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Atrial fibrillation (AF) increases the risk of ischemic stroke and systemic arterial embolism.

However, the risk factors or predictors of stroke in AF patients have not been clarified.

Therefore, it is necessary to find effective diagnostic and therapeutic targets. Two

datasets were downloaded from the Gene Expression Omnibus (GEO) database.

Differently expressed genes (DEGs) were identified between samples of atrial fibrillation

without stroke and atrial fibrillation with stroke. Enrichment analysis of Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) by Gene Set Enrichment

Analysis (GSEA), construction and analysis of protein-protein interaction (PPI) network

and significant module, and the receiver operator characteristic (ROC) curve analysis

were performed. A total of 524 DEGs were common to both datasets. Analysis of

KEGG pathways indicated that the top canonical pathways associated with DEGs were

ubiquitin-mediated proteolysis, endocytosis, spliceosome, and so on. Ten hub genes

(SMURF2, CDC42, UBE3A, RBBP6, CDC5L, NEDD4L, UBE2D2, UBE2B, UBE2I, and

MAPK1) were identified from the PPI network and were significantly associated with a

diagnosis of atrial fibrillation and stroke (AFST). In summary, a total of 524 DEGs and

10 hub genes were identified between samples of atrial fibrillation without stroke and

atrial fibrillation with stroke. These genes may serve as the target of early diagnosis or

treatment of AF complicated by stroke.

Keywords: atrial fibrillation, stroke, bioinformatic technology, differentially expressed genes, hub genes

INTRODUCTION

Atrial fibrillation (AF) is a type of supraventricular tachyarrhythmia characterized by rapid and
disordered atrial electrical activity (1). The atrium loses effective contraction due to disordered
electrical activity and the atrioventricular node presents diminished conduction to rapid atrial
activation, resulting in an extremely irregular ventricular rhythm and a rapid or slow ventricular
rate, which leads to decreased cardiac blood pumping function and mural thrombosis formation in
the atria (2, 3). Stroke is an acute cerebrovascular disease, which is a group of diseases that causes
brain tissue damage due to the sudden rupture of blood vessels in the brain or vascular occlusion
preventing blood from flowing into the brain (4, 5). AF increases the risk of stroke, with incidence
rates of 1.92% a year. Compared with non-AF-related strokes, strokes caused by AF have a worse
prognosis, with a mortality rate of nearly 20% and a disability rate of nearly 60% (6). However, the
molecular mechanisms of strokes caused by AF are unclear (7).

With the development of molecular biology and second-generation sequencing technology, it is
possible to explore the pathogenesis of diseases on a large scale at the gene and molecular level (8).
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Bioinformatics analysis can obtain a large amount of gene
expression information simultaneously and explore differentially
expressed genes (DEGs) related to disease initiation and
progression (9). Concurrently, these DEGs also provide a novel
direction for the diagnosis and treatment of diseases (10). By
studying the difference in gene expression profiles between
AF without strokes and AF-related strokes, Allende et al. (11)
suggested that Hsp70 protects AF-related stroke patients via
the prevention of thrombosis without augmenting the risk of
bleeding, and it might be a novel biomarker to cure patients
of stroke caused by AF. Stamova et al. (12) tried to explore
the distinction of gene expression in the cardioembolic stroke
patients and advocated that future research should be designed
to verify the role of DEGs in strokes and AF. Studying the genetic
factors of stroke caused by AF is of great significance, and the
research is vital to understand the pathogenesis and provide a
theoretical basis of molecular genetics for the precise treatment.

Therefore, in this research, two datasets, GSE66724, and
GSE58294, were downloaded from the Gene Expression
Omnibus (GEO), followed by screening and enrichment of
DEGs and identification of hub genes. Finally, the study reviews
diagnostic and prognostic information provided by hub genes
and discusses the potential value of hub genes as a new
therapeutic target for patients with AF-stroke.

MATERIALS AND METHODS

Access to the Data
Gene Expression Omnibus (GEO) (13) is a gene expression data
warehouse and online resource for retrieving gene expression
data from any species or artificial source. GEO mainly contains
a variety of chip data and some sequencing data. Two datasets
[GSE66724 (11) and GSE58294 (12)], which were all annotated in
the platform of GPL570 [HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array were downloaded from the GEO
database. GSE66724 consisted of 16 whole blood samples, which
were taken from eight patients with atrial fibrillation and without
stroke (AF, n = 8), and eight patients with atrial fibrillation and
stroke (AFST, n = 8). The subject characteristics of individuals
in the GSE66724 were showed in the Table 1 (11). GSE58294
also included a total of 92 whole blood samples, which were
taken from 23 patients with atrial fibrillation and without stroke
(AF, n = 23) and 69 patients with atrial fibrillation and stroke
(AFST, n = 69). However, the lack of subject characteristics of
individuals in the GSE58294 was a limitation and the patients
with stroke were in the hyperacute phase.

The Repeatability Test for the Intra-Group
Data
The repeatability of data was verified by Pearson’s correlation
test. R (14) is an open language and environment for statistical
computing and mapping, which was maintained by a large and
active global research community. Pearson’s correlation test and
the mapping of heatmaps were completed by the R language.
Principal component analysis (PCA) (15), a strong mathematical
method, was capable of reducing the data’s complexity. The PCA
could capture variance in whole fields by detecting the linear

TABLE 1 | Clinical characteristics of the individuals in the GSE66724.

AF without stroke

(n = 8)

AFST (n = 8) P

Age (years) 68.5 (61.3–77.8) 70.0 (65.3–77.5) 0.598

Sex (female), n (%) 3 (37.5) 3 (37.5) 0.999

CHAD 1 (1–2) 1 (1–2) 0.626

Hypertension, n (%) 6 (75.0) 5 (62.5) 0.619

Congestive heart failure, n (%) 2 (25.0) 1 (12.5) 0.554

Diabetes, n (%) 2 (25.0) 3 (37.5) 0.619

Leukocytes (x103, cells/ml) 6.70 (6.35–8.88) 7.60 (6.50–8.23) 0.958

Neutrophils (%) 4.10 (3.35–6.35) 4.13 (3.41–5.25) 0.958

Monocytes (%) 1.98 (1.69–2.29) 2.40 (1.92–2.53) 0.189

Lymphocytes (%) 0.71 (0.41–0.91) 0.59 (0.51–0.64) 0.958

Statins, n (%) 3 (37.5) 3 (37.5) 0.999

Anti-hypertensive drugs, n (%) 4 (50.0) 4 (50.0) 0.999

Values for age, CHAD, leukocytes, neutrophils, monocytes, and lymphocytes are the

median [interquartile range (IQR)]. CHAD is the CHADS2 index after subtracting the

previous stroke punctuation. Neutrophils, monocytes, and lymphocytes are expressed

as percentage of the total number of leukocytes.

combinations so that the components, which were orthogonal
to and not correlated with each other, were divided. The
repeatability of data was also verified by the PCA.

Screening of DEGs
GEO2R (16) is a system for online analysis of data in GEO.
This tool system runs in R language based on two R packages,
GEOquery and limma. The former is used for data reading, and
the latter is used for calculation. DEGs between the AF blood
samples and the AFST blood samples were screened by GEO2R.
P ≤ 0.05 was defined as the cut-off criterion. When the DEGs
were not annotated with the gene symbols, they were excluded.
The DEGs were presented with volcano maps, which were drawn
by a volcano plotting tool (https://shengxin.ren) based on R
language. Circos (17) was one useful tool to find the overlapping
genes based on their shared pathways or functions. Finding
the overlapping DEGs between two datasets was performed by
Circos. An online Venn tool (http://bioinformatics.psb.ugent.
be/webtools/Venn/) was used to apply a VENN diagram to
identify the overlap between GSE66724 and GSE58294 and
obtain common DEGs.

Functional Annotation for DEGs via DAVID
Gene Ontology (GO) (18) is a database created by the Gene
Ontology Consortium, which consists of a set of predefined
GO terms that define and describe the functions of genes
and proteins in a variety of species and can be updated as
research progresses. The Gene Ontology can be divided into
three parts: cellular component (CC), biological process (BP),
and molecular function (MF). A protein or gene could find its
corresponding GO number through ID matching or sequence
annotation, and the GO number could correspond to Term,
namely functional category or cell location. KEGG (Release
91.0, July 1, 2019, https://www.kegg.jp/kegg/) (19) is an open
database resource for easily understanding utilities and high-level
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FIGURE 1 | Validation of data, and the identification of DEGs between AF and AFST samples. (A) Pearson’s correlation test for GSE66724 dataset. (B) The principal

component analysis for GSE66724. (C) Pearson’s correlation test for GSE58294 dataset. (D) After performing the principal component analysis, the repeatability of

(Continued)
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FIGURE 1 | data in GSE58294 was fine. (E) The DEGs between AF and AFST blood samples in the GSE66724 were presented in the volcano plots. (F) The DEGs in

the GSE58294 were presented in the volcano plots. (G) The overlapping DEGs between GSE66724 and GSE58294 were presented by Circos at gene level. (H) The

overlapping DEGs between GSE66724 and GSE58294 were presented by Circos at the shared term level. (I) The VENN diagram manifested 524 DEGs common to

both datasets.

functions of biological systems in the organism, the ecosystem,
and the cell from molecular-level information, especially using
the large-scale datasets generated from genome sequencing
technologies. The Database for Annotation, Visualization, and
Integrated Discovery (DAVID) (version: v6.8, https://david.
ncifcrf.gov/summary.jsp) (20, 21) provides a well-rounded set of
annotation tools for function and pathway enrichment analysis
so that the investigators can easily understand the biological
meaning of a large list of DEGs. For the given list of DEGs,
DAVID tools were able to identify enriched biological themes,
particularly GO terms, and visualize genes on BioCarta and
KEGG pathway maps.

Function and Pathway Enrichment
Analysis by Metascape
Metascape (http://metascape.org/gp/index.html#/main/step1)
(22) is a powerful annotation analysis tool for gene function
that can help researchers apply popular bioinformatics analysis
methods to the analysis of batch genes and proteins so as to
realize the cognition of gene or protein functions. It can annotate
a large number of genes or proteins, perform enrichment
analysis, and construct protein-protein interaction networks.
It integrates several authoritative functional databases such as
GO, KEGG, and Uniprot to analyze not only human data, but
also data from many other species, and to analyze not only a
single data set, but also multiple gene sets simultaneously. The
Matascape was used to complete the research’s function and
pathway enrichment analysis.

Enrichment Analysis by Gene Set
Enrichment Analysis (GSEA)
Gene Set Enrichment Analysis (GSEA) (http://software.
broadinstitute.org/gsea/index.jsp) (23, 24) is a powerful
computational method that determines whether a priori defined
set of genes manifests statistically significant differences between
two states. Using a predefined set of genes that is usually derived
from functional notes or results of previous experiments, GSEA
can rank the genes by the degree of differential expression in the
two samples, and then check to see if the predefined set of genes
is enriched at the top or bottom of the list. Gene set enrichment
assays detect changes in the expression of gene sets rather than
individual genes and thus can include these subtle changes in
expression, with better results expected. GSEA does not need to
specify a clear threshold of differentially expressed genes and
the algorithm analyzes the overall trend according to the actual
situation. GSEA analysis was carried out to perform the GO and
KEGG enrichment analysis. GSEA would be conducted on the
sequenced genes of AF and AFST blood samples after importing
reference function sets, gene annotation files, and all gene data of
both AF and AFST blood samples.

The Construction of Protein–Protein
Interaction (PPI) Network, Screening of the
Significant Module, and Identification of
Hub Genes
An online database, the Search Tool for the Retrieval of
Interacting Genes (STRING) (25) (http://string-db.org), can
trace and predict the protein–protein interaction (PPI) network
after the common DEGs are imported into the database. The
STRING was used to construct a PPI network of DEGs. The
Cytoscape (version 2.8) (26), an open visualization software tool,
was used to visualize this network. The Molecular Complex
Detection tool (MCODE) (version 1.5.1) (27), a plug-in of
Cytoscape, could screen and identify the most significant module
in the PPI network, and the criteria was that MCODE scores >5,
the degree of cut-off = 2, node score cut-off = 0.2, k-score = 2,
and maximum depth = 100. Furthermore, once the degree was
more than 10, the cytoHubba (28), a plug-in of Cytoscape, could
identify the hub genes.

The Correlation Analysis Between the Hub
Genes and AFST
Pearson’s correlation test was performed to complete the
correlation analysis of the hub genes. The mapping of heatmaps,
which could present the correlation among the hub genes,
was completed by the R language. Spearman’s correlation and
multiple linear regression analyses between AFST and relevant
gene expression were also carried out.

Enrichment Analysis, Expression Analysis,
and Diagnostic Analysis of Hub Genes
The GO and KEGG enrichment analyses for hub genes were
completed via the DAVID tool, and the bubble diagrams were
drawn by R language. Two heatmaps hub genes’ expression level
were visualized with R language. Finally, the receiver operator
characteristic (ROC) curve analysis was performed to determine
the usefulness of these hub genes in predicting AFST. The SPSS
software (version 21.0; IBM; New York; America) was used
to conduct a statistical analysis. A P ≤ 0.05 was considered
statistically significant.

Identification of Hub Genes Associated
With Cardiovascular and Nervous Diseases
The comparative toxicogenomics database (http://ctdbase.org/)
(29) was used to identify the integrated chemical–disease,
chemical–gene, and gene–disease interactions to predict novel
associations and generate expanded networks. The relationships
between gene products and cardiovascular and nervous diseases
were analyzed by the comparative toxicogenomics database.
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FIGURE 2 | The enrichment analysis of DEGs by DAVID and Metascape. Detailed information relating to changes in the (A) CC, (B) BP, (C) MF, and (D) KEGG

analysis for hub genes. (E) Heatmap of enriched terms across the input differently expressed gene lists, colored by p-values, via the Metascape. (F) Network of

enriched terms colored by cluster identity, where nodes that share the same cluster identity are typically close to each other. (G) Network of enriched terms colored by

p-value, where terms containing more genes tend to have a more significant p-value.
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FIGURE 3 | The six enrichments for up-regulated and down-regulated gene sets in the significant order (size of NES). (A) Enrichment plot:

GO_REGULATION_OF_CARDIAC_MUSCLE_CONTRACTION_BY_REGULATION_OF_THE_RELEASE_OF_SEQUESTERED_CALCIUM_ION. (B) Enrichment plot:

GO_PROTEIN_K63_LINKED_UBIQUITINATION. (C) Enrichment plot: KEGG_P53_SIGNALING_PATHWAY. (D) Enrichment plot: KEGG_APOPTOSIS. (E) Enrichment

plot: GO_REGULATION_OF_HEART_MORPHOGENESIS. (F) Enrichment plot: KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION.
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RESULTS

Validation of Data
Pearson’s correlation test shows that there are powerful
correlations among samples in the AF group, and that there are
also powerful correlations among samples in AFST group in the
GSE66724 dataset (Figure 1A). After performing the principal
component analysis, the repeatability of data in GSE66724 was
fine (Figure 1B). Pearson’s correlation test shows that there are
powerful correlations among samples in the AF group, and that
there are also powerful correlations among samples in AFST
group in the GSE58294 dataset (Figure 1C). After performing
the principal component analysis, the repeatability of data in
GSE58294 was fine (Figure 1D).

The Identification of DEGs Between AF and
AFST Samples
Through the GEO2R analysis, the DEGs between AF and AFST
blood samples in the GSE66724 were presented in the volcano
plot (Figure 1E) along with DEGs in the GSE58294 (Figure 1F).
The overlapping DEGs between GSE66724 and GSE58294 were
presented by Circos not only at gene level (Figure 1G), but also
at the shared term level (Figure 1H). The VENNdiagram showed
that there was a total of 524 DEGs common to both datasets
(Figure 1I).

GO and KEGG Functional Annotation for
DEGs via DAVID and Metascape
Through DAVID analysis, the results of the GO analysis showed
that variations in DEGs linked with CC were mainly enriched
in nucleoplasm and ubiquitin ligase complex (Figure 2A).
Variations in DEGs linked with BP were significantly enriched
in protein ubiquitination and ubiquitin-dependent protein
catabolic process (Figure 2B). With regard to MF, DEGs were
significantly enriched in ubiquitin-protein transferase activity,
ubiquitin protein ligase activity, and ubiquitin protein ligase
binding (Figure 2C). Analysis of KEGG pathways indicated that
the top canonical pathways associated with DEGs was ubiquitin
mediated proteolysis (Figure 2D).

Furthermore, the functional enrichment analysis with
Metascape found that the DEGs between AFST and AF blood
samples were significantly enriched in the head development and
heart development (P < 0.05, Figures 2E–G).

Enrichment Analysis Through GSEA
After implementing the GSEA, the enrichments for
upregulated gene sets in the significant order (size of NES) are
“GO_REGULATION_OF_CARDIAC_MUSCLE_CONTRACT
ION_BY_REGULATION_OF_THE_RELEASE_OF_SEQUEST
ERED_CALCIUM_ION” (Figure 3A), “GO_PROTEIN_K63_LI
NKED_UBIQUITINATION” (Figure 3B), “KEGG_ P53_SIGN
ALING_PATHWAY” (Figure 3C), and “KEGG_APOPTOSIS”
(Figure 3D), and the enrichments for downregulated gene sets
in the significant order (size of NES) are “GO_REGULATION
_OF_HEART_MORPHOGENESIS” (Figure 3E) and “KEGG
_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION”
(Figure 3F). GSEA also showed that the enrichment gene sets

TABLE 2 | GO and KEGG enrichment analysis of DEGs in AFST using GSEA.

Gene set name SIZE ES NES P-value

Up-regulated

GO_REGULATION_OF_CARDIAC_MUSC

LE_CONTRACTION_

BY_REGULATION_OF_THE_RELEASE_O

F_SEQUESTERED_CALCIUM_ION

19 0.610 1.898 0.004

GO_PROTEIN_K63_LINKED_UBIQUITINA

TION

34 0.617 1.796 0.000

KEGG_P53_SIGNALING_PATHWAY 64 0.539 1.646 0.002

KEGG_APOPTOSIS 82 0.503 1.626 0.014

Down-regulated

GO_REGULATION_OF_HEART_MORPH

OGENESIS

26 −0.5 −1.6 0.042

KEGG_NEUROACTIVE_LIGAND_RECEPT

OR_INTERACTION

252 −0.16 −0.75 0.771

AFST, atrial fibrillation with stroke; ES, enrichment score; NES, normalized

enrichment score.

in AFST were mainly related to cardiac muscle, ubiquitination,
apoptosis, heart, and neuroactive ligand receptor interaction
(Table 2).

The Construction of PPI and Module
Networks, and Selection of Hub Genes
The PPI network consists of 1,162 edges and 413 nodes
(Figure 4A). There were two significant modules screened from
PPI network. One module included a total of 171 edges and 19
nodes (Figure 4B), and another module network consisted of
63 edges and 12 nodes (Figure 4C). Ten hub genes (SMURF2,
CDC42, UBE3A, RBBP6, CDC5L, NEDD4L, UBE2D2, UBE2B,
UBE2I, andMAPK1) were identified from the PPI network when
the degrees ≥10 (Figure 4D). Summaries for the gene symbols,
full names, and function of 10 hub genes are shown in Table 3.

Strong Correlation Between the Hub Genes
and AFST
Through analyzing the expression data of 10 hub genes in the
GSE66724, the strong correlations among the all hub genes
were found (Figure 4E). Furthermore, the strong correlations
were also verified in the GSE58294 (Figure 4F). Through the
Spearman correlation coefficient, MAPK1 (ρ = 0.705, p= 0.000)
and UBE2D2 (ρ = 0.707, p= 0.000) were significantly correlated
with AFST (Table 4). In the multivariate linear regression model,
holding all other variables at a fixed value, the natural logarithmic
AFST remained associated with MAPK1 and UBE2D2 (p < 0.05)
(Table 4).

Functional Enrichment Analysis of Hub
Genes
The results of DAVID showed that variations in CC of
hub genes were mainly enriched in ubiquitin ligase complex
and nuclei (Figure 5A). Variations in the BP of hub genes
were significantly enriched in protein ubiquitination, protein
K48-linked ubiquitination, and ubiquitin-dependent protein
catabolic process (Figure 5B). Variations in the MF of hub
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FIGURE 4 | The PPI network of DEGs, two significant modules, hub genes network, and the correlation analysis among hub genes. (A) The PPI network consists of

1,162 edges and 413 nodes. (B) One module includes a total of 171 edges and 19 nodes. (C) Another significant module network consists of 63 edges and 12

nodes. (D) The hub genes network (SMURF2, CDC42, UBE3A, RBBP6, CDC5L, NEDD4L, UBE2D2, UBE2B, UBE2I, and MAPK1). (E) The heatmap manifests that

there are strong correlations among the all hub genes in the GSE66724. (F) The strong correlations among hub genes were also verified in the GSE58294.
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TABLE 3 | Summaries for the function of 10 hub genes.

No. Gene

symbol

Full name Function

1 SMURF2 SMAD specific E3

ubiquitin protein

ligase 2

Among its related pathways are Signaling

by Hedgehog and Transcriptional activity

of SMAD2/SMAD3-SMAD4 heterotrimer.

Gene Ontology (GO) annotations related to

this gene include identical protein binding

and ubiquitin–protein transferase activity

2 CDC42 Cell division cycle

42

Required for DOCK10-mediated spine

formation in Purkinje cells and

hippocampal neurons. Facilitates filopodia

formation upon DOCK11-activation. Also

plays a role in phagocytosis through

organization of the F-actin cytoskeleton

associated with forming phagocytic cups

3 UBE3A Ubiquitin protein

ligase E3A

As a regulator of synaptic development by

mediating ubiquitination and degradation

of ARC

4 RBBP6 RB binding protein

6, ubiquitin ligase

May play a role as a scaffold protein to

promote the assembly of the

p53/TP53-MDM2 complex, resulting in

increase of MDM2-mediated ubiquitination

and degradation of p53/TP53; may

function as negative regulator of

p53/TP53, leading to apoptosis

5 CDC5L Cell division cycle

5 like

DNA-binding protein involved in cell cycle

control. May act as a transcription

activator. The PRP19-CDC5L complex

may also play a role in the response to

DNA damage (DDR)

6 NEDD4L Neural precursor

cell expressed,

developmentally

down-regulated

4-like, E3 ubiquitin

protein ligase

Promotes ubiquitination and degradation

of SGK1 and TNK2. Ubiquitinates BRAT1

and this ubiquitination is enhanced in the

presence of NDFIP1. Plays a role in

dendrite formation by melanocytes.

Involved in the regulation of TOR signaling

7 UBE2D2 Ubiquitin

conjugating

enzyme E2 D2

Mediates the selective degradation of

short-lived and abnormal proteins.

Functions in the E6/E6-AP-induced

ubiquitination of p53/TP53

8 UBE2B Ubiquitin

conjugating

enzyme E2 B

May be involved in neurite outgrowth

9 UBE2I Ubiquitin

conjugating

enzyme E2 I

Essential for nuclear architecture and

chromosome segregation

10 MAPK1 Mitogen-activated

protein kinase 1

Diseases associated with MAPK1 include

chromosome 22Q11.2 deletion syndrome,

distal and retrograde amnesia

genes were significantly enriched in ubiquitin protein ligase
activity, ubiquitin–protein transferase activity, and ubiquitin
conjugating enzyme activity (Figure 5C). Analysis of KEGG
pathways showed that hub genes were mainly enriched in
ubiquitin-mediated proteolysis (Figure 5D).

The Expression Level of Hub Genes in the
AF and AFST Blood Samples
One heatmap showed the expression level of hub genes in the
GSE66724. When compared with the AF blood samples, the

TABLE 4 | The correlation and linear regression analysis between AFST and

relevant gene expression.

Gene

symbol

AFST

Spearman correlation

coefficient

Multiple linear regression

ρa p-value βb p-value VIF

SMURF2 0.355 0.001*** −0.110 0.347 3.247

CDC42 0.604 0.000*** 0.054 0.621 3.182

UBE3A 0.360 0.000*** 0.160 0.043* 2.340

RBBP6 0.372 0.000*** 0.052 0.306 1.332

CDC5L 0.614 0.000*** 0.196 0.037* 2.319

NEDD4L 0.150 0.154 −0.110 0.020* 2.851

UBE2D2 0.707 0.000*** 0.452 0.012* 3.352

UBE2B 0.518 0.000*** −0.037 0.723 3.484

UBE2I −0.521 0.000*** −0.073 0.086 2.184

MAPK1 0.705 0.000*** 0.342 0.014* 8.204

aSpearman correlation coefficient between AFST and relevant characteristics; ρ,

Spearman correlation coefficient.
bMultiple linear regression analysis, β, parameter estimate; AFST, atrial fibrillation

with stroke.

VIF, Variance Inflation Factor. *P ≤ 0.05; ***P ≤ 0.001.

expression of MAPK1 and UBE2D2 were upregulated in the
AFST blood samples (Figure 5E). Another heatmap presented
the expression level of hub genes in the GSE58294. When
compared with the AF blood samples, the expression of MAPK1
and UBE2D2 were also upregulated in the AFST blood samples
(Figure 5F).

Hub Genes Could Be Used to Predict AFST
Specifically and Sensitively via the ROC
Curve Analysis
To verify the accurate thresholds of hub genes to predict AFST,
the ROC curves was constructed. The expression ofMAPK1 and
UBE2D2 were significantly associated with a diagnosis of AFST
(0.7<AUC<1, P ≤ 0.05) (Table 5, Figure 6).

Identification of Hub Genes
The CTD database showed that hub genes targeted several
cardiovascular and nervous diseases. This data is shown in
Figure 7.

DISCUSSION

Atrial fibrillation (AF) increases the risk of ischemic stroke,
with an incidence of 1.92% a year. AF patients’ risk of ischemic
stroke is four to five times that of non-AF patients. Ischemic
strokes have a nearly 20% mortality rate and 60% disability rate
(30). Therefore, it is of great clinical significance to explore the
mechanisms of strokes caused by AF and to search for molecular
targets of diagnosis and even treatment (11). Bioinformatics
technology has been widely used to find genetic changes during
the occurrence and development of diseases, which is a reliable
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FIGURE 5 | The enrichment analysis and expression level analysis of the hub genes. Detailed information relating to changes in the (A) CC, (B) BP, (C) MF, and (D)

KEGG analysis for hub genes. (E) The comparison of expression level of hub genes between AF and AFST samples in the GSE66724. (F) The comparison of

expression level of hub genes between AF and AFST samples in the GSE58294.
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TABLE 5 | Receiver operator characteristic curve analysis of hub gene expression

for AFST.

Gene symbol AFST

AUC P-value 95% CI ODT

SMURF2 0.737 0.001*** 0.629–0.844 2.382

CDC42 0.903 0.000*** 0.839–0.967 2.807

UBE3A 0.740 0.001*** 0.642–0.838 0.549

RBBP6 0.748 0.000*** 0.629–0.867 1.225

CDC5L 0.909 0.000*** 0.851–0.967 1.516

NEDD4L 0.600 0.153 0.481–0.719 0.813

UBE2D2 0.971 0.000*** 0.942–1.000 3.251

UBE2B 0.846 0.000*** 0.762–0.929 2.910

UBE2I 0.848 0.000*** 0.770–0.925 −1.223

MAPK1 0.970 0.000*** 0.938–1.000 2.228

AUC, area under curve; max the maximum of AUC; *significant variables; ODT, optimal

diagnostic threshold; AFST, atrial fibrillation with stroke. ***P ≤ 0.001.

means of finding a target for the diagnosis or treatment of
diseases (31).

Our own bioinformatics analysis showed that the ten
genes SMURF2, CDC42, UBE3A, RBBP6, CDC5L, NEDD4L,
UBE2D2, UBE2B, UBE2I, and MAPK1 were significantly and
highly expressed in patients with AF complicated by stroke
when compared with patients with simple AF without stroke.
Therefore, we speculate that these highly expressed genes, most
prominently MAPK1 and UBE2D2, are likely to be involved in
incidences of AF complicated by stroke.

MAPK1 (mitogen-activated protein kinase 1) is mainly
involved in affecting the activity of protein serine/threonine
kinase, protein phosphorylation, regulating gene expression,
and apoptosis, which can participate in the occurrence and
development of various diseases (9). Through bioinformatics
and microarray technology, Si et al. found that MAPK1 is
involved in the chemotherapy tolerance of breast carcinoma,
providing new paths for mechanism research and targeted
therapy of chemotherapy tolerance (32). Through bioinformatics
analysis, Xu et al. (33) found that MAPK1 is involved in the
drug resistance of ovarian carcinoma. Through experiments, Xu
et al. further confirmed the expression of MAPK1 in ovarian
carcinoma drug-resistant cells, providing evidence for the drug
resistance mechanism and targeted therapy of tumors (33).
Through bioinformatics analysis, Yang et al. (34) found that
MAPK1 overexpression is associated with the incidence of
primary colon adenocarcinoma, suggesting that MAPK1 may
be a target for early diagnosis and treatment of primary colon
adenocarcinoma. Wang et al. (35) found that the MAPK1-
related signaling pathway is involved in the occurrence and
development of eclampsia, which may serve as a diagnostic
target. Mali et al. (36) found that the stromal interacting
molecule-1 may participate in the occurrence of myocardial
infarction through MAPK, oxidative stress, and apoptosis,
providing a new idea for the mechanism research and treatment
of myocardial infarction. Through bioinformatics analysis, Zhu
et al. (9) found that MAPK1 can mediate the autophagy of

endothelial progenitor cells and participate in the occurrence and
development of coronary atherosclerotic heart disease through
the mTOR signaling pathway.

At the same time, more and more studies suggest that
MAPK is an important regulator of ischemic and hemorrhagic
cerebrovascular disease. Throughmicroarray technology, Li et al.
(37) found multiple biomarker molecules related to ischemic
stroke and found that the MAPK signaling pathway may be
involved in the occurrence and development of ischemic stroke.
Huang et al. (38) found that the blood let-7e-5p may be a
diagnostic target for ischemic stroke through bioinformatics
analysis. Further analysis showed that MAPK is involved in
the occurrence and development of ischemic stroke, suggesting
that MAPK may serve as a therapeutic target. Eyileten et al.
(39) summarized the possible diagnostic biomarkers of ischemic
stroke and thought that MAPK1 could be a potential diagnostic
and therapeutic target. Hayashi et al. (40) found that theMAPK1
signaling pathway is involved in autophagy, which is associated
with myocardial infarction and AF (41, 42). We found that
MAPK1 is highly expressed in patients with AF complicated
by cerebral infarction compared with patients with AF alone.
Therefore, we speculate that MAPK1 is involved in the onset
of AF complicated by cerebral infarction through multiple
mechanisms. Due to the existence of eddy currents in the atria
of patients with AF, MAPK1 can promote the detachment and
metastasis of atrial thrombus by regulating apoptosis, autophagy,
inflammatory stress, and other elements, ultimately causing a
stroke. In future studies, it is worth considering how MAPK1
may be a target for the early diagnosis and treatment of AF
complicated by stroke.

UBE2D2 (ubiquitin conjugating enzyme E2 D2) is mainly
involved in affecting the binding of ubiquitin protein ligases and
the activity of ubiquitin protein transferase (43). UBE2D2 plays
an important role in tissues and cells, where it can participate
in the dissolution of tissues through the ubiquitination enzyme
system (44). Geisler et al. (45) found that UBE2D2-mediated
autophagy is involved in the progression of Parkinson’s disease.
Lee et al. (46) found that the expression of UBE2D2 is associated
with the prognosis of patients with colorectal cancer (CRC),
suggesting that UBE2D2 could be used as one of the prognostic
indicators of CRC. Peng et al. (47, 48) argued that autophagy
involved with UBE2D2 has a significant impact on the internal
environment and can promote the formation and degradation
of ubiquitinated aggregates through autophagy. More recent
research on UBE2D2 provides new ideas for the mechanism
research and targeted therapy of autophagy-related diseases.

There is also a correlation between ubiquitin protease
activity, autophagy, and the onset of AF and ischemic stroke
(49). Hou et al. (42) contended that moderate autophagy
can remove damaged organelles, thereby protecting cells from
various damages. However, excessive autophagy can cause the
degradation of normal cell and tissue contents, which results
in tissue and organ damage. In animal models of ischemic
brain injury, autophagy can activate and participate in the
death of neurons, suggesting that the regulating of autophagy
may be a new treatment approach for ischemic stroke (41,
42). We found that UBE2D2 is highly expressed in patients
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FIGURE 6 | The receiver operator characteristic curves of the hub gene for AFST. (A) SMURF2, (B) CDC42, (C) UBE3A, (D) RBBP6, (E) CDC5L, (F) NEDD4L, (G)

UBE2D2, (H) UBE2B, (I) UBE2I, and (J) MAPK1.
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FIGURE 7 | Relationship to cardiovascular or nervous diseases related to hub genes based on the CTD database. (A) SMURF2, (B) CDC42, (C) UBE3A, (D) RBBP6,

(E) CDC5L, (F) NEDD4L, (G) UBE2D2, (H) UBE2B, (I) UBE2I, and (J) MAPK1.
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with AF complicated by cerebral infarction, compared with
patients with AF alone. We speculate that in incidences
of AF complicated by cerebral infarction, UBE2D2 may
be involved by affecting the activity of ubiquitin protease
and autophagy. UBE2D2 can also induce the detachment of
intra-atrial thrombus by regulating the activity of ubiquitin
enzyme and autophagy, thereby increasing the incidence
of stroke (45). We thus suggest that UBE2D2 can be a
potential diagnostic and therapeutic target for patients with
AF complicated by stroke. The relevant mechanism is worth
further exploration.

In addition, gene expression could be different according
to the stroke phase, and Oh et al. (50) researched the blood
genomic profiling of the peripheral blood in the acute phase of
ischemic stroke. Stamova et al. (12) studied the gene expression
of the hyperacute stroke. We found that there were differences
in genomic profiling between hyperacute and acute stoke.
Furthermore, a stroke might cause a range of biochemical
reactions in the body, from the level of genes to the level of
proteins (51). Therefore, the variations in gene expression might
be the consequence rather than the cause of a stroke.

Despite this study’s rigorous bioinformatics analysis, there
were still some outlooks in this study. First, the paper
focused on the genomic profiling of a stroke caused by
AF. However, it would also be useful to investigate gene
expression in patients with strokes due to other causes than
AF and it will be defined as the next step to explore the
genes of stroke without AF. Second, this study lacks further
mechanism validation. The reliability of the conclusion can
be improved through animal experiments and clinical sample
comprehensive verification. Third, there is increasing evidence
that strokes may occur in the context of atrial cardiopathy,
even in the absence of clinically overt AF (52, 53). It is,
however, not completely understood whether atrial cardiopathy
is only a marker and a surrogate of AF or if it can be an
independent stroke risk factor. Further, we do not know exactly
whether the pathophysiological mechanisms underlying AF and
atrial cardiopathy are similar and how much they overlap.
Accordingly, the analysis of gene expression should be extended

to patients meeting the criteria of atrial cardiopathy, with and
without stroke.

CONCLUSION

Bioinformatics analysis can effectively identify the differential
genes in patients with AF complicated by cerebral infarction
vs. patients with AF alone, especially the MAPK1 and UBE2D2
genes. These genes are involved in the incidence of AF
complicated by cerebral infarction by affecting multiple signaling
pathways, which may serve as the target of early diagnosis or
treatment. Our study provides new evidence and ideas for further
exploration of the mechanism and treatment of AF complicated
by stroke.
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