result in another type of RGL cell that lacks the apical process, named non-apical B1 cells or B2 cells. Type B1 cells give rise to neuroblast

type A cells (transient amplifying cells). These young neurons are surrounded by a glial sheet and migrate anteriorly toward the olfactory bulb (OB) and differentiate in

granular and periglomerular GABAergic interneurons. The adult SVZ also generates oligodendrocytes, although in much lower numbers. CSF, cerebrospinal fluid

(39, 40, 63–66).

occurs in the human hippocampus in older age, in contrast
to the age-related decline previously described in rodents
(121). Similarly, another group observed immature and mature
adult-born neurons in hippocampal post-mortem samples of
healthy adult individuals (55). This evidence has recently
been replicated by Moreno-Jiménez et al. who described the
presence of immature neurons in the DG of 90-years-old human
subjects (122) and by Tobin et al. who demonstrated that
hippocampal neurogenesis occurs in the tenth decade of life
(123). In contrast, a study on peri- and post-natal human
samples from subjects with a wide range of diseases reported
few young neurons in young individuals (7–13 years of age)
and no newborn neurons in the DG of adults. Immature
neurons were found only in specimens of 1-year-old subjects
(56). Divergences between mouse and human are likely due

to differences in the rate of generation and maturation of
newborn neurons (124), while divergences among human studies
might depend on limitations when using human post-mortem
tissues to study neurogenesis with variable time from death
to fixation.

FEATURES OF PLASTICITY IN NEURAL
STEM CELLS

NPCs, because of their intrinsic stem nature, exploit several
plastic features. We have already mentioned their dual cell
division capacity, symmetric and asymmetric, their capacity
to stay quiescent in the niche for a long time and then
to be activated/proliferate and to differentiate, and their
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FIGURE 6 | Mouse adult SGZ structure. During the second post-natal week, proliferation in the DG becomes confined to the SGZ, where NSCs reside throughout

adulthood. Genetic cell lineage tracing of Sonic Hedgehog (SHH)-responsive cells has revealed that adult NSCs are induced at peri-natal stages in a restricted region

next to the most ventral side of the hippocampus in close proximity to the lateral ventricle. From there, they migrate to populate all regions of the DG. Thus, embryonic

and adult NSCs in the DG have different origins. Indeed, the generation of new neurons in the DG starts from radial glia-like progenitor (type I). Type I cells become

activated. Activated type I cells generate intermediate progenitors (type IIa, ab, and b and type III). Type III converts into immature granule cells and finally into mature

long-lasting calbindin/calretinin-positive granule cells. IML, inner molecular layer; GCL, granule cell layer. Nicola et al. showed that a condensed germinal zone in SGZ

only appears during post-natal days 7–14, likely because it depends on neural activity for adult neurogenesis established by the SVZ (83). A recent report suggests

that a dentate-specific neural progenitor, arising in mice at ∼E11.5 and marked by Hopx positivity, persists from embryonic development to adulthood. These

progenitors give rise at E18.5 and P7 to the dentate region and then transition to quiescence early post-natally, to contribute to neurogenesis only during the adult

lifespan. Those RGLs might have limited capacity for self-renewal, are skewed toward neurogenic differentiation, and rarely make astrocytes (40, 42, 65, 84).

FIGURE 7 | Human adult SVZ structure. The human adult SVZ consists, from the ventricle side to the parenchima, of Layer I of multicyliated ependymal cells, with

radial and tangential processes, followed by a hypocellular layer (Layer II) of astrocytic and neuronal cell bodies with a number of cytoplasmic expansions of

ependymal cells inserted by astrocytic ramifications. Layer III consists of a ribbon of proliferative astrocytes (type B cells). Some oligodendrocyte-like precursors and

misplaced ependymal cells are found. The inner layer (Layer IV) consists primarily of myelin tracts and neuronal bodies. SEZ, sub-ependymal zone; CSF, cerebrospinal

fluid (39, 40, 97).
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FIGURE 8 | Human adult SGZ structure. Based on the report by Boldrini et al. neurogenesis persists during adulthood. The generation of new neurons starts from

quiescent radial glia-like progenitor cells (type I). Type I cells become activated and then, by asymmetric division, generate intermediate progenitors (type II). Type II

become neuroblasts or intermediate neural progenitors (INP type III) that convert into immature granule cells and finally mature into long-lasting granule cells that send

their apical processes to the CA3 part of the hippocampus. On the other hand, according to Sorrells et al. neurogenesis is not detected in adult. In the dentate gyrus,

a proliferative subgranular zone (SGZ) is not formed near the granular cell layer, and proliferative progenitor stem cells are scattered in the hilus only. They disappear

anyway after 7 years from birth, and young neurons are not found in adult individuals. Curly brackets define the condition described in Sorrells et al.

(9, 39, 40, 55, 56, 64, 116, 117).

regional differences, as well as their capacity to sense the
environment (125) and promote neuro-biochemical changes
(94). The brain is substantially a “non-renewable organ,” and
brain cells slowly die with age, but neural stem cells guarantee
to the CNS a certain ability to reorganize structurally and
function according to intrinsic and environmental demands
(126). Although proliferation and differentiation occur, it is still
debated whether endogenous adult NSCs really exhibit long-term
self-renewal capacity.

Encinas and collaborators reported that in the SGZ, NPCs
can proliferate and then differentiate into astrocytes but that this
causes progressive pauperization of the niche without returning
to quiescence (127). Bonaguidi et al. instead showed, via clonal
analysis, that NPCs face repetitive rounds of activation followed
by astrocyte differentiation and quiescence (6). Unfortunately,
different genetic labeling strategies target different populations
of NSCs and different activation states of the same population,
providing still complex and partial results.

Another plasticity feature for NPCs is related to the
intrinsic tri-lineage potential of endogenous NSCs in the adult
mammalian brain. However, although in vitro in culturing
conditions, NSCs, both human and mouse, give rise to three
different cell types, time-lapse analysis revealed generation
of either neurons or oligodendrocytes, not both (128). Vice-
versa, in vivo, different reports are available: population fate
mapping has described that SVZ-NSCs generate neurons and
astrocytes, not oligodendrocytes (6), while clonal analysis has

recently indicated that only neuronal lineages are generated
from individual NSCs (129). Cell commitment could derive
from a progressive restricted lineage profile occurring in
the adult (130). According to an alternative hypothesis, the
trilineage potential is shaped and maintained by the niche
environment (131).

The possibility that precursor cells can make new neurons is
important for their therapeutic potential in neurodegenerative
conditions. This potentiality has been exploited in preclinical
models for stroke (132, 133). Unfortunately, after stroke, only
few neuroblasts survive and differentiate, migrating from the
SGZ into the granule cell layer to form novel neural circuits
(134); these are not numerous enough to recover neurologic
functions under ischemic conditions, and only 0.2% of lost
neurons are replaced (135). Therefore, enhancing proliferation,
survival, and neuronal maturation of endogenous or transplanted
NSCs is important for brain disorders. Of note, while in animal
models of neurodegenerative diseases like stroke, depression,
epilepsy, Alzheimer’s, Huntington’s, and Parkinson’s diseases, as
well as in affected humans, progenitor cell proliferation and
neurogenesis occur in the SGZ (at a lower rate in the latter and
depending on the disease), in human, the SVZ is particularly
sensitive to neurodegeneration and more responsive than SGZ
via proliferation (136).

Under physiological conditions, the plasticity of NPCs is
exploited for brain development, learning, and memory (137,
138) and is mediated by the release of trophic factors. This feature
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is fundamental during neurogenesis; it is important to tune
synapse connections and to modulate neuronal networks during
healing processes after brain injuries. Synaptic connectivity
is indeed mediated by released neurotrophins (NTs), such as
brain-derived neurotrophic factor (BDNF), NT-3, and NT-4
(139, 140). Depending on the type and concentration, they
strengthen or weaken synaptic morphology (141) and synaptic
responses (142), leading to long-term potentiation (LTP) or
long-term depression (LTD). Moreover, they can form new
connections and pathways and can change the wiring of the
circuits (143). In severe pathological conditions, physiological
trophic effects will not provide sufficient tissue regeneration.
However, engraftment of exogenous stem cells, via the release
of neuroprotective, trophic, or immunomodulatory factors,
may stimulate endogenous neurogenesis, angiogenesis, and
neovascularization, helping in the healing processes (144) and
promoting the formation of new pathways around damaged
tissue. The mechanism is active in the perinatal period and early-
childhood, but it is progressively reduced in the brains of older
children and adult individuals (145).

Cell therapy could be more beneficial when stem cells are
engineered (146, 147). For example, elevated NT-3 expression
can provide a microenvironment favorable to the survival and
differentiation of transplanted neural stem cells (148).

For many (if not all) of the features above mentioned,
epigenetic regulation plays an important role in shaping the
response to the environmental cues of NPCs, depending on their
developmental stage (149, 150).

The plasticity of NPCs is also exploited by their capacity to
interact with scaffolds, as detailed below in the Spinal Cord Injury
(SCI) section.

THERAPEUTIC APPLICATIONS

Leveraging their plasticity, NPCs have been proposed for
(i) neurotoxicity testing, (ii) cellular therapies to treat CNS
conditions, (iii) neural tissue engineering and repair, (iv) drug
target validation and testing, and (v) personalized medicine, as
detailed below.

Since the developing CNS is more vulnerable to chemical
exposure, ad hoc pharmacological testing is required (151). To
address this goal, NSCs turned out to be useful for neurotoxicity
testing. Developmental Neurotoxicity (DNT) is indeed a function
not only of the type of exposure (dose, duration) but also of
the developmental stage of the brain at the time of exposure
(152). The blood–brain barrier (BBB) is not completely formed
until at least 6 months after birth, facilitating the entrance
of a chemical into the fetal/neonatal brain (153). Considering
the increase of children’s neurodevelopmental impairments
[e.g., learning disabilities, autism, attention deficit hyperactivity
disorder (ADHD)], likely due to exposures to chemicals with
DNT potential, concerns have been raised about the need
to identify suitable tools to properly ascertain drug toxicity.
Assessment has been primarily based on animal studies, but
the tests are very resource-intensive in terms of animals,
time, and costs (154, 155), underlining the need to develop

alternative approaches to identify DNT. In vitro work has been
performed using rodent and human neuronal and glial cellular
models (neuroblastoma cell lines) to evaluate (via dose-response
relationships) the impact of a compound on various stages
of brain development. Unfortunately, transformed/immortalized
cell lines present limitations, such as the expression of
proliferating genes that impact cellular response to chemical
exposure (156, 157). On the other side, human in vitro
neuronal cultures derived from neural progenitor cells (NPCs)
or brain fetal NPCs grown as neurospheres can better mimic
critical brain developmental processes, including proliferation,
apoptosis, migration, and differentiation (158). However, as
already mentioned, the ethical issues regulating the generation
and use of human embryonic or fetal-derived tissues have been a
matter of intense debate. Therefore, hiPSC-derived neuronal and
glial models have been proposed for their applicability in in vitro
pharmacological and toxicological studies. Indeed, human iPSC-
derived cultures of mixed neuronal and glial cells are suitable
for DNT, actually more so than for adult neurotoxic evaluation
(159) because hiPSC-derived cells (and hESCs) reproduce in
a more difficult way the terminal differentiation and the
functional characteristics of adult brain physiology even after
long term culture (160). Moreover, hiPSC-derived NPCs have
an earlier neurodevelopmental phenotype because, instead of
differentiating in culture into Nestin and GFAP+ like primary
human NPCs, they express TubβIII (161).

Current efforts in the context of hiPSCs to optimize culturing
and differentiation protocols are on-going to better mimic the
brain context using defined factors and co-culture conditions.
The generation of microglia-like cells from hiPSCs has helped to
introduce the immune component into neuroglia culture (162–
166). Further, hiPSCs have also been differentiated into brain
endothelial cells that mimic the functionality of the BBB in vitro,
adding further value to their use in DNT tests (167). Additionally,
three dimensional (3D) culture and cerebral organoids have
been developed and can recapitulate brain region connections
occurring in vivo in the cerebral cortex (168). Assessing
endpoints in 3D systems will be critical for guaranteeing the
applicability of hiPSCs for DNT in complex assays. Combining
in vitro DNT tests with in vivo epidemiological human data
is crucial for developing Integrated Approaches to Testing and
Assessment (IATA) for regulatory purposes (chemical screening,
hazard identification/characterization, or risk assessment) (169).

NPCs surely play a crucial role in CNS tissue repair, and
their intrinsic plastic nature gives them therapeutic potential
in neurological diseases via two Modes of Action (MoA)L cell
replacement and the bystander effect.

As regards cell replacement, NPCs are, in principle, a
suitable therapeutic strategy for those diseases in which
neurodegeneration and cellular loss are prevalent, not only
because they mediate cell replacement but also because they can
re-establish and/or support neuro-glial functional connections
lost during the pathological process. This approach was tested
decades ago, for example with fetal NSCs (170) transplanted
into subjects with Parkinson’s disease, and recently with hiPSC-
derived cortical precursors transplanted into an Alzheimer’s
mouse model (171). However, in the first case, transplanted

Frontiers in Neurology | www.frontiersin.org 11 March 2020 | Volume 11 | Article 148

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ottoboni et al. NPCs in Physio-Pathological Conditions

stem cells or progenitors could not survive for long or form the
desired cell types. In the second case, human cells reproduced
the pathological phenotype of AD neurons, influenced by the
genetic background they had been transplanted into, suggesting
that the NPC cell replacement strategy is promising only when
extrinsic inflammatory neurodegenerative factors have faded in
the CNS site where transplant occurs or for cell-autonomous
neurological disorders. In general, transplanted NPCs give rise
to the atypical ectopic perivascular niche with intense cell-to-cell
cross-talk between transplanted NPCs and resident cells. NPCs
may either remain in the niche in an undifferentiated state or
move to acquire a terminally differentiated phenotype (172, 173)
and adapt their fate according to the region of engraftment,
developing neuronal or glial markers (174–176). For example,
transplanted NPCs have been shown to form functional gap
junctions to rescue host neurons and their projections in an
animal model of Purkinje neurodegeneration (177). Moreover,
human iPSC-derived NPCs have been shown to engraft and
establish long-distance connections in animal models (178, 179),
although concerns on the approach are still under evaluation (see
below). It is crucial to mention the importance of homotopic
rather than heterotopic transplantation to avoid tumorigenic
risk, since region-specific cues instruct the grafts of NSCs (180).
So far, this has been the predominant strategy.

Besides this evidence, NPCs might protect the CNS through
mechanisms alternative to direct cell replacement, which
implies the interaction of NPCs with both resident neural
and immune cells. Indeed, transplanted NPCs rather exert
immunomodulatory or neuroprotective functions modulating
the response of the pathological processes of astrocytes,
microglia, and inflammatory blood-born cells through paracrine
and endocrine mechanisms (bystander effects). NPCs, upon
interaction with CNS-resident cells, start releasing neurotrophic
factors, such as Nerve Growth Factor-NGF, BDNF, and Glial
Derived Neurotrophic Factor-GDNF, along with reactive species,
binding proteins, purines, or cytokines that might significantly
reduce scar formation and/or increase the survival and function
of endogenous glial and neuronal progenitors. This was originally
demonstrated in mice with primary inflammatory disorders,
including the animal model of MS (173, 181) or stroke (182,
183) and in mice with neurodegenerative diseases mediated
by reactive inflammation, such as Parkinson’s Disease (184).
Those properties have been then described for other stem
cells, such as mesenchymal stem cells (185). The concept that
therapeutic effect derives from released molecules opened the
possibility of using the “secretome” of stem cells, which implies
a cell-free therapeutic approach (186–191). The cross-talk with
the environment is fundamental for promoting the release by
NPCs of a context-specific arsenal of biological weapons, and
the impact of external cues on paracrine signaling has been
widely described recently (186, 192–197). However, most of
the environmental cues that trigger the production of bioactive
and restorative factors and the mechanisms they elicit in a
specific disease are still unknown. Therefore, triggering in
vitro the production of biologics and collecting and using the
secreted factors, although promising, remains a reductionist
approach, and efforts to efficiently transplant cells that sense

and respond in situ, ad hoc to the environment are still
most appropriate.

The immunomodulatory function is a feature of human
NPCs (198, 199) that enables them to inhibit T-lymphocyte
proliferation as well as dendritic cell maturation in vitro, to
ameliorate disease severity when transplanted systemically in
non-human primates with EAE, and to persist long-term, not
only in the host CNS but also in peripheral lymph nodes (200).
NPCs show pathotropism for the pathological sites, thanks to the
expression of chemokine receptors, cell adhesion molecules, and
integrins. Once transplanted (intravenously, i.v., or intrathecally,
i.t.) and after migration into inflamed CNS areas, NPCs do
no significantly differentiate but survive in close proximity to
blood vessels, where they interact with CNS-infiltrating blood-
derived inflammatory cells, endothelial cells, and CNS-resident
astrocytes and microglia, releasing therapeutic molecules (201).
In diseases characterized by primary inflammation, such as MS,
stroke, or spinal cord injury, a precise control of time and
route of cell administration is important to gain the therapeutic
effect because NPCs transplanted in immunocompetent mice
can be rejected in animals with ongoing neuroinflammation
(202), and the immunomodulatory and trophic support might
have a limited effect. Nonetheless, early NPC transplantation
is important because, immediately after CNS damage, genes
supporting tissue growth predominate over genes promoting
anti-plasticity and differentiation (203).

Examples of NPC cell replacement and bystander effects for
some diseases are detailed below.

Ischemic Stroke
Stem cell transplantation for stroke has represented a valuable
therapeutic strategy using various sources of NSCs. Human ESC-
derived NPCs have been implanted in rodents after cerebral
ischemia, and they have shown neural differentiation and
improved functional recovery (204, 205). Moreover, transplanted
and engrafted NSCs (i) reduced cell death and inflammation near
the graft (182) and promoted angiogenesis (206); (ii) promoted
proliferation and neuronal differentiation of endogenousNSCs of
the subventricular and hippocampal subgranular zone in rodents
(135), primates (207), and humans (208, 209); (iii) survived to
intracerebral transplantation in lesioned brain and differentiated
into mature neurons (178), integrating in host neuronal circuitry
to promote post-stroke morphological and electrophysiological
recovery (20), although several months later.

A key aspect for clinical applications of exogenous NPCs is
the route of administration, which can be: (i) intraparenchymal,
implying direct injection of the cell suspension close to the site of
injury; this strategy achieved motor and cognitive improvements
in grafted patients (210, 211), or (ii) intravascular, which is used
in a limited number of trials because it is more suitable for
mesenchymal stem cells. Although a greater number of cells can
be administered, unfortunately, the majority does not migrate
to the brain (212). Moreover, this approach retains a risk of
tumorigenicity due to the possibility of heterotopic graft (180).

Since NSC transplantation in preclinical stroke models
was able to promote the proliferation of endogenous NSCs
and the migration of endogenous neuroblasts to the damaged
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brain region where they differentiate into mature neurons (213),
activation of endogenous NPCs for remodeling neural tissue after
ischemic injury has also been considered as a therapeutic strategy
because it would not require transplantation of exogenous
cells and would avoid annexed risks of introducing exogenous
pathogens and of enhancing CNS immune surveillance,
inflammatory reactions, and tissue rejection, as well as bypassing
political and ethical concerns. In this perspective, treatment of
stroke conditions with growth factors, such as epidermal growth
factor (EGF) and fibroblast growth factor (FGF) promoted the
recruitment of endogenous NPCs and regenerated hippocampal
circuitry, restoring synaptic function after ischemia (214).

The option of using NSCs from iPSC in stroke in human
is a bit more complicated to implement, due to the advanced
age of most stroke patients, making it very difficult to efficiently
generate iPSCs from aged subjects that can be used to perform
autologous transplant. Moreover, although in some stroke
models they have shown efficacy (215), it remains questionable
whether iPSCs derived from aged patients are beneficial for
post-stroke functional recovery (216, 217).

A phase 1 study on stroke subjects using the CTX0E03 or
ReN001 cell line (ReNeuron) derived from genetically modified
human fetal neuroepithelium has been conducted (211).
c-mycERT AM technology was used to drive the expression
of an estrogen receptor under tamoxifen (4-OHT) (in culture
conditions) to control cell proliferation. Cell division was indeed
arrested, and differentiation into neuronal and glial lineages
was induced by removal of tamoxifen and of growth factors
from the medium. Eleven men were enrolled; they did not
receive any immunosuppressive therapy and were followed for
2 years. While immunological or severe adverse effects were not
recorded, modest improvements on the different motor scales
were observed [NIHSS, Barthel index, Ashworth Spasticity Scale
for the arm and leg, and a quality-of-life and health status
questionnaire, EuroQoL Five Dimensions (EQ-5D)].

Spinal Cord Injury (SCI)
NPCs have also been intensively studied and their use proposed
as a therapeutic strategy for traumatic spinal cord injury, despite
the complexity of the pathology (218).

NPCs have the potential to repopulate severely injured
spinal cord (197, 219), but their ability to survive and
reconstitute neural tissue and neural connections remains limited
by parenchyma loss and by the very toxic milieu (220).
Moreover, the epicenter of the primary lesion site rapidly
become necrotic, so NPCs may need an extracellular skeleton
to support survival and guide tissue reorganization. Biomaterials
represent a suitable support for cells, replacing the extracellular
matrix to favor cell survival, differentiation, re-vascularization,
and re-colonization of the tissue by glial and endothelial cells.
Moreover, complex biomimetic materials that can be produced
may guide axonal growth, restoring long-distance connections.
More preclinical research in this innovative field is definitely
required. Regenerative compounds, biomaterials, and tissue,
along with cellular transplants, have been used for SCI to
enhance neurite outgrowth and facilitate tissue regeneration
(221). Indeed, three-dimensional highly porous “scaffolds” made

of biodegradable copolymers have been tested and seeded with
NPCs into the lesion to facilitate donor cell survival, migration,
differentiation, functional structural repair, and neural circuit
activation (222). Recently it has been reported that NPC-
mediated functional recovery could depend on oligodendrocyte
differentiation (223). Although NPCs have been quite extensively
tested in SCI preclinical models, improvement for patients is
still limited. Okano’s team in Japan started a human clinical
study using allogenic iPSC-derived NPCs because costs, quality
testing, safety concerns, and time were not compatible with
autologous transplants. Nonetheless, when immunosuppression
was stopped, complications arose. Thus, so far, only autologous
iPSC-derived NPCs hold promise for repair of the injured spinal
cord (224).

Neurodegenerative Diseases
NSCs may be delivered by three different routes: intravenous,
intraparenchymal, or intra-cerebroventricular via lumbar
puncture injection. Preclinical data have shown that via
intraparenchymal delivery, NSCs migrate and spread along
the corpus callosum, driven by tissue-specific disease factors
(225). Via intravenous injection, NPCs cross the inflamed
BBB, reaching the demyelinating areas of the CNS in animal
models of multiple sclerosis (EAE) and eliciting therapeutic
actions (172, 200), although NPCs could exert their bystander
immunomodulatory effect also systemically. NPCs represent an
effective therapeutic tool in multifocal, primary inflammatory
diseases, such as multiple sclerosis, being able to migrate and
exploit their bystander effect. Currently, the preclinical results
in the MS context have been translated to the clinic using fetal
NPCs (NCT03269071) in primary progressive MS subjects.
fNPCs are currently used as a therapeutic choice also for
other neurodegenerative diseases (225), and several clinical
trials are in progress for neurodegenerative diseases, such as
Parkinson’s disease, ALS, tumors, and various pediatric diseases
(not reported).

Table 1 summarizes the ongoing non-pediatric clinical trials
selected on clinicaltrials.gov by using the key terms “neural
stem cells,” and “neural progenitor cells.” Around 30 clinical
trials reporting on transplant of NSCs have been registered on
clinicaltrial.gov.

The therapeutic plasticity of NSCs has been exploited in the
specific context of neural tissue engineering and repair. The
development of safe techniques to generate autologous NPCs
(iPSC technology and direct reprogramming of somatic cells)
opened up novel therapeutic opportunities in the regenerative
field. In particular, directly reprogrammedNeural Precursor Cells
(drNPCs) (226) are non-immunogenic and have a stable genome
and minimal risk of malignant transformation, if compared to
induced-pluripotent and embryonic stem cells, while exhibiting
self-renewal and multipotency.

To increase the therapeutic potential of NSCs and analogs,
combination therapy of cells with engineered and miniaturized
scaffolds improved spinal motor functions, as reported in a
meta-analysis of more than 70 preclinical studies (227), and
transplantation with tissue-engineered constructs outperformed
the efficiency of suspended cells alone (228). Similarly, there
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TABLE 1 | List of clinical trials using NPC/NSC in adult subjects.

Disease Title Trial

phase

N◦

patients

Age Follow-up

(months)

Cell type Site and

mode of

administration

Sponsor NCT

Number

Status

Age-Related

Macular

Degeneration

Study of Human Central

Nervous System Stem Cells

(HuCNS-SC) in Age-Related

Macular Degeneration

(AMD)

Phase 1

Phase 2

15 >50 12 Human neural

stem cell

Subretinal

space

(injection)

StemCells, Inc. NCT01632527 Completed

Amyotrophic

Lateral Sclerosis

Human Neural Stem Cell

Transplantation in

Amyotrophic Lateral

Sclerosis (hNSCALS)

Phase 1 18 20–75 36 Human fetal neural

stem cell

Lumbar spinal

cord (surgical

device)

Azienda

Ospedaliera Santa

Maria, Terni, Italy

NCT01640067 Completed

Amyotrophic

Lateral Sclerosis

CNS10-NPC-GDNF for the

Treatment of ALS

Phase 1 18 >18 12 Human neural

stem cell

Lumbar spinal

cord

(stereotactic

device)

Cedars-Sinai

Medical Center

NCT02943850 Active, not

recruiting

Amyotrophic

Lateral Sclerosis

Dose Escalation and Safety

Study of Human Spinal

Cord Derived Neural Stem

Cell Transplantation for the

Treatment of Amyotrophic

Lateral Sclerosis

Phase 2 18 >18 24 Human neural

stem cell

Spinal cord

(injection)

Neuralstem Inc. NCT01730716 Unknown

status

Amyotrophic

Lateral Sclerosis

Human Spinal Cord Derived

Neural Stem Cell

Transplantation for the

Treatment of Amyotrophic

Lateral Sclerosis (ALS)

Phase 1 18 >18 48 Human neural

stem cell

Lumbar spinal

cord (surgical

implant)

Neuralstem Inc. NCT01348451 Unknown

status

Brain Tumors Genetically Modified Neural

Stem Cells, Flucytosine, and

Leucovorin for Treating

Patients with Recurrent

High-Grade Gliomas

Phase 1 18 >18 always Human neural

stem cell

Intracranial City of Hope

Medical Center

NCT02015819 Active, not

recruiting

Brain Tumors A Pilot Feasibility Study of

Oral 5-Fluorocytosine and

Genetically-Modified Neural

Stem Cells Expressing E.

coli Cytosine Deaminase for

Treatment of Recurrent High

Grade Gliomas

Phase 1 15 >13 always Human neural

stem cell

Debulking

craniotomy

City of Hope

Medical Center

NCT01172964 Completed

Brain Tumors Neural Stem Cell Based

Virotherapy of Newly

Diagnosed Malignant

Glioma

Phase 1 36 >18 NA Induced neural

stem cells

Intracranially Northwestern

University

NCT03072134 Recruiting

(Continued)
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TABLE 1 | Continued

Disease Title Trial

phase

N◦

patients

Age Follow-up

(months)

Cell type Site and

mode of

administration

Sponsor NCT

Number

Status

Brain Tumors Carboxylesterase-

Expressing Allogeneic

Neural Stem Cells and

Irinotecan Hydrochloride in

Treating Patients with

Recurrent High-Grade

Gliomas

Phase 1 53 18–69 180 Human neural

stem cell

Intracranial City of Hope

Medical Center

NCT02192359 Recruiting

Ischemic Stroke Pilot Investigation of Stem

Cells in Stroke Phase II

Efficacy (PISCES-II)

Phase 2 23 >40 12 Human neural

stem cell

Intracerebral ReNeuron Limited NCT02117635 Completed

Ischemic Stroke Intracerebral Transplantation

of Neural Stem Cells for the

Treatment of Ischemic

Stroke

Phase 1 18 30–65 24 Human neural

stem cell

Intracranial

injection

Suzhou

Neuralstem

Biopharmaceuticals

NCT03296618 Active, not

recruiting

Ischemic Stroke Investigation of Neural Stem

Cells in Ischemic Stroke

(PISCES III)

Phase 2 110 35–75 12 Human neural

stem cell

Stereotactic

injection

ReNeuron Limited NCT03629275 Recruiting

Ischemic Stroke A Clinical Study of iNSC

Intervent Cerebral

Hemorrhagic Stroke

Early

Phase 1

12 30–65 12 Induced neural

stem cells

Intracerebral

Transplantation

Allife Medical

Science and

Technology Co.,

Ltd.

NCT03725865 Not yet

recruiting

Parkinson’s

Disease

A Study to Evaluate the

Safety and Efficacy of

Human Neural Stem Cells

for Parkinson’s Disease

Patient (hNSCPD)

Phase 2

Phase 3

12 35–70 6 Human fetal stem

cell

Nasal

injection

Second Affiliated

Hospital of

Soochow

University

NCT03128450 Unknown

status

Parkinson’s

Disease

A Study to Evaluate the

Safety of Neural Stem Cells

in Patients with Parkinson’s

Disease

Phase 1 12 30–70 12 Induced neural

stem cells

Intracerebrally

to the

striatum and

substantia

nigra

Cyto Therapeutics

Pty Limited

NCT02452723 Active, not

recruiting

Parkinson’s

Disease

A Study on the Treatment of

Parkinson’s Disease with

Autologous Neural Stem

Cells

Early

Phase 1

10 18–60 12 Induced neural

stem cells

NA Allife Medical

Science and

Technology Co.,

Ltd

NCT03815071 Not yet

recruiting

Parkinson’s

Disease

Transplantation of Neural

Stem Cell-Derived Neurons

for Parkinson’s Disease

Phase 1

Phase 2

12 35–85 6 Human neural

stem cell

Basal ganglia NeuroGeneration NCT03309514 Not yet

recruiting

Parkinson’s

Disease

Safety and Efficacy Study of

Human ESC-derived Neural

Precursor Cells in the

Treatment of Parkinson’s

Disease

Phase 1

Phase 2

50 50–80 12 Human embryonic

stem cell-derived

neural precursor

cells

Intra-striatal

injection

Chinese Academy

of Sciences

NCT03119636 Recruiting

(Continued)
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TABLE 1 | Continued

Disease Title Trial

phase

N◦

patients

Age Follow-up

(months)

Cell type Site and

mode of

administration

Sponsor NCT

Number

Status

Pelizaeus-

Merzbacher

Disease (PMD)

Long-Term Follow-Up Study

of Human Stem Cells

Transplanted in Subjects

with Connatal

Pelizaeus-Merzbacher

Disease (PMD)

Phase 1 4 Child,

Adult,

Older

Adult

4 Human neural

stem cell

Brain StemCells, Inc. NCT01391637 Completed

Peripheral Arterial

Disease

Safety Trial of CTX Cells In

Patients With Lower Limb

Ischemia

Phase 1 5 >50 12 Human neural

stem cell

Gastrocnemius

muscle

ReNeuron Limited NCT01916369 Completed

Progressive

Multiple Sclerosis

Neural Stem Cell

Transplantation in Multiple

Sclerosis Patients (STEMS)

Phase 1 12 18–55 24 Human

fetal-derived

Neural Stem Cells

Intrathecal IRCCS San

Raffaele

NCT03269071 Enrolling by

invitation

Secondary

Progressive

Multiple Sclerosis

Safety Study of Human

Neural Stem Cells Injections

for Secondary Progressive

Multiple Sclerosis Patients

(NSC-SPMS)

Phase 1 24 18–60 12 Human neural

stem cell

Intraventricular Casa Sollievo della

Sofferenza IRCCS

NCT03282760 Active, not

recruiting

Spinal Cord Injury NeuroRegen Scaffold,

Combined with Stem Cells

for Chronic Spinal Cord

Injury Repair

Phase 1

Phase 2

30 18–65 24 Human neural

stem cell

Spinal cord

(injection)

Chinese Academy

of Sciences

NCT02688049 Enrolling by

invitation

Spinal Cord Injury Long-Term Follow-Up of

Transplanted Human

Central Nervous System

Stem Cells (HuCNS-SC) in

Spinal Cord Trauma

Subjects

NA 12 18–65 NA Human neural

stem cell

Intramedullary

spinal cord

transplantation

StemCells, Inc. NCT01725880 Terminated

Spinal Cord Injury Safety Study of Human

Spinal Cord-derived Neural

Stem Cell Transplantation

for the Treatment of Chronic

SCI (SCI)

Phase 1 8 18–65 54 Human neural

stem cell, spinal

cord derived

N/A Neuralstem Inc. NCT01772810 Recruiting

Spinal Cord Injury Study of Human Central

Nervous System Stem Cells

(HuCNS-SC) in Patients with

Thoracic Spinal Cord Injury

Phase 1

Phase 2

12 18–60 48 Human neural

stem cell

Intramedullary

transplantation

StemCells, Inc. NCT01321333 Completed
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has been recent testing of a “liquid matrix” strategy, which
is based on platelet-rich plasma (PRP)-derived hydrogel on a
solid anisotropic complex scaffold prepared using a mixture
of recombinant analogs of the spider dragline silk proteins
which significantly stimulated proliferation and neuronal
differentiation (229). Moreover, self-assembling peptides (SAPs)

have been used to generate hydrogel to support human NSC

differentiation into neurons, in vitro, in 3D, and to test the

neuroregenerative potential in rat spinal cord injuries (230).

Further, graphene composites have been optimized to promote
human NSC differentiation and to increase conductivity and
electroactivity (231, 232), a useful strategy for peripheral nerve
recovery (233).

Lastly, the therapeutic plasticity of NSCs can also be exploited

in drug target validation and testing. Indeed, primary cells

have the best physiological relevance, but they are limited

in availability, expansion, and reproducibility, and for some

diseases, they are not accessible at all. In contrast, stem cells can

be propagated for a long period of time, can be cryopreserved,
and can be differentiated in vitro into a particular lineage to

model a specific disease. Moreover, research and developmental

efforts have been put in place in biotech and pharmaceutical

companies to generate cells for high-throughput screening (234,

235). Further, since iPSCs from patients can be differentiated

into specific lineages, patient-specific derived cells have been

proposed for personalized medicine. The technology is surely
going to translate to the clinic for monogenic rare hereditary
diseases, where iPSCs provide a model to compensate for the lack
of predictive human samples or for in-vivo preclinical models,
since CRISPR/Cas9 technology or genome manipulation can
help to introduce mutations of interest (179, 236).

Moreover, the possibility of assessing the molecular
consequences of drug testing at specific stages of differentiation
will help to identify active pathways and possible mechanisms
for target identification (237). Bioinformatics, machine-learning
algorithms, and big data tools for pattern recognition can be
efficiently used for data analysis, orthogonal target validation,
and biomarker discovery.

TECHNOLOGICAL ADVANCES IN THE
FIELD OF NSCs THAT LEVERAGE THEIR
THERAPEUTIC PLASTICITY

Recent technological advances in the field of stem cells and
molecular biology have helped to potentiate their therapeutic
efficacy. For example, gene therapy through the over-expression
of key genes that encode for proteins with bystander potential
has recently been proposed (gene therapy). This strategy
has been applied to exogenous NSCs for important growth
factors like NGF and BDNF. Indeed, adult human olfactory
bulb neural stem/progenitor cells expressing NGF increased
their proliferation and oligodendrocytic differentiation potential
(238), while ESC-derived NPC expressing BDNF presented
enhanced neuronal and striatal in vivo differentiation and
turned out to be useful in Huntington’s disease (239). Similarly,

transplant of PSA-NCAM neural progenitors expressing BDNF
was therapeutically useful in a mouse model of spinal cord injury
(240), while embryonic rat NSCs expressing BDNF stimulated
synaptic protein expression and promoted functional recovery
in a rat model of traumatic brain injury (241). Of note, tumor
formationwas completely absent (242). Overexpression of GDNF
was instead effective in stroke (243). The strategy has been
applied not only to growth factors but also to transcription
factors, such as Nurr1 (244), a critical gene in the embryonic
differentiation of dopaminergic neurons (245).

Similarly, recombinant adeno-associated virus rAAVr3.45-
IL10-infected human NSCs (HFT13) have been transplanted to
evaluate their potential in ischemic injuries. Overexpressed IL10
had immunomodulatory effects and accelerated the recovery
of neurological deficits and the reduction of brain infarction
volume (246).

Engineering strategies using genome editing via CRISPR/Cas9
are being deployed on NSCs to precisely insert a gene
of interest in the safe harbor human and mouse loci of
AAVS1 and Rosa26, to perform a biallelic knockout of
neurodevelopmental transcription factor genes, and to knock-
in tags and fluorescent reporters (247). More recently, gene
targeting at multiple loci using Cas9 showed great promise for
a wide range of neurodegenerative disorders and injuries of
the CNS, including lysosomal storage disorders (248). More
sophisticated technological advances in the genome-editing field
are being developed (249). Leveraging CRISPR/Cas9 for genes
with ascertained therapeutic potential and with a spatio-temporal
control might be possible to further harness the therapeutic
plasticity of NPCs (Figure 9).

The discovery of induced pluripotency, which forces
terminally differentiated adult somatic (i.e., blood or fibroblasts)
cells into the pluripotent state, has provided the possibility of
modeling complex neurological disorders (250). Differentiated
cells are useful for screening drug candidates that can rescue
molecular, cellular, and functional abnormalities in disease-
specific hiPSC-derived cell types and offer the possibility of
performing personalized medicine (251). In this same context,
reprogramming or direct conversion of somatic cells using a
non-viral system (liposome or cationic polymers) represent an
interesting alternative in the perspective of clinical applicability
(due to the reduced risk of tumor formation). Similarly,
several types of nanoparticles useful for reprogramming have
been developed. Graphene oxide-polyethylenimine complexes
represent an efficient and safe system for mRNA delivery
for direct reprogramming of somatic cells to induce neurons
(252). Overall, on one side, the possibility of expanding
in vitro hiPSC-derived NPCs opens up the perspective of
autologous transplant and, on the other, NPCs derived from
cells obtained with the new reprogramming strategy might
overcome current hurdles associated with NPCs of conventional
origin (both primary and from reprogrammed somatic
cells) (253, 254).

It is becoming more and more important to be able to
image the behavior of adult NSCs in vivo to explore how
and where activation and division occur (255). This might be
achieved with powerful microscopic and technological advances.
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FIGURE 9 | Engineering strategy to potentiate the therapeutic plasticity of neural stem cells. Transplant of NPCs in suitable preclinical neurodegenerative inflammatory

and demyelinating disease models [stroke, Pelizaeus-Merzbacher disease (PMD), or multiple sclerosis], cell recovery from the pathological tissue, and then

sequencing allow the identification of key molecules that exert the therapeutic effects. Further, NPCs can be engineered to potentiate ad hoc the expression of

therapeutic targets and rescue the brain-healthy phenotype.

With this aim, novel imaging sensors and tools have been
developed for MRI technology, which provides excellent image
quality, sensitivity, and 3D spatial resolution. Gadolinium (III)
(Gd3+) is the heavy metal contrast agent conventionally used
in clinical and animal experimental MRI. Manganese (Mn2+)
is another useful positive T1 contrast agent that is widely
used (256), similarly to iron oxide particles (SPIO), which
have even higher sensitivity, better biocompatibility (function
and phenotype), and increased paramagnetic power (257).
Nonetheless, there are limitations in labeling stem cells with
magnetic contrast agents because the label could be diluted due
to stem cell proliferation after transplant. Moreover, particle
loading allows stem cell tracing, but it is not informative
regarding the survival state of stem cells and of possible
changes induced in and by the microenvironment. Indeed,
the signal could come from dead transplanted cells or cells
phagocytized by microglia (258). MRI has also been improved
using super-paramagnetic nanoparticles (MPI) (259) not present
in biological samples, such as fluorine-19 (19F), a strategy that
is suitable for quantification and is devoid of the ambiguity
of contrast tracking (260). In addition, the resolution has
been augmented by increasing the number of coil receiver
channels, the strength of the magnetic field, and the number of
image acquisitions.

Nuclear medicine imaging techniques, such as positron
emission tomography (PET) and Single-Photon Emission
Computed Tomography (SPECT), represent other promising

imaging modalities for tracking stem cells. SPECT has gamma
camera detectors for gamma-ray emissions from the tracers (up
to two different radioisotopes at the same time) injected into
the patient. PET instead measures the decay effect of different
radioisotopes that emit positrons, which interact with electrons
from the body, are annihilated, and generate two gamma photons
emitted in opposite directions.

111In-oxyquinoline, 99mTc-HMPAO, and, mainly for the CNS,
18F-FDG or 2-deoxy-18F-FDG, 3′-deoxy-3′18F-FDG have been
used for non-invasive imaging of NSC proliferation with PET
(261, 262). It is still crucial to identify the safe dose of
a radiotracer.

As an alternative to isotope cell loading and to overcome
problems associated with particle loading, MRI reporter genes
have been introduced for stable and robust tracking of implanted
stem cells (263). The “imaging reporter genes” strategy consists
of the production of a particular protein that interacts with a
radioactive probe whose signal can be detected by PET/SPECT
for a long time without being limited to the half-life of the
tracer. With this approach, only living cells will be detected,
excluding false signals (264). Cell labeling has been performed
with green fluorescent protein (GFP) and red fluorescent protein
(RFP), as well as with some fluorescent dyes, such as DiD, Dil,
and indocyanine Green or semiconductor nanocrystals called
quantum dots (QD). QDs emitting in the Near-infrared-(NIR)
have been already used to track transplanted cells in the human
brain (265).
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Moreover, the introduction of a reporter gene that encodes for
a special luciferase protein (bioluminescence imaging, BLI) has
been widely applied in preclinical studies of stem cell imaging
in the brain (266). Combining the high anatomical spatial
resolution of MRI and the high sensitivity of PET with BLI was
very useful for sensitivity and precise localization. Multimodality
imaging can also be used, combining fluorescent QDs with
magnetic nanoparticles (267).

Single-cell sequencing represents another fundamental
technological advancement that enables the temporal and
spatial dynamics of stem cells to be exploited. Since NPCs
are significantly heterogeneous, each line maintained in vitro
would need to be deeply characterized to assess the level
of heterogeneity. Further, single-cell sequencing ex vivo on
recovered transplanted cells will help develop an understanding
of the therapeutic profile exploited in specific pathological
conditions (Figure 9).

Obtaining data at the single-cell level helps with
understanding how different types of brain cells develop
and with identifying key genes to be used for cell engineering.
Studies in drosophila represent an excellent model system
with which to investigate how spatial and temporal factors are
integrated during neurogenesis and can be translated to deep
characterization in mammals (268).

PROS AND CONS OF HARNESSING
THERAPEUTIC PLASTICITY

Harnessing neural plasticity is important due to its potential
to support brain healing and rewiring to fight neurological
and neurodegenerative diseases and, given the physical-chemical
interaction between the SVZ and the striatum, to tune
neuropsychological behavior that is often associated with
neurodegenerative disorders. Indeed, the neural niche represents
a reservoir of cues that influence proper brain cognitive
functions and decisions. An altered concentration of released
soluble factors by the stem niche may be responsible for
unhealthy maintenance of striatal interneurons and for modified
behavioral adaptation and striatum functions, ultimately leading,
in extreme conditions, to obsessive–compulsive disorders. Of
note, alterations in adult neurogenesis have been linked to
psychiatric disease in humans (269, 270). According to the
neurogenic hypothesis, major depressive disorder (MDD) is
linked to impairments of adult neurogenesis in the hippocampal
DG, and antidepressants are efficacious because they increase
neurogenesis (271).

Harnessing therapeutic plasticity is tantalizing, not only to
balance neuronal or neurodegenerative disorders but also to open
up new learning opportunities in adulthood when conventional

FIGURE 10 | NSC plasticity as a function of origin (x-axis) and therapeutic use (y-axis). NSCs originate both from physiological niches and from in vitro manipulation.

Their therapeutic potential is exploited with different strategies, as depicted in the lower part of the illustration.
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pruning, mediated by the environmental inputs in the early phase
of brain development, has already occurred and connections have
already been established, through a “use it or lose it” principle.
Further, this approach can be translated to aging conditions and
might be useful for preserving neuronal integrity.

Plasticity is important, but the brain also needs stability.
Pharmacological or genetic modification can indeed increase
plasticity, but a targeted and balanced (in time and amount)
intervention is fundamental because excessive release
of trophic factors might be detrimental. For example,
brain overexposure to TGFβ2 as an anti-inflammatory
approach (272) might cause a malignant TGFβ2 autocrine
loop that leads to glioblastoma (273). Excessive plasticity
could also be detrimental because massive memory
capabilities [Savant abilities (274)], a reflection of over-
plasticity, are linked to autistic profiles, because plasticity
degenerates in chaos (275). For those reasons, engineered
molecular tools should be responsive to and controlled by
environmental signals.

Adult NSCs reside in restricted areas of the adult CNS
and have limited capacity to proliferate (276). Thus, in vitro
expansion is a limiting factor, and growth in suspension can be
troublesome. Therefore, culture in adhesion has been developed
using different coatings with the ultimate goal of maintaining
stable expression of stem markers, such as Nestin and Sox2.
Moreover, it is always important to consider that neurospheres
may be heterogeneous because they are not derived from a single
NSC. On the other hand, a limited proliferation capacitymight be
advantageous for ensuring that NSCs do not present tumorigenic
potential, and genetic stability from one passage to another is
likely to be maintained.

From the perspective of expanding neural precursors in
culture at large scale, the iPSC technology has helped with
the generation in vitro of expandable and freezable samples.
However, although iPSCs are an important source of NPCs,
caution is necessary because of the potential risks at the
genomic and epigenomic level (277). Further, NSCs derived

from iPSCs could cause rejection, so they might need to be
combined with an immunosuppressant. The development of
non-immunogenic iPSC-based therapies is very important to
minimize the probabilities of patient rejection. Nonetheless,
NSCs remain the best solution for neurological diseases,
compared with other stem cell types, since recovery can be
promoted not only by indirect paracrine effects but also by
direct neural cell replacement, which is not supported by
other sources of stem cells of another developmental origin,
making the latter unable to properly differentiate in the
CNS (Figure 10).

CONCLUSIONS

The discovery of neural stem cells and their potential has
revived the field in terms of functional cell replacement,
and concerns related to the risk of tumor formation have
been dampened because the majority of NSC transplantation
studies revealed no tumor formation. NSCs are a promising
therapeutic approach for neurodegenerative disease. They can
differentiate and replace the lost neural tissue as well as secreting
neurotrophic factors that can protect or regenerate. Nonetheless,
further studies are needed to quantify doses and administration
periods and to define the most promising cellular NSC source
considering also combined therapies to take NSCs/NPCs close to
pharmacological prescription.
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