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Background: Intracranial aneurysm wall degradation can be associated with lipid

infiltration. However, the relationship between lipid infiltration and aneurysm rupture has

not been explored quantitatively. To investigate the correlation between lipid infiltration

and aneurysm rupture, we utilized patient-specific simulation of low-density lipoprotein

(LDL) transport to analyze lipid infiltration in the cerebral aneurysm wall.

Methods: Sixty-two aneurysms were analyzed. Patient blood pressure, plasma LDL

concentration, and three-dimensional angiographic images were obtained to simulate

LDL transport in aneurysms. Morphological, hemodynamic, and lipid accumulation

parameters were compared between ruptures and unruptured groups. Multivariate

logistic regression was also performed to determine parameters that are independently

associated with rupture.

Results: Size ratio, wall shear stress, low shear area, relative residence time,

area-averaged LDL infiltration rate, and maximum LDL infiltration rate were significant

parameters in univariate analysis (P < 0.05). Multivariate analysis revealed that only

average LDL infiltration remained as a significant variable (P < 0.05). The prediction

model derived showed good performance for rupture prediction (AUC, 0.885; 95%

CI, 0.794–0.976).

Conclusions: Ruptured aneurysms showed significantly higher LDL infiltration

compared to unruptured ones. Our results suggested that lipid infiltration may promote

aneurysm rupture. Lipid infiltration characteristics should be considered when assessing

aneurysm rupture risk.

Keywords: hemodynamics, intracranial aneurysm, subarachnoid hemorrhage, low-density lipoproteins, computer

simulation

BACKGROUND

Intracranial aneurysms were present in 3–7% of the population (1). Given the high prevalence
and catastrophic consequence of rupture, early detection of aneurysms at high risk is vital.
Morphological and hemodynamic parameters have been shown to be associated with aneurysm
rupture (2–7), yet there is still debate on the role of wall shear stress in aneurysm rupture (8). It has
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also been shown that aneurysm wall degradation is associated
with lipid accumulation (9–11) and the use of a lipid-lowering
agent can reduce the risk of rupture (12). As aneurysm wall
degradation is closely related to lipid accumulation, evaluating
lipid accumulation in aneurysmal wall might provide extra
information for rupture prediction. However, it is relatively
difficult to measure lipid accumulation quantitatively in cerebral
aneurysm in vivo, which limits its use in clinical settings.
The simulation of low-density lipoprotein (LDL) transport in
diseased arteries has demonstrated its capability in the prediction
of lipid infiltration and subsequent plaque progression (13, 14).
This has brought us to consider using simulation to evaluate
lipid infiltration in the aneurysmal wall and its potential use in
rupture prediction.

In this study, we used patient-specific simulation to evaluate
the amount of LDL infiltration into the aneurysmal wall
and analyzed the difference between ruptured and unruptured
aneurysms. Our aim was to investigate the association between
LDL infiltration and aneurysm rupture.

METHODS

Patient Selection
The data in the current study were obtained from a single center.
Approval for this study was obtained from the local institutional
review board. The data were anonymous, and the requirement
for informed consent was therefore waived. All patients had
at least one aneurysm confirmed by three-dimensional digital
subtraction angiography (DSA). Patient cases with poor image
quality or incomplete record of lipid level were excluded.

Evaluation of Morphologic Characteristics
Morphological parameters including aneurysm size, aneurysm
height, aneurysm width, neck width, vessel angle, aspect ratio
(AR), and size ratio (SR) were measured and calculated
from three-dimensional reconstructed images according to the
definition in previous research (15). Measurements were done
by experienced neurosurgeons who were blinded to the status
of aneurysms.

Evaluation of Hemodynamic and LDL
Infiltration Characteristics
Each aneurysm model was segmented and reconstructed
using MIMICS software (Materialize). The reconstructed three-
dimensional models were meshed using ANSYS ICEM CFD
software (ANSYS Inc) to create a finite volume mesh composed
of tetrahedral elements and prism elements at the wall boundary.
Blood was assumed as incompressible Newtonian fluid governed
by Navier–Stokes equations. LDL transport in blood was driven
by flow convection and diffusion. The modeling of LDL
transport was based on previous work, which has been validated

Abbreviations: LDL, low-density lipoprotein; WSS, normalized wall shear stress;

MWSS, maximum normalized wall shear stress; OSI, oscillatory shear index; LSA,

low shear area; RRT, relative residence time; CFD, computational fluid dynamics;

AR, aspect ratio; SR, size ratio; LIave, area-averaged normalized lipid infiltration

rate; LImax, maximum normalized lipid infiltration rate; ROC, receiver operating

characteristic curve; AUC, area under the curve.

(16, 17). LDL transport was governed by the convection–
diffusion equation:

∂C

∂t
+ U · ∇C − D1C = 0

where U is the blood flow velocity vector, C is the concentration
of LDL, and D is the diffusion coefficient. The permeation of LDL
across the endothelial membrane was through vesicular pathway
and leaky junctions on endothelium. Since the distribution
pattern of LDL concentration in the wall is very similar to
that of LDL flux across endothelium (16), in this study, we
neglected the distribution of LDL inside the wall and focused on
its infiltration across the endothelium. The apparent permeability
of endothelium was mediated by local wall shear stress and
pressure. We used pore theory to estimate the LDL infiltration
rate across the endothelium, which was calculated with local LDL
concentration in blood flow, local permeability, and transmural
pressure difference.

Js = (Pv + Papp,lj)C

Papp,lj = PljZlj + Jv,lj(1− σf )

Plj = f (P,WSS, a,D) , Jv,lj = g(P,WSS)

where Papp is the apparent permeability of the endothelium
composed of Pv, the permeability of the vesicular pathway, and
Papp,lj, the permeability of the leaky junction, which is determined
by the diffusion effect Plj and convection effect Jv,lj. The diffusion
flux Plj is affected by LDL particle radius a, diffusivity D, and the
area density of leaky junctions, which is dependent on local shear
stress and local transmural pressure. Similarly, the convection
flux Jv,lj is determined by the area density of leaky junctions,
which is dependent on local shear stress and local transmural
pressure. In summary, the LDL infiltration rate was dependent on
LDL particle size, diffusivity, local shear stress, local transmural
pressure, and local concentration of LDL.

The methodology was presented in detail in previous
work (16–18). Physiologic pulsatile flow and patient-specific
LDL concentration were prescribed at inlets, and no-slip
boundary conditions were applied at vessel walls. Hemodynamic
parameters including normalized time-averaged wall shear stress
(WSS), normalized maximum wall shear stress (MWSS), low
shear area (LSA), oscillatory shear index (OSI), and relative
residence time (RRT) were calculated according to the definition
presented in the literature (2). The degree of LDL infiltration
was evaluated by two parameters, which are area-averaged LDL
infiltration rate (LIave) and maximum LDL infiltration rate
(LImax) at the aneurysm sac normalized by the physiological
infiltration rate of the normal artery (19).

Statistic Analysis
Clinical, morphological, hemodynamic, and LDL infiltration
parameters were first examined by univariate analyses. Binary
parameters were compared by the Fisher exact test. For
continuous parameters, they were first examined by the Shapiro–
Wilk test to determine if they were normally distributed. Student
t-test (for normally distributed parameters) or Mann–Whitney
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U-test (for non-normally distributed parameters) were used to
identify statistically significant parameters (P< 0.05) between the
ruptured and unruptured group. Colinearity between variables
was examined by the Pearson correlation test. Receiver operating
curves were plot for each significant parameter, and their
corresponding area under the curve (AUC) were calculated
and compared.

Only parameters that are statistically significant and
independent were considered for multivariate logistic regression.
A rupture prediction model was derived using a backward
stepwise method.

RESULTS

Patient Demographics
Eighty-eight patients were included in the study, 33 of which
were excluded due to missing data of lipid level or blood pressure
or poor image quality. Among the 55 cases analyzed in this
study, there were 62 aneurysms in total (45 unruptured and 17
ruptured). Among the 55 patients, 20 of them were male. The
mean age was 58.

Wall Shear Stress and LDL Infiltration
Patterns
LDL infiltration distribution and wall shear stress distribution
for typical ruptured and unruptured aneurysms are shown in
Figures 1, 2, respectively. In ruptured aneurysms, a high level
of LDL infiltration can be observed in the sac especially in the

area near bleb, while in unruptured aneurysms, infiltration flux
in the aneurysm sac region was not much different from that in
the artery region. Comparing the distribution of wall shear stress
and LDL infiltration, we can see that high infiltration usually
presented in the area characterized by excessively low wall shear
stress, though the distribution patterns were different between
the two.

Univariate Analyses
Table 1 shows the means, standard deviations, and statistical
results for each parameter.

For LDL infiltration parameters, both LIave and LImax were
significantly higher in the ruptured group than that in the
unruptured groups (LIave, P < 0.001, LImax, P = 0.002). For
morphological parameters, only size ratio showed a significant
difference between the ruptured and unruptured cases (2.19
vs. 1.34, P < 0.001). For hemodynamic parameters, significant
differences were observed in wall shear stress (0.39 vs. 0.77, P
< 0.001) and low shear area (0.26 vs. 0.09, P < 0.001). No
significant differences were observed for LDL-c plasma level,
blood pressure, sex, aneurysm size, aneurysm height, neck width,
inflow artery angle, aspect ratio, and OSI. Hypertension was
observed to bemarginally significant (P= 0.051) between the two
groups. Receiver operator characteristic analysis was performed
for parameters with significant differences, and the result is
plotted in Figure 3. LIave achieved the highest area under the
curve (AUC) of 0.856.

FIGURE 1 | Low-density lipoprotein (LDL) infiltration distribution for four ruptured (top row) and four unruptured (bottom row) representative aneurysms.
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FIGURE 2 | Wall shear stress distribution for four ruptured (top row) and 4 unruptured (bottom row) representative aneurysms.

TABLE 1 | Results from univariate analysis for all parameters.

Parameter Ruptured (n = 17) Unruptured (n = 45) P-value

Age, year 57.5 ± 10.6 58.3 ± 12.1 0.716

Male sex 8 (47%) 12 (27%) 0.125

Systole, mmHg 143 ± 25 136 ± 24 0.255

Diastole, mmHg 86 ± 9 85 ± 11 0.640

Hypertension 9 12 0.051

LDL-c, mmol/L 3.02 ± 1.25 2.63 ± 0.80 0.245

Hyperlipidemia 5 6 0.139

Size, mm 5.03 ± 2.32 5.05 ± 4.30 0.372

Aneurysm height, mm 5.14 ± 1.44 5.10 ± 3.95 0.058

Aneurysm width, mm 5.24 ± 2.40 5.84 ± 5.28 0.309

Neck width, mm 4.37 ± 2.24 4.72 ± 3.34 0.813

Vessel angle, degree 114.6 ± 33.1 104.0 ± 29.5 0.273

Size ratio 2.19 ± 1.27 1.34 ± 0.91 0.006

Aspect ratio 1.49 ± 0.77 1.12 ± 0.56 0.102

WSS 0.39 ± 0.24 0.77 ± 0.40 <0.001

MWSS 1.47 ± 0.78 1.97 ± 1.10 0.116

OSI 0.033 ± 0.018 0.035 ± 0.037 0.228

RRT,s 3.44 ± 8.81 0.34 ± 0.41 <0.001

LSA 0.26 ± 0.28 0.09 ± 0.17 <0.001

LIave 4.71 ± 3.81 0.95 ± 1.39 <0.001

LImax 11.29 ± 6.48 5.91 ± 4.71 0.002

TABLE 2 | Results from multivariate analysis for key parameters.

Parameter OR 95% CI P-value

LIave 2.402 1.237 to 4.665 0.010

WSS 0.040 0.001 to 1.321 0.071

LSA 0.001 0.000 to 1.286 0.059

Multivariate Regression Analyses
Colinearity between LIave, LImax, SR, WSS, LSA, and RRT
were examined. Except that RRT was found to correlate
with LSA (R = 0.863, P < 0.05), other parameters were
not strongly correlated (R < 0.8). In multivariate regression
analysis, LIave remained statistically significant (P < 0.05),
as shown in Table 2. The odds ratio of LIave was 2.402
(1.237–4.665, 95% CI), which indicates that each unit increase
in LDL infiltration will increase the risk by 2.4-fold. LSA
and WSS were only marginally significant (P = 0.059, P
= 0.071) in multivariate analysis. We derived a prediction
model with LDL infiltration parameters and hemodynamic
parameters. The receiver operator characteristic curves of
the model is shown in Figure 3. The area under the ROC
curve for the model was 0.885 (95% CI: 0.794–0.976),
which indicates good discrimination between ruptured and
unruptured cases.
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FIGURE 3 | Plot of receiver operating characteristic (ROC) curves for key parameters and multivariate logistic regression derived prediction model [Pred, prediction

model; LIave, area averaged LDL infiltration, area under the curve (AUC) = 0.856; LImax, maximum LDL infiltration, AUC = 0.761; WSS, wall shear stress, AUC =

0.797; RRT, relative residence time, AUC = 0.761; LSA, low shear area, AUC = 0.781; SR, size ratio, AUC = 0.725].

DISCUSSION

Our result showed that there is significantly higher LDL

infiltration at the wall of ruptured aneurysm compared to

unruptured ones (4.71 vs. 0.95, P < 0.001). Lipid accumulation
in the aneurysmal wall has been shown to be associated with
aneurysm rupture (9). Accumulated lipids are oxidized, and an
association between oxidized LDL and the loss of mural cells
and degeneration of aneurysm wall can be found. Oxidized
lipids can induce chronic inflammation in atherosclerotic lesion,
which is characterized by infiltration of macrophages as in
ruptured aneurysm wall. Recent research has also implicated
lipid accumulation as a key factor in promoting degeneration of
the aneurysm wall via formation of foam cells and subsequent
loss of mural cells (10, 11). In our study, higher LDL
infiltration rate was observed in the ruptured aneurysm wall,
implicating lipid accumulation in ruptured aneurysms, which is
consistent with the above researches. Recent advance in magnetic
resonance vessel wall imaging (MR-VWI) has shown association
between wall enhancement and aneurysm rupture (20). Further
histopathological analyses revealed that wall enhancement was
associated with wall thickening with atherosclerotic change (21,
22). Our study suggested that increased lipid infiltration was
associated with rupture, which was in line with these new findings
from vessel wall imaging.

In our study, we also found that LDL infiltration at the sac
region can be several to 10-fold higher than normal physiological
value as indicated by color in Figure 1. This suggested that
given the same patient, though parent artery and aneurysm

sac were exposed to the same plasma level of LDL, the actual
LDL infiltration can vary at different locations. In some of our
cases, even the patients’ plasma LDL levels were within normal
range, the infiltration rates at the aneurysm sac can still be much
higher, which infers lipid accumulation. Our finding agrees with
previous research that lipid accumulation was observed in the
aneurysm wall despite normal plasma lipid level (9).

We further observed that lipid infiltration pattern was quite
heterogenous at the sac region. Higher infiltration tended to
appear at the tip or at blebs, as shown in Figure 1. As higher
infiltration can lead to more extensive lipid accumulation,
oxidation, and subsequent degradation of the wall at the local
spot, this may explain why the rupture sites of aneurysm are
usually located at the tip or bleb. The heterogenous pattern
of LDL infiltration was, in part, owing to spatially varying
permeability of the vessel wall, which was dependent on
the local wall shear stress. We compared Figures 1, 2 and
found out that high infiltration regions were associated with
excessively low wall shear stress regions, which is consistent
with literature studies that low shear stress was associated with
atherosclerotic change in the aneurysm wall (23–26). Though
aneurysm initiation is generally considered to be linked with
high shear stress (27, 28), the role of wall shear stress in
aneurysm rupture remains controversial. In some studies, the
rupture sites of aneurysms were found to be associated with
the low shear stress region (29, 30). Meng et al. proposed that
aneurysm rupture may follow two different pathways: one is
mural cell-mediated pathway and the other is inflammatory
cell-mediated pathway (31). As lipid infiltration has been
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recognized as the trigger for inflammation in atherosclerosis,
it is possible that lipid accumulation may also promote
inflammation process leading to aneurysm wall degradation
and rupture.

Besides local shear stress, transmural pressure, and LDL
plasma level also affect the amount of LDL infiltration. They
acted as global and systemic factors on LDL accumulation,
while shear stress acted as a local mediator. Lipid accumulation
was the combined effect from both local factor and global
factors. For example, patients having a high lipid level or
high blood pressure does not necessarily indicate a high lipid
accumulation in the aneurysm wall and vice versa. LDL,
though widely recognized as risk factors for cardiovascular
and cerebrovascular disease, was not found to be associated
with cerebral aneurysm rupture in a recent clinical study (12),
which seems to conflict with findings from a histopathology
study (9, 10). However, it is important to note that despite
LDL not recognized as a risk factor, the use of a lipid-
lowering agent was found to be able to reduce the risk of
rupture (12). This seemly contradiction can be explained by
the intermingled effect of global factors (LDL plasma level) and
local factors (WSS). As demonstrated in our result, the LDL
plasma level alone cannot represent the local infiltration of LDL
at the aneurysm sites, which explains why LDL plasma level
did not differ significantly between ruptured and unruptured
aneurysms in clinical study. Wall shear stress pattern can vary
greatly between aneurysms from different patients. However, if
focusing on a single patient, local factors such as shear stress
will remain largely stable, the use of lipid-lowering agent can
reduce plasma lipid level and alleviate lipid accumulation (by
changing the global factors), therefore reducing the risk of
rupture, as evident in clinical study (12). Our result can help to
reconcile the different conclusions obtained from clinical study
and histopathology studies.

Since the permeability of the endothelium was linked to
shear stress in the model, though there was no colinearity
between LIave and WSS, there is an association between these
two parameters (r = 0.59, P < 0.001). However, since LIave
was calculated with additional information from patient-specific
blood pressure and plasma LDL level, it appeared to perform
better than WSS alone in discriminating aneurysm rupture, as
illustrated by the higher AUC achieved by LIave than in the WSS
and other hemodynamic parameters.

Limitations
All the cases were from a single center, and the number of cases
is small. More cases from multiple centers should be analyzed to
verify the finding. The current study was retrospective in which
morphology of post-rupture aneurysms may be different from
their pre-rupture shapes (32). For unruptured aneurysms, they
remained unruptured during follow-up. The number of ruptured
aneurysms was smaller than that of unruptured ones, which may
introduce bias to our study.

As for the modeling of hemodynamics and LDL transport,
there were several assumptions made. We assumed a generic

inflow waveform scaled by vessel diameters. In the model,
we only considered LDL infiltration through endothelium,
which is the first step of lipid accumulation. Owing to
the difficulty in accurate measurement of aneurysm wall
thickness, a uniform thickness was assumed (33). Nevertheless,
to our best knowledge, this is the first study utilizing
patient-specific modeling of LDL transport to examine the
relationship between lipid transport and cerebral aneurysm
rupture. An ex vivo histology study on resected aneurysm
tissue should be conducted to validate the simulation
model. Further, we can compare the simulation results
with high-resolution MR-VWI images to investigate the
correlation between the LDL infiltration zone and image
enhancement region.

CONCLUSIONS

We have investigated the association between lipid accumulation
and cerebral aneurysm rupture using patient-specific modeling
of LDL transport. Ruptured aneurysms had significantly
higher LDL infiltration than unruptured ones, which suggested
that lipid accumulation may promote aneurysm rupture.
Lipid accumulation characteristics should be considered when
assessing cerebral aneurysm rupture risk.
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