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Background: Gilles de la Tourette syndrome (GTS) is a neurodevelopmental condition

characterized by motor and vocal tics. The underlying etiology remains largely unknown,

and GTS is considered as a complex multifactorial disorder associated with effects

of several genes in combination with environmental factors. The inner mitochondrial

membrane peptidase, subunit 2 (IMMP2L) has been suggested as one of the

susceptibility genes for GTS, and IMMP2L-deficient mouse and human cells show

increased levels of mitochondrial oxidative stress and altered cell fate programming.

Hence, a potential involvement of IMMP2L-induced mitochondrial dysfunction in GTS

pathology is yet to be elucidated. To address this, we investigated mitochondrial function

in a group of GTS patients with intragenic IMMP2L deletions and compared with GTS

without IMMP2L deletions and healthy controls.

Methods: Mitochondrial function in fibroblasts from GTS patients and non-GTS parents

(with and without IMMP2L deletions) compared to healthy controls were evaluated

by measuring mitochondrial superoxide production, mitochondrial membrane potential,

mitochondrial mass, and mitochondrial respiration. In addition, we evaluated apoptosis

and senescence.

Results: None of the mitochondrial parameters assessed in this study were significantly

distinctive when comparing GTS patients with and without IMMP2L deletions against

healthy controls or parents with or without IMMP2L deletions, and we did not observe

altered cell programming.

Conclusion: This study suggests that IMMP2L deletions do not lead to a substantial

general mitochondrial dysfunction in GTS fibroblasts. Assessing a large cohort of controls

and patients of similar age and gender would possibly reveal small differences in

mitochondrial function. However, it is possible that IMMP2L variants affect mitochondrial

function during specific instances of stress stimuli or in brain regions suggested to be

affected in GTS.
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INTRODUCTION

Gilles de la Tourette syndrome (GTS) is a neurodevelopmental
disorder, characterized by sudden, repetitive, non-rhythmic
movements or sounds, referred to as tics. The GTS diagnosis
is based on several motor and at least one vocal tic that have
persisted for more than a year. There is significant comorbidity

between GTS and other neurobiological/neuropsychiatric

conditions, especially attention deficit hyperactivity disorder

(ADHD) and obsessive–compulsive disorder (OCD). The disease
etiology is complex and multifactorial, with an evident genetic
component (1). One of the suggested GTS susceptibility genes
is the inner mitochondrial membrane peptidase, subunit 2
(IMMP2L) (2–7), and structural variants involving this gene
are also implicated in other neurobiological/neuropsychiatric
conditions including autism and ADHD (8–11). IMMP2L
transcript is expressed in several brain regions including
the cerebellum (7). Cerebellum is implied to have a role
not only in motor function, but also in cognitive and
emotional processes, and its dysfunction is implicated
both in movement disorders (e.g., ataxia and dystonia)
and non-motor neuropsychiatric diseases (e.g., autism and
ADHD) (12). As mitochondrial dysfunction is also linked to
disorders affecting cerebellum (13), IMMP2L is a plausible
susceptibility factor for neurobiological/neuropsychiatric
disorders including GTS.

Studies in different organisms (yeast, mice, and human cells)
show that substrates processed by IMMP2L include cytochrome
c1, mitochondrial glycerol-3-phosphate dehydrogenase 2 (GPD-

M), and apoptosis inducing factor (AIF) (14–16). Cytochrome
c1 is involved in electron transfer in the mitochondrial
electron transport chain, and GPD-M is a component of the
mitochondrial glycerol phosphate shuttle, which functions in
shuttling of electrons mitochondrial carriers in the oxidative
phosphorylation pathway. Both peptides hence have important
roles in mitochondrial respiratory chain and metabolism (17–
19). AIF triggers apoptosis and promotes removal of damaged
and irreparable cells when activated by IMMP2L under
oxidative stress, while in the absence of IMMP2L, cells are
driven toward a senescent state (16). Thus, IMMP2L has an
important role both in both mitochondrial metabolism and cell-
fate determination.

Brain tissue from Immp2l mutant mice show increased
production of reactive oxygen species (ROS), hyperpolarization,
and increased levels of ATP, but seem to have a normal
volume of mitochondria and bioenergetic capacity
(15, 20). Phenotypically, Immp2l mutant mice display
a series of features including altered behavior, reduced
social interaction, early onset ataxia, and age-dependent
degeneration of cerebellar granule neurons (21–25). The
majority of these phenotypes has been proposed to be a
consequence of cytotoxic insults caused by an increased
superoxide production.

Our group has previously identified intragenic IMMP2L
deletions in a Danish cohort of GTS patients, and these deletions
had an occurrence that was significantly high compared
to Danish controls (frequency, 3.7 vs. 0.9%, respectively)

(7). We hypothesized that impaired mitochondrial function
through a defective cerebellar IMMP2L may contribute to
GTS pathogenesis. To test this hypothesis, we conducted
a series of mitochondrial studies in fibroblasts obtained
from GTS patients with or without IMMP2L deletions
compared to control fibroblasts obtained from parents
without GTS and with or without deletions, and from
asymptomatic controls. To our knowledge, this is the first
study to evaluate mitochondrial function in fibroblasts from
GTS patients.

METHODS

Subjects and Study Design
In this study, we analyzed skin fibroblasts available from four
of our previously published GTS patients (P1, P2, P5, P6) and
three non-GTS parents (of P1, P2, P6) with IMMP2L deletions
(7). According to their own descriptions, the three parents had
some behavioral features at subclinical level (Table 1). Three
anonymous GTS patients and four non-GTS controls (including
mothers of P1 and P6) without deletions were also included in the
study. The following considerations were made for the inclusion
of family members: (1) inclusion of two asymptomatic mothers
without deletions (of P1 and P6) in the control group would
ensure similar mitochondrial DNA background when comparing
fibroblasts with and without IMMP2L deletions; (2) inclusion
of the parents with a deletion and without a GTS diagnosis
(of P1, P2, P6) would minimize the effect of the background
variation in the nuclear genome on mitochondrial function, as
half of the genetic material in the nuclear genome is identical
between child–parent.

All the experiments investigating mitochondrial dysfunction
were repeated at least three times. Quantitative visual scoring was
performed blinded to avoid bias.

Cell Cultures
Fibroblasts were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) (Gibco) supplemented with 10% fetal bovine serum
(FBS) (Gibco) and 1% penicillin/streptomycin, at 37◦C in a
humidified atmosphere with 5% CO2. Cells were routinely tested
for mycoplasma.

Superoxide Generation Assay
The level of mitochondrial ROS was quantified by measuring
MitoSOX red (Molecular Probes, Invitrogen) using high-
throughput microscopy (Nucleocounter 3000). Fibroblasts were
incubated with 5µM MitoSOX for 20min at 37◦C and
washed once in phosphate-buffered saline (PBS) before harvest.
Cells were harvested, resuspended in 10µg/ml Hoechst 33342
(Tocris), incubated for 10min at 37◦C, and immediately
analyzed. MitoSOX Red was excited at 530 nm, and data were
collected at 675/75 nm. Hoechst was excited at 365 nm, and
data were collected at 430/20 nm. Only live cells were included,
and the mean fluorescence intensity (MFI) was obtained by
subtracting the fluorescence of the control cells (not stained with
MitoSOX) from the fluorescence of the MitoSOX stained cells.
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TABLE 1 | Subjects investigated in this study and information on fibroblast cultures.

Fibroblast Subject identification Sex Symptoms IMMP2L status

(deleted exons)§
IMMP2L status

effected transcript§
Age# Passage

IMMP2L-1 P1 M GTS, ADHD Deletion (1a, 1b, 2, 3,

3a, 3b)

Long/short 23 3

IMMP2L-2 P1 father M Dyslexia*, Temper* Deletion (1a, 1b, 2, 3,

3a, 3b)

Long/short 52 2

IMMP2L-3 P2 M GTS, ADHD Deletion (2, 3) Long 20 3

IMMP2L-4 P2 mother F Tics*, OCD* Deletion (2, 3) Long 53 3

IMMP2L-5 P5 M GTS Deletion (3a, 3b) Short 23 2

IMMP2L-6 P6 M GTS, ADHD, OCD Deletion (3a, 3b) Short 19 2

IMMP2L-7 P6 father M Stubbornness* Deletion (3a, 3b) Short 62 3

TS-1 M GTS No deletion – 22 3

TS-2 M GTS No deletion – 24 3

TS-3 M GTS No deletion – 21 3

Control-1 P1 mother F No symptoms No deletion – 50 2

Control-2 P6 mother F No symptoms No deletion – 56 2

Control-3 104027 F No symptoms No deletion – 30 3

Control-4 104028 M No symptoms No deletion – 45 3

§ IMMP2L has two alternative transcripts differing at the 5′-end: The long transcript has exons 1a, 1b, 2, 3, 5–7 (ATG start codon in exon2) and the short transcript has exons 3a, 3b,

5–7 (ATG start codon in exon 3a) (7).
#Age (years) when biopsy was taken.

*Subclinical symptoms according to individuals own description.

GTS, Gilles de la Tourette syndrome; ADHD, attention deficit hyperactivity disorder; OCB, obsessive–compulsive behavior; OCD, obsessive–compulsive disorder; M, male; F, female.

Antimycin A (150µM) (Sigma-Aldrich) was used as a positive
control. For each sample, a minimum of 5,000 cells were scored.

Mitochondrial Membrane Potential
The mitochondrial membrane potential was determined by
detecting tetramethylrhodamine, ethyl ester (TMRE) (Abcam) by
high-throughput microscopy (Nucleocounter 3000). Fibroblasts
were incubated with 100 nm TMRE for 15min at 37◦C, briefly
washed in PBS, and harvested by standard procedures. Cells
were resuspended in 10µg/ml Hoechst 33342 (Tocris), incubated
10min at 37◦C, and immediately analyzed. TMRE was excited
at 530 nm, and data were collected at 675/75 nm. Hoechst was
excited at 365 nm, and data were collected at 430/20 nm. Only live
cells were included in the MFI, and 20µM carbonyl cyanide 4-
(trifluoromethoxy) phenylhydrazone (FCCP) (Abcam) was used
as a positive control. For each sample, a minimum of 5,000 cells
were scored.

Mitochondrial Mass
The mitochondrial mass of active mitochondria was quantified
by measuring MitoTracker Green probe (Molecular Probes,
Invitrogen) by high-throughput microscopy (Nucleocounter
3000). Cells were incubated with 100 nMMitoTracker for 20min
at 37◦C and washed once in PBS before harvest. Cells were
resuspended in 10µg/ml Hoechst 33342 (Tocris), incubated
10min at 37◦C, and immediately analyzed. MitoTracker Green
was excited at 475 nm, and data were collected in the 560/35 nm
channel. Hoechst was excited at 365 nm, and data were collected
in the 430/20 nm channel. Only live cells were included. For each
sample, a minimum of 5,000 cells were scored.

ATP Content and Mitochondrial
Respiration
TheATP content was determined using the luciferase-based assay
Vialight MDA Plus kit (Lonza) according to the manufacturer’s
instructions. Levels of luminescence was quantified in a
Microbeta2 scintillation counter (Perkin Elmer).

The mitochondrial respiration was measured using an XF-
96 Extracellular Flux Analyzer (Seahorse Bioscience, Agilent).
Seeded cells were washed and resuspended in Seahorse assay
media (Seahorse Bioscience, Agilent), supplemented with 1mM
pyruvate, 2mM glutamine, and adjusted to pH 7.4. Oxygen
consumption rates (OCRs) were measured to establish a baseline.
Subsequently, wells were injected with either 1µM oligomycin,
to measure ATP turnover from the changes in OCR, or with
0.5µM carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone
(FCCP) to determine reserve respiratory capacity from change
in OCR. All cells were finally treated with 2µM antimycin A as
a control.

Apoptosis and Senescence
The apoptotic state of the fibroblasts was evaluated using
the Annexin V-CF488A conjugate (Biotium) following the
instructions of the Nucleocounter NC-3000 Annexin V Assay
(Application note no. 3017 Rev. 1.4). For each sample, a
minimum of 5,000 cells were scored.

Senescence was analyzed using the SA-β-Gal-based
senescence detection kit (Abcam) according to the
manufacturer’s instructions. The percentage of senescent
cells were scored after five passages using the EVOS XL Core Cell
Imaging System (Life Technologies) and the cell counter plugin
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ImageJ software (NIH). A minimum of 200 cells were counted
per sample per experimental replica.

Statistics
Results are presented as mean ± SD from at least three
experimental replicas. A one-way analysis of variance (ANOVA)
and Tukey tests were used to compare subjects individually
or as specified groups (Table 1). A p < 0.05 was considered
significant. All statistical analyses were carried out using Prism
software (Graphpad).

RESULTS

The subjects investigated in this study were divided into
three groups: (1) seven individuals with IMMP2L deletions
(IMMP2L1–7), where four of themwere clinically diagnosed with
GTS (P1, P2, P5, and P6) and three of them were parents (of
P1, P2, and P6) without a GTS diagnosis; (2) three GTS patients
without IMMP2L deletions (TS 1–3); and (3) four controls
without any GTS symptoms (control 1–4) including mothers of
patients P1 and P6 (Table 1).

To determine the level of mitochondrial ROS, we measured
mitochondrial levels of superoxide, which represents total
mitochondrial ROS, using mitoSOX in living and unstressed
fibroblasts. In cells from all subjects, the level of ROS was
below that of the stressed positive control (antimycin A), and
we did not observe any significant differences between each
subject or between the IMMP2L deletion, GTS-without deletion,
or control group (Figure 1A). The results did not change when
the non-GTS parents with or without IMMP2L deletions were
omitted from the analysis (statistical analysis not included, raw
data available).

Mitochondrial membrane potential was measured using the
fluorophore TMRE that labels mitochondria proportional to the
potential across the inner membrane. Depolarized or inactive
mitochondria fail to sequester TMRE. The membrane potential
of mitochondria is related to its ability to produce ATP by
oxidative phosphorylation, but it is also an indicator of general
apoptosis, as collapse of the mitochondrial membrane triggers
an apoptotic cascade. No significant difference in mitochondrial
membrane potential was demonstrated between fibroblasts of
individual patients or between the three groups (Figure 1B).

Determination of mitochondrial mass provides a simplified
overview of mitochondrial dynamics and is one of the signs of
an altered activity of mitochondrial fission, fusion, biogenesis,
or mitophagy. To label mitochondria in live cells, we used a
MitoTracker probe, which passively diffuses across the plasma
membrane and accumulates in active mitochondria. We did not
observe significant difference in mitochondrial mass between
individual subjects or between the three groups (Figure 1C).

To evaluate the bioenergetic capacity, we quantified basal
respiration rate, ATP turnover, and reserve respiratory in
live cells by standard protocols using the Seahorse XF
analyzer (Figures 2A–D), and for a total overview of the
energy metabolism, whole-cell count of ATP was determined
(Figure 2E). None of the assays showed a significant difference

between fibroblasts of individual patients or between different
groups as described above.

To evaluate cell fate of the fibroblasts, we quantified the
percentage of cells in apoptosis and senescence. Live apoptotic
cells were stained with the apoptotic marker Annexin V
and distinguished from dead cells by propidium iodine. The
percentage of apoptotic cells were within a normal range for
all fibroblasts, and we did not observe any differences between
individuals or when comparing the two groups of GTS patients
with controls (Figure 3A). To determine the percentage of cells
in senescence, cells were fixed and stained with β-Gal in their
exponential phase. Since the number of cells in senescence
increases with age (26), individuals over 50 years of age were
excluded from this assay (see Table 1). No significant difference
was observed between individuals or between different groups as
described above (Figure 3C).

DISCUSSION

In this study, we investigated whether mitochondrial dysfunction
was a contributing factor in disease etiology of GTS patients
with and without deletions affecting the mitochondrial peptidase
IMMP2L. Having the highest mitochondrial energy demand of
all organs, the brain in particular is sensitive to mitochondrial
dysfunction, which indeed has been implicated in the etiology of a
wide spectrum of neurobiological and neuropsychiatric disorders
(27, 28). IMMP2L has a dual role in the mitochondria affecting
both the mitochondrial metabolism and the cell fate. IMMP2L
deficiency has been linked to mitochondrial dysfunction in the
form of increased oxidative stress, a pathological feature common
to several central nervous system disorders (29), and increased
occurrence of cellular senescence, a pathological feature of
neurodegeneration (30). In line with this, rare structural variants
affecting IMMP2L were implicated as susceptibility factors in
autism spectrum disorders (31) and ADHD (11).

IMMP2L has been suggested as a candidate susceptibility gene
in GTS (3, 6), and we have shown that intragenic IMMP2L
deletions were present at a higher frequency in GTS patients
compared to control population. We hypothesized that the
IMMP2L deletions could exert their effect through impaired
mitochondrial function (7). To test this hypothesis, we conducted
a series of experiments to assess whether fibroblasts from
GTS patients with or without IMMP2L deletions would show
phenotypes of oxidative stress or other signs of mitochondrial
dysfunction compared to controls. As control individuals,
we also included parents without GTS and with IMMP2L
deletions, to ensure a more similar background for the nuclear
genome to minimize any confounding effect of background
variations, and asymptomatic mothers without deletions and
to ensure a similar mitochondrial DNA background (Table 1).
This would be an important issue in case we found a
difference in mitochondrial function. However, we found no
evidence for altered mitochondrial ROS, membrane potential,
mass, respiration, or ATP content, suggesting that there is no
substantial mitochondrial dysfunction in fibroblasts of GTS
patients with or without IMMP2L deletions. However, these
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FIGURE 1 | Fibroblasts of Gilles de la Tourette syndrome (GTS) patients with and without IMMP2L deletions display no signs of oxidative stress, altered membrane

potential, or abnormal mitochondrial mass. (A) Mitochondrial reactive oxygen species (ROS) levels presented as relative MitoSOX MFI ± SD of each subject (left) and

of each group (right). (B) Mitochondrial membrane potential presented as relative TMRE MFI ± SD of each subject (left) and of each group (right). (C) Mitochondrial

mass presented as MitoTracker MFI ± SD of each subject (left) and of each group (right). All MFI values are normalized to the mean of the healthy control cells within

each experimental replica. Each bar represents at least three independent experiments. Black stars mark non-GTS individuals with IMMP2L deletions.

findings do not exclude that processing of known IMMP2L
substrates, such as cytochrome c1, GPD-M, and AIF is affected,
and further studies are necessary to clarify this.

IMMP2L has a key role in cell-fate programming during
conditions of increased ROS by either promoting apoptosis
by AIF activation or being shut down upon the onset of
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FIGURE 2 | Properties of mitochondrial respiration were unaltered in fibroblasts of Gilles de la Tourette syndrome (GTS) patients with and without IMMP2L deletions.

(A) Respiration overview of groups. (B) Basal respiration as determined as initial resting consumption of oxygen. (C) ATP turnover as measured as a decrease in

oxygen consumption after addition of oligomycin. (D) Reserve respiratory capacity as measured as a percentage of basal respiration, after addition of FCCP. The

similarity between the groups was also present in whole-cell ATP levels. (E) Mean percentage ± SD of whole-cell ATP presented for each subject (left) and the three

groups (right). Black stars mark non-GTS individuals with IMMP2L deletions. All values are normalized to the mean of the healthy control cells within each experimental

replica. Each bar represents at least three independent experiments.
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FIGURE 3 | Gilles de la Tourette syndrome (GTS) patients with and without IMMP2L deletions show no signs of increased apoptosis or senescence. (A) Mean

percentage ± SD of apoptotic cells presented for each subject (left) and the three groups (right). (B) Representatives of dot plot and histogram for Annexin V and

propidium iodine (PI) staining. As indicated on the dot plot, the cell population was divided into apoptotic, late apoptotic/dead, and dead. The apoptotic population

was included in the charts. Black stars mark non-GTS individuals with IMMP2L deletions. (C) Mean percentage ± SD of senescent cells presented for each subject

(left) and the three groups (right). (D) Representative image of a fibroblast culture with a senescent cell positive for β-Gal (arrow). For all charts, each bar represents

three independent experiments. n indicates the number of cells analyzed per replica.
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senescence (16). In GTS fibroblasts, we did not observe
induction of either apoptosis or senescence, but this could
be due to the normal ROS levels that we have measured.
It is therefore plausible that in high ROS levels, a defective
IMMP2L may not be able to process AIF to its proapoptotic
active form. Further studies may elucidate how fibroblasts with
IMMP2L deletions would respond to exogenous stimulation
of ROS.

Cerebellum has been implicated in GTS pathophysiology
(32, 33), and our group has previously shown that IMMP2L
transcripts were highly expressed in the granular and Purkinje
cell layer of the cerebellum (7). Abnormal or dysfunctional
cerebellum and Purkinje cells have also been implicated in
other neurodevelopmental and movement disorders, such as
autism spectrum disorders, ataxia, and dystonia, and notably,
mitochondrial dysfunction is linked to these disorders (34–
36). It is thus possible that IMMP2L deletions have a more
pronounced effect in high energy-dependent neurons, such
as the Purkinje cells, which are known to be vulnerable to
mitochondrial dysfunction (36). Notably, Purkinje cells are a
class of GABAergic (γ-aminobutyric acid) neurons, and altered
GABA function has been suggested to contribute to GTS
pathology (37). Further studies using induced pluripotent stem
cell (iPSC)-derived brain cells, including GABAergic neurons,
are necessary to understand the involvement of mitochondrial
dysfunction in brain tissues.

In summary, we could not show a substantial mitochondrial
dysfunction in GTS patients with or without IMMP2L deletions
in fibroblast. However, involvement of IMMP2L in GTS
pathogenesis cannot be completely excluded, and further studies
investigating larger number of patients and using iPSC-derived
neuronal cells are necessary.
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