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Duchenne muscular dystrophy (DMD) is a genetic disorder that results in progressive

muscular degeneration. Althoughmedical advances increased their life expectancy, DMD

individuals are still highly dependent on caregivers. Hand/wrist function is central for

providing independence, and robotic exoskeletons are good candidates for effectively

compensating for deteriorating functionality. Robotic hand exoskeletons require the

accurate decoding of motor intention typically via surface electromyography (sEMG).

Traditional low-density sEMG was used in the past to explore the muscular activations

of individuals with DMD; however, it cannot provide high spatial resolution. This study

characterized, for the first time, the forearm high-density (HD) electromyograms of three

individuals with DMD while performing seven hand/wrist-related tasks and compared

them to eight healthy individuals (all data available online). We looked into the spatial

distribution of HD-sEMG patterns by using principal component analysis (PCA) and

also assessed the repeatability and the amplitude distributions of muscle activity.

Additionally, we used a machine learning approach to assess DMD individuals’ potentials

for myocontrol. Our analysis showed that although participants with DMD were able to

repeat similar HD-sEMG patterns across gestures (similarly to healthy participants), a

fewer number of electrodes was activated during their gestures compared to the healthy

participants. Additionally, participants with DMD activated their muscles close to maximal

contraction level (0.63 ± 0.23), whereas healthy participants had lower normalized

activations (0.26± 0.2). Lastly, participants with DMD showed on average fewer PCs (3),

explaining 90% of the complete gesture space than the healthy (5). However, the ability

of the DMD participants to produce repeatable HD-sEMG patterns was unexpectedly

comparable to that of healthy participants, and the same holds true for their offline

myocontrol performance, disproving our hypothesis and suggesting a clear potential

for the myocontrol of wearable exoskeletons. Our findings present evidence for the first
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time on how DMD leads to progressive alterations in hand/wrist motor control in DMD

individuals compared to healthy. The better understanding of these alterations can lead

to further developments for the intuitive and robust myoelectric control of active hand

exoskeletons for individuals with DMD.

Keywords: Duchenne muscular dystrophy, forearm, hand, high-density surface electromyography, motor control,

myocontrol, principal component analysis (PCA), wrist

INTRODUCTION

Duchenne muscular dystrophy (DMD) is an X chromosome-
linked recessive neuromuscular disease (1). The absence of
dystrophin causes progressive weakness of skeletal, respiratory,
and cardiac muscles and leads to severe physical disability and
shortened life expectancy (2). Improved care standards and the
recent introduction of assisted ventilation, in the later stages of
the disease, contributed to the increase of their life span (3).
This has led to increasing numbers of adults with DMD (4) who
experience low quality of life and external aid dependency (5, 6).

In DMD individuals, the support of the upper extremity
is central for ensuring daily life independence (7). Wearable
devices such as hand/wrist exoskeletons can provide a functional
solution by assisting individuals with DMD in performing
activities of daily living (ADL) (7). However, dynamic active
hand support currently remains a challenge (4), with passive
hand orthoses (8) still representing the main clinical approach.
Bushby et al. (9, 10) suggested that the treatment of individuals
with DMD should become more multidisciplinary as well as
promote further the use of technology. However, the effective
use of active orthoses requires the accurate decoding of motor
intention, which represents an important yet not well-addressed
challenge (11).

The clinical golden standard for non-invasive motor
intention decoding (12), control of robotic devices (13),
and characterization of muscle activity (14) is low-density
surface electromyography (sEMG). The most common
approach involves bipolar sEMG, where muscle activation
is measured with the placement of two closely placed electrodes
above the muscle belly (15, 16). sEMG is currently biased
by superposition of electrical potentials that compromise
signal amplitude estimation, the need for identifying optimal
electrode placement, skin–electrode impedance, power line
interference, and physiological properties (intermuscular fat,
skin humidity, etc.) (15). Despite the fact that sEMG is broadly
used in amputee research (14, 17–19) to characterize forearm
activity, in degenerative disorders such as DMD, there is a
lack of understanding on how these individuals activate their
forearm muscles to achieve functionally relevant tasks. A
possible way to address this challenge is the use of high-density
sEMG (HD-sEMG).

HD-sEMG is a non-invasive technique that collects high-
resolutionmyoelectric signals from tens ofmonopolar electrodes,
i.e., >60 electrodes simultaneously (20). With respect to
conventional low-density approaches, HD-sEMG enables
determining how large muscles, such as those in the human
forearm, activate not only in the temporal domain but also

in the spatial domain (14). This information can be used to
create heatmaps encoding the spatial distribution of HD-sEMG
amplitudes during different hand/wrist-related tasks (19). Such
heatmaps can capture distinct HD-sEMG patterns associated to
specific tasks, plus variations in amplitude, and repeatability over
time. This is central for taking into account the manifestation of
inhomogeneities in the control of the muscular fibers, something
crucial to understand in pathological muscle activation (21).
Moreover, this can be used to explore myocontrol in pathological
populations when combined with currently used machine
learning classification techniques (22). Currently, HD-sEMG is
performed with a large number of cables and is biased by heavy
and sizable amplifiers which limit its use in dynamic situations,
such as the control of wearable exoskeletons (23).

HD-sEMG spatiotemporal analysis and pattern recognition
were never applied to DMD individuals. The use of HD-
sEMG can give insights in dimensionality and spatiotemporal
similarity between healthy andDMDparticipant and additionally
open a window to study hand/wrist motor control in DMD
via a number of analyses and understand the hierarchical
motor control in DMD and differences with respect to healthy
people. Repeatability, spatial distribution, and distinguishability
of HD-sEMG patterns together with HD-sEMG classification
performance are important requirements for understanding the
altered DMD motor control and use our findings in the context
of robotic exoskeleton applications.

In this paper, we characterize HD-sEMGs of three individuals
with DMD during seven hand/wrist-related tasks and compare
with a baseline of eight healthy participants. This work
is motivated by the near absence of a systematic and
detailed spatiotemporal characterization of forearm muscle
activations in individuals with DMD. First, we create HD-
sEMG heatmaps and analyze them with principal component
analysis (PCA) to identify the number of orthogonal muscle
activation spatiotemporal patterns. Second, we characterize
the ability of DMD individuals to produce repeatable and
spatiotemporally distinguishable HD-sEMG patterns across
tasks, as well as their amplitude distribution. Third, we
employ pattern recognition to quantify the potential of each
DMD individual to perform activities as those required for
the control of assistive robotic exoskeletons. We hypothesize
that participants with DMD will show lower activations, they
will perform less repeatable patterns and show differences in
dimensionality because DMD’s central nervous system (CNS)
acts on an impaired musculoskeletal apparatus, which may in
turn lead to CNS adaptations. Finally, we hypothesize that
myocontrol performance will be lower in DMD compared to the
healthy participants.
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FIGURE 1 | The figure shows the process of the electrode placement. (A) The flexible custom-made sleeve that was used for marking the skin of the participant. The

sleeve is flexible only around the circumferal direction and stiff along the longitudinal direction of the arm. (B) The marked skin of the participant. The longitudinal

inter-electrode distance (LID) is fixed at 2 cm (L), while the circumferal inter-electrode distance (CID) depends on the forearm width of each participant. (C) The

participant with all the 64 electrodes placed. The imaginary line (red line) that connects the lateral epicondyle and the styloid process of the ulna was used as the

border between the dorsal and ventral side of the forearm. The placement of the electrodes starts right above this line, with electrode number one placed proximally

(at 20% of forearm length from the elbow) and eight distally. The rest of the electrode rows are placed counterclockwise as someone is looking at his right arm.

(D) This way, electrodes 1–32 were placed over the dorsal side (see sketch) and 33–64 over the ventral side of the forearm. The center of gravity (COG) is also shown

for this gesture.

MATERIALS AND METHODS

Participants
The experiment was carried out by seven healthy female and one
male adults (age: 21.4± 1.2 years, forearm length: 24.8± 1.8 cm,
forearm circumference at 20% of length: 25.9 ± 1.8 cm), without
any hand-related impairment, and three male adults with DMD
(age: 22.3 ± 2.5 years, forearm length: 24.2 ± 2.9 cm, forearm
circumference at 20% of length: 25.5± 3.9 cm).

The DMD participants had different levels of hand function.
Participant one (DP1, 20 years old) was able to use his
hands functionally, and no contractures relevant to hand/wrist
movement were observed. Participant two (DP2, 22 years old)
was able to functionally use his hand but experienced a decrease
in strength and minimal contractures relevant to hand/wrist
movement. Participant three (DP3, 25 years old) was not able
to use his hands at all and was affected by immediate onset of
fatigue during its use. Extensive contractures relevant to finger
movement were observed, and only minimal movement of the
fingers was possible (see Supplementary Video). All participants
were able to perform the experimental protocol.

The Medical Ethics Committee of Twente approved the study
design, the experimental protocol, and the procedures (Protocol
number: NL59061.044.16). The study was conducted according

to the ethical standards given in the Declaration of Helsinki in
1975, as revised in 2008.

Experimental Setup and Signal Acquisition
The experimental setup (Figure 1) included several components,
and it was designed to record HD-sEMG signals from the
forearm in a repeatable and systematic way. Muscular activity
was measured with a 128-channel amplification system (REFA
128 model, TMS International, Oldenzaal, The Netherlands). We
used 64 monopolar electrodes around the forearm to acquire the
raw sEMG signals. The signals were recorded with a decimal gain
of 26.55 before the analog-to-digital converter (ADC); however,
this gain factor is compensated by the acquisition software
(Polybench, TMS International, Oldenzaal, The Netherlands),
after the ADC. Additionally, REFA includes a first-order analog
low-pass filter placed before the ADC with a −3 db point
at 6.8 kHz. The 6.8-kHz low pass helps to make the REFA
immune to high-frequency electromagnetic interference such as
mobile phone networks. The analog signals were sampled with
a frequency of 2,048Hz and digitally converted with a 24-bit
conversion (a resolution of 0.018 µV per bit, 300mV dynamic
range). The ADC of the device has an anti-aliasing digital low-
pass filter with a cutoff frequency of 0.2 ∗ sample frequency. This
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TABLE 1 | Participant information.

Participant Dominant

arm

Forearm length

(20%) (cm)

LID

(cm)

At 20% of forearm

length from the elbow

Forearm

circumference

(cm)

CID (cm)

HP1 R 26 (5.2) 2 27 3.38

HP2 R 23 (4.6) 2 24 3

HP3 R 28 (5.6) 2 26 3.25

HP4 R 26 (5.2) 2 27 3.38

HP5 R 22.5 (4.5) 2 23.5 2.94

HP6 R 24 (4.8) 2 25 3.13

HP7 R 24 (4.8) 2 26 3.25

HP8 R 25 (5) 2 29 3.63

DP1 L 23 (4.6) 2 27.5 3.4

DP2 R 27.5 (5.5) 2 28 3.5

DP3 R 22 (4.4) 2 21 2.63

HP denotes the healthy participants and DP the participants with Duchenne muscular

dystrophy (DMD). LID and CID denote the longitudinal and circumferal inter-electrode

distance, respectively.

filter inside the ADC is used to convert the 1-bit signal with
a high frequency into a 24-bit signal with a lower frequency.
The acquisition software was executed in a host laptop (Lenovo
Thinkpad T490, Lenovo, Beijing, China) with a Windows 10
operating system (Microsoft Corporation, Washington, USA). A
computer screen was used to provide visual feedback of the task
to the participants.

Electrode placement and configuration were based on
previous work (19) that normalized the electrode locations
to each participant’s arm circumference in order to account
for different forearm thicknesses (Table 1). The inter-electrode
distance in the longitudinal direction of the forearm was kept
constant at 2 cm for covering the entire forearm (24).

First, we cleaned the skin of the dominant forearm of the
participant with alcohol. Then, we measured the forearm length
from the lateral epicondyle until the styloid process of the ulna
and the forearm circumference at 20% of the forearm length from
the elbow (Figure 1). The participant had to wear a perforated
sleeve (Figure 1) with equally placed holes and elastic only along
the circumferal direction to ensure that the electrode placement
was standardized for all participants. We used a non-permanent
marker to mark the skin of the participant (Figure 1) and then
visually inspect the markings before applying the electrodes.

Conductive gel was applied to each of the 64 electrodes with
a syringe, and they were subsequently attached to the forearm.
The first row of electrodes was placed above the imaginary line
between the lateral epicondyle and the styloid process of the ulna
and the last row below in such a way that the line lay in themiddle
between the two rows of electrodes (Figure 1). The first electrode
was attached proximally starting at the 20% of the forearm length
from the elbow. Electrodes were placed from proximal to distal
and in counterclockwise direction (from the perspective of a
right-handed participant). This way, electrodes 1–32 were placed
over the dorsal side (mostly extensormuscles) and 33–64 over the

ventral side (mostly flexor muscles) of the forearm. The reference
electrode was placed at the distal end of the forearm, over the
head of the ulna.

Participants performed seven different gestures involving
hand and wrist motions (Figure 2). The chosen gestures
included: hand open/close, thumb flexion/extension, wrist
flexion/extension, and index extension. These were chosen as
they are involved in the most frequent ADL (25). First, each
participant was instructed to perform all gestures without
constraints (dynamic) with maximal voluntary effort in a single
recording. This way, we recorded the maximum voluntary
contraction (MVC) for every electrode across all gestures. For
every gesture, 10 repetitions of 3 s contractions were performed,
together with 10 repetitions of 3-s resting periods between
the contractions (Figure 2). The participants were instructed to
perform all movements in a comfortable fashion in order to
avoid forceful contractions that may elicit co-contractions of
agonist–antagonist muscle groups.

The timing of the gestures was dictated with the use of visual
feedback. The visual feedback illustrated via photographs of
human hands which gesture had to be performed. The sequence
of images served to instruct the participant as a metronome
when to perform the gesture (image of gesture appearing for
3 s) and when to relax (image of relaxed hand appearing for 3 s).
Additionally, the measurements were performed in the morning
in order to avoid effects of the end-of-the-day fatigue, especially
for the participants with DMD. Furthermore, the participants
had short breaks between gestures in order to rest.

Signal Processing and Analysis
All signal processing and data analyses were performed inMatlab
2018b software (The MathWorks Inc., USA). The raw sEMG
signals were processed offline in order to compute the envelopes
for each of the 64 electrodes per gesture and per participant.
First, the raw data were filtered with a band-pass filter (fourth-
order Butterworth, 20–450Hz). Additionally, a second-order
digital infinite impulse response notch filter (cutoff frequency
of 50Hz, Q factor of 50) was used to remove the power line
noise (50Hz for the EU). Despite its main limitation (signal
distortion around the attenuated frequency), notch filtering is
the mainstream technique for powerline signal removal (26), and
a narrow bandwidth with a high Q factor can already address
this (27). For highly powerline-contaminated signals, spectral
interpolation may be more appropriate (27). The signals were
subsequently rectified and filtered with a low-pass filter (third-
order Butterworth, 2Hz). Our choice for the cutoff frequency was
motivated by the low-frequency dynamic tasks involved in this
study (28) and our previous study on real-time sEMG control of
a hand exoskeleton (29). The resulting envelopes were visually
inspected segmented, according to the acquisition protocol, to
10 contractions and periods (each lasting approximately 3 s)
and normalized. A threshold was selected to define the onset
of the activity, and the next 3 s after the onset were chosen as
a contraction period. The threshold was defined as the time
that the signal exceeded 10 standard deviations of the baseline
(non-contraction) activity similar to Di Fabio (30), and the final
segmentation was additionally assessed visually. The maximum
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FIGURE 2 | The 10 repetitions of third Duchenne muscular dystrophy (DMD) participant (DP3) for wrist extension that were used to acquire the average normalized

map. The lower part shows an example of the protocol followed to record the data. In this example, the participant was instructed to extend his wrist for 3 s and then

rest for 3 s. This was repeated 10 times. The same procedure was followed for all the seven gestures.

value of the envelope of each electrode across the complete
dataset was used as a normalization value for each electrode.
This value was acquired using a moving average window of
1 s in order to account for signal artifacts. Signal quality was
visually assessed both in the time and frequency domains,
and faulty channels were replaced by linear interpolation of
their surrounding neighboring channels (8-neighborhood) (14).
Different local conditions were applied to faulty electrodes placed
in the longitudinal extremes (<8 neighboring channels).

Every 3-s contraction was further segmented in 1-s segments
by keeping only the middle second of the contraction (steady-
state phase) and discarding the transient phase (31). For every
electrode, the average of this 1-s contraction was calculated
and used to construct 10 heatmaps per gesture (Figure 2). For
the visual inspection of the forearm activity per gesture, we
constructed activity heatmaps by averaging the 10 repetition
heatmaps (Figure 3).

We analyzed the data to assess HD-sEMG pattern
repeatability, peaks, and dimensionality, as well as individuals’

potential to generate activation patterns suitable for myocontrol

applications for both healthy and DMD participants. The raw

data used for this analysis are available online (32). All signal
processing and data analyses were performed in Matlab 2018b
software (The Mathworks Inc., USA). In the remainder of this
section, we describe a set of analyses aimed at investigating
differences between DMD and healthy participants at the level of

motor control properties (Motor Control Properties section) and
myocontrol performance (Myocontrol Performance section).

Motor Control Properties
Activation Pattern Repeatability Tests
The degree of repeatability across repetitions per participant
was calculated using squared Pearson correlation. Each heatmap
(8 × 8) was reshaped into a vector (1 × 64) before the
calculation of the squared Pearson correlation (33). The
coefficient was extracted among the 10 repetitions per gesture
and per participant. For every gesture, this resulted in 45 unique
comparisons between the 10 repetitions and thus 45 coefficients
per gesture (Figure 4).

Spatiotemporal Activation Pattern Tests
The temporal distribution of activations between healthy
and DMD was calculated via normalized and absolute
activations per repetition of each gesture (Figure 5A). A
normalization factor was calculated across all gestures
and repetitions. For each gesture, the maximum absolute
and normalized value of the 64-electrode heatmap were
calculated for every participant and each repetition
and plotted.

Figure 5B shows the average spatial distribution of the
healthy and DMD participants. The spatial distribution of
the sEMG potentials over the 8 × 8 normalized heatmap was
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FIGURE 3 | The heatmaps of two representative gestures for the three participants with Duchenne muscular dystrophy (DMD) and one healthy participant.

(A–D) show wrist extension heatmaps for DP1 (A), DP2 (B), DP3 (C), and HP6 (D). (E–G) show wrist flexion heatmaps for DP1 (E), DP2 (F), DP3 (G), and HP6 (H).

Regarding wrist extension, all participants exhibit similar activation patterns. However, for wrist flexion, there is higher variability in the activation patterns within

participants. X marks show the center of gravity (COG) for each heatmap. Only the activations that are higher than 80% are used to calculate the COG.

FIGURE 4 | The histogram of squared Pearson correlation between the 10 repetitions for all gestures and for all participants. High correlation shows similarity

between the repetitions and thus high repeatability. Both healthy and Duchenne muscular dystrophy (DMD) participants achieved similarly high repeatability on the

tasks. The full vertical lines represent the mean and the dashed the standard deviation. The number of unique comparisons between 10 repetitions is 45 multiplied by

the seven gestures makes 315 unique comparisons per participant. That explains the total of 2,520 events in the healthy histogram compared to the 945 in the DMD.

calculated using the center of gravity (COG) by calculating
the dorsal–ventral and the proximal–distal position of it as
proposed by Elswijk et al. (34). The COG was calculated
over electrodes presenting activations equal or larger than
80% of the maximal value of the heatmap (Figure 3).
This way, only clusters of electrodes with a high peak
amplitude were considered for the calculation of the COG
in order to focus on the most relevant area of activation for
each gesture.

Activation Pattern Dimensionality Tests
The 10 heatmaps, one per gesture repetition, were used to
construct one single average heatmap per gesture per participant
(Figure 3) that was used for the motor control analysis. We
quantified differences in dimensionality of orthogonal and
uncorrelated sEMG patterns between the healthy and DMD
participants via a PCA (35) to the gesture-specific heatmaps per
participant. For every participant, we performed a PCA to the
concatenation (64 × 70) of the sEMG heatmaps of all gestures
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FIGURE 5 | (A) The maximum normalized (left) and absolute (right) activation for each of the 10 repetitions of each gesture for all participants. Healthy participants

generally performed the tasks with low levels of maximum normalized activation, while participants with Duchenne muscular dystrophy (DMD) showed higher levels of

maximum normalized activation during the tasks. However, the maximum absolute activations were higher for the healthy participants. The full vertical lines represent

the mean and the dashed the standard deviation. (B) The average center of gravity (COG) for the seven gestures for the healthy participants (black) and the participants

with DMD (red). Healthy participants (gray shaded area) show on average a broader spatial distribution of the seven gestures than the participants with DMD (red

shaded area). The red line represents the imaginary line that connects the lateral epicondyle and the styloid process of the ulna and was used as the border between

the dorsal and ventral side of the forearm (see also Figure 1). The COG coordinates are normalized over the forearm circumference (COGx) and length (COGy).

and repetitions per participant [64 electrodes × (7 gestures ×
10 repetitions)]. The number of PCs needed to reconstruct the
original seven gesture heatmaps was identified per participant
by means of the variance explained (VE), and it was taken as
the number of PCs that summed together explained more than
90% of the total variance. This number was used to explore
the repertoire of orthogonal and uncorrelated sEMG patterns
produced by the two groups of participants (Figure 6A).

Additionally, we calculated the squared Pearson correlation
between all the gestures per participant (the same way as
we did for the repeatability, Activation Pattern Repeatability
Tests section). The coefficient was extracted from the average
normalized heatmap of the 10 repetitions per gesture and per

participant. For every participant, this resulted in 21 unique
comparisons between the seven gestures and thus 21 coefficients
per participant. We averaged the correlation values of the healthy
participants and the participants with DMD separately to identify
which gestures are mostly correlated per population, and we
presented this in the form of a similarity matrix (Figure 6B).

Myocontrol Performance
We explored participants’ gesture recognition performance
via an offline pattern recognition algorithm applied to the
band-pass filtered data (fourth-order Butterworth, 20–450Hz)
of each participant. We used a linear discriminant analysis
(LDA) (36) to recognize each of the gestures performed.

Frontiers in Neurology | www.frontiersin.org 7 April 2020 | Volume 11 | Article 231

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Nizamis et al. Forearm sEMG Patterns in DMD

FIGURE 6 | (A) The percentage of variance explained as a function of the number of cumulative principal components (PCs). More than 90% of the variance (blue

dashed line) of the data of the participants with Duchenne muscular dystrophy (DMD) is explained by three PCs, while for the healthy by five. The full lines represent the

mean and the dashed the standard deviation. For clarity, we include only up to 10 of the 63 components, as those explain more than 99% of the variance explained.

(B) The averaged squared Pearson correlation between the seven gestures of both groups of participants in the form of a similarity matrix. High correlation shows

similarity between the gestures. Both healthy and DMD participants show correlated gestures; however, this phenomenon is more prominent in the DMD participants.

A high value shows high correlation where one is the maximum (diagonal). The number of unique comparisons between the seven gestures is 21 per participant.

LDA is a commonly used pattern recognition algorithm for
prosthetic control (37) and already commercialized by COAPT
LLC (Chicago, USA) (38, 39). We chose it for the ease
of implementation, classification speed, and high accuracy
compared to other similar approaches (40). The 10 steady-state
segments for every gesture were concatenated and created a
10-s vector. We trained the classifier by extracting four time-
domain features from the raw segmented data including mean
absolute value, zero crossing, slope sign change, and waveform
length (41). We chose for a feature extraction window of

200ms (with an overlap of 100ms), which would be within
acceptable range for real-time myoelectric applications (42). The
classifier was validated with a three-split Monte Carlo cross-
validation approach (43). Each time, a different part of the
segmented data was used for training (always 70%) and testing
(always 30%). The average off-line classification accuracy of these
three trainings was used as performance metric per participant.
Additionally, we tested how the offline classification accuracy per
participant was affected by the number of gestures that had to
be classified.
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RESULTS

Motor Control Properties
Activation Pattern Repeatability
As illustrated in Figure 4, DMD individuals exhibited
comparable correlation values to healthy individuals. The
average R2 coefficient was 0.89 ± 0.12 (mean ± SD) for DMD
and 0.89 ± 0.13 for healthy participants between repetitions. An
example of the 10 repetitions for a DMD participant can be seen
in Figure 2.

Spatiotemporal Activation Patterns
Figure 5A shows the normalized and absolute activations of
both participant groups. The normalized activation was on
average higher for the DMD (0.63 ± 0.23) than for the healthy
participants (0.26 ± 0.2). The maximum normalized value
observed for participants with DMD was one (only DP3) and
the minimum 0.3 (DP2), while for healthy were, respectively, one
(only HP1) and 0.05 (HP8). The maximum absolute activation
of the DMD participants was on average 35 ± 19 µV, while for
healthy individuals, it was 89 ± 358 µV. The maximum value
observed for participants with DMD was 108 µV (DP1) and the
minimum 18.6 µV (DP3), while for healthy, were. Respectively.
628 µV (HP1) and 8.5 µV (HP8). Due to the difference in the
number between the healthy and DMD participants, we have
fewer repetitions for the DMD individuals, i.e., seven gestures
multiplied by 10 repetitions per participant, which means 210
for the DMD vs. 560 for the healthy. Figure 5B shows the COG
for the seven gestures in the electrode space for both participant
groups. Healthy participants show a broader spatial distribution
for the seven gestures. Wrist flexion and close hand appear to
be spatially close. Along the dorsoventral direction, on average,
thumb extension was at the dorsal limit (COGx = 18.9%),
while close hand was at the ventral limit (COGx = 68%). In
the proximodistal direction, wrist flexion was at the proximal
limit (COGy = 41%), and thumb flexion was at the distal limit
(COGy = 75%). Participants with DMD showed on average a
close clustering of the seven gestures. Thumb extension and wrist
flexion were the most spatially close gestures. In the dorsoventral
direction, on average, open hand was at the dorsal limit (COGx
= 20%), while close hand was at the ventral limit (COGx= 61%).
In the proximodistal direction, the same gestures were again the
limits, with close hand being the proximal (COGy = 47%) and
open hand the distal (COGy= 69%).

Activation Pattern Dimensionality
The participants with DMD needed on average three PCs to
explain >90% of the total variance of the seven gestures and 10
repetitions (Figure 6A). The same variance threshold was crossed
on average by five PCs for the healthy participants. For the
healthy group, PC1 explained 45%, while the same component
explains 61% of the total variance for the DMD group.

Figure 6B shows which gestures were the most similar
(by means of the squared Pearson correlation). The healthy
participants exhibited correlations R2 > 0.3 on average between
two gestures. The highest correlations were found between hand
open and thumb extension (0.39 ± 0.2) and wrist extension

FIGURE 7 | The difference in average off-line classification accuracy for

healthy and Duchenne muscular dystrophy (DMD) participants as a function of

the gestures needed to be identified by the linear discriminant analysis (LDA)

classifier. The full lines represent the mean and the dashed the standard

deviation.

(0.36 ± 0.17). The participants with DMD exhibited R2 > 0.3
on average across nine gestures. Those were found between
close hand and wrist flexion (0.45 ± 0.23); between hand open
and index extension (0.38 ± 0.23), thumb extension (0.46 ±

0.33), thumb flexion (0.34 ± 0.27), and wrist extension (0.62
± 0.23); between index extension and thumb extension (0.47
± 0.15) and thumb flexion (0.36 ± 0.04) and wrist extension
(0.31 ± 0.16); and finally between thumb extension and thumb
flexion (0.42± 0.21).

Gesture Recognition for Myocontrol
The LDA classifier was trained using the seven gestures. Figure 7
shows the results of the off-line classification accuracy as a
function of the gestures that had to be recognized. The average
off-line classification accuracy of the DMD participants was
always lower than the average of the healthy participants. When
all the gestures were included, this accuracy reached 93.6 ±

4.2% for the healthy and 81.6 ± 14% for the DMD participants.
The off-line accuracy stopped dropping at six gestures for the
participants with DMD, while for the healthy participants, this
happened at three (Figure 7).

DISCUSSION

In this study, we measured HD-sEMG activity from the
forearm of eight healthy and three DMD participants during
seven hand/wrist-related tasks. We performed analyses in order
to characterize the differences in activation patterns shape,
repeatability, and dimensionality, as well as gesture recognition
between healthy and DMD individuals.

The three participants with DMD showed motor control
alterations in terms of dimensionality and spatiotemporal
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activations compared to the healthy population, supporting
our hypothesis. These alterations were mainly expressed by
the COGs across DMD gestures being more closely located
than COGs across healthy gestures and comfortable muscle
activations close to their maximal contraction level (0.63 ±

0.23). Also, participants with DMD showed a higher correlation
between gestures, and when their gesture space was decomposed
to its PCs, 90% of it was explained by fewer components
(3) than for the healthy (5). Differences were also found
between DMD participants likely due to different stages of
the disease. However, in terms of repeatability per gesture,
the two populations showed an unexpected clear similarity.
Despite the consequences of muscular degeneration andminimal
hand/wrist motion (especially for DP3, Supplementary Video),
the myocontrol potential for the DMD participants is remarkably
present and comparable to the healthy participants, disproving
our hypothesis. However, the existing differences, due to the
specificities of individuals with DMD, need to be addressed while
developing myocontrol algorithms.

The results indicated that repeatability was intact for the
participants with DMD and comparable to that of the healthy
participants (Figure 4). This is an important requirement for
robust and repeatable pattern recognition-basedmyocontrol (44)
of assistive robotics.

Participants with DMD exhibited lower absolute activations
and higher normalized activations compared to the healthy
participants (Figure 5). This shows that participants with DMD
operate closer to their maximum effort, as opposed to healthy
participants, in order to perform simple hand/wrist-related tasks,
and yet they produce lower absolute sEMG activity. This constant
high effort can have detrimental consequences for the muscle
integrity of people with DMD and even speed up disease
progression or lead to disuse of the hand. Assistive wearable
robotics may be able to decrease the mechanical load on the
muscles and promote daily use (7, 45). This result, together with
the fact that the most progressed participant (DP3) presented
simultaneously the maximum normalized and the minimum
absolute sEMG activity, agrees with previous studies stating
that the disease progression results in lower absolute sEMG
amplitude (46) and also in higher effort and fatigue (47). DP1
and DP3 exhibited comparable trends between each other. For
DP1, we observed high absolute activations (around 100 µV,
comparable to healthy participants) and on average medium
absolute activations. DP2 showed lower absolute activations
(around 60 µV), however also medium absolute activations.
Regarding spatial distribution of the activation patterns, healthy
participants showed lower spatial similarity than participants
with DMD (Figure 5B). It appears that on average for the DMD
participants, the seven gestures used in this study, engaged
only a subset of the electrodes, closely clustered to each other
compared to the healthy participants. Similarly, to lower spatial
similarity, healthy participants (Figure 6) exhibited a higher
degree of dimensionality, as expressed by the larger repertoire
of orthogonal and uncorrelated sEMG patterns they can produce
across the seven hand/wrist-related gestures and 10 repetitions.
The healthy population needed five PCs to explain at least 90% of
the variance in the original data, while DMD participants needed
three, except DP1 that needed four. Additionally, the higher

correlation between the gestures points toward the fact that,
in terms of sEMG activation patterns, there is more similarity
in DMD. This may provide another indication (together with
variability in maximum activation) of how the progress of the
disease affects motor control, since DP1 is the least affected
participant. The decrease in dimensionality may be partially
attributed to the increased level of co-contractions between
agonist and/or antagonist muscle groups that we observed in
the DMD participants when performing the tasks and further
supported by a recent hand motor performance study in people
with DMD (48). Co-contractions may be elicited by the effort
of the participants to stabilize their wrist during the tasks, but
further work is needed to explore this hypothesis.

According to the muscle synergies hypothesis, the CNS uses
specific simplified commands (muscle synergies) in order to
act efficiently upon the redundant musculoskeletal system and
complete a motor task (49). In the case of DMD, the intact
CNS and neural pathways are acting upon a progressively limited
musculoskeletal system. This may lead to progressive adaptations
in the CNS, similar to those observed in stroke survivors (50)
expressed via compensatory movements (51), co-contractions,
and lower dimensionality. Regarding gait analysis in DMD, it
was shown that gait motor control complexity is minimally
affected by the disease (in the early stages) (52); however, for
the more complex hand and wrist control, there is no evidence.
Considering the sEMG measurement for the participants with
DMD as the neural output (53), it is not yet understood if
the observed commonalities between different gestures can be
attributed to the impaired musculoskeletal system (i.e., more
similarities in how motor units process incoming axonal spike
trains) or to adaptations in the CNS (i.e., increased common
synaptic input to alpha motor neuron pools). Future work
will employ HD-sEMG in combination with decomposition
techniques (54) in people with DMD to provide further insights.

According to our results, there is potential for the robust
decoding of hand/wrist motor intention in individuals with
DMD. This can enable individuals with DMD to control a
high-tech hand orthosis with multiple degrees of freedom.
However, there was a noticeable decay of the LDA off-line
classification performance when more gestures were added
for the participants with DMD, which was larger than the
one for the healthy participants (Figure 7). Despite the lower
performance, the classification performance is on average larger
than 80% for all the seven gestures and more or equal to
90% for up to four gestures. Together with the ability of the
DMD participants to create repeatable HD-sEMG activation
patterns, this result shows the potential of myocontrol for
decoding of hand/wrist motor intention across a key selection
of gestures. Currently, the implementation of HD-sEMG in
dynamic control of wearable exoskeletons is limited by a
number of factors, such as the number of cables between
amplifiers and electrodes, as well as large amplifiers. This lack
of portability restricts measurements in dynamic conditions
(motion) and induces movement restrictions, user discomfort,
and signal artifacts (23), therefore limiting control of wearables.
However, recent developments show promising steps toward
more portable amplifiers that reject movement artifacts and
powerline interference, while at the same time do not obstruct
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movements and ensure tight placement of the electrodes (23, 55).
To this point, the main limitation of portable amplifiers is the
relatively limited number of electrodes provided [32 (23) and 16
(55)]; however, they open new avenues for HD-sEMG control
of exoskeletons.

The current performance of classification could be optimized
with the development of DMD-tailored classification algorithms,
which will take into account the specificities of the disease.
Such specificities are the progression of the disease (co-
contractions and fatigue), the low sEMG signal to noise
ratio (46), and the differences in the motor control strategies
(higher spatial similarity, lower dimensionality in terms of
orthogonal and uncorrelated sEMG patterns, higher activation
levels during low-intensity tasks). Further tailoring can be
made by building numerical neuromusculoskeletal models of
specific DMD individuals that can provide additional features for
classification (56–58). The observed lower spatial dimensionality
in the HD-sEMG may suggest that sEMG data compression
before classification might be a strategy due to the lower
variability that individuals with DMD present. This can be
achieved by first lowering the dimensionality of the feature space
of the raw data based on dimensionality reduction techniques
such as PCA or partial least squares (PLS) (59) and use the
resulting data as an input to an LDA classifier. Further, reduction
of the number of electrodes can be achieved based on detection
of heatmap areas carrying common and individual information
(19). The higher spatial similarity is an important finding of this
study that can be considered for guiding such decisions. More
extensive research with individuals with DMD is necessary to
identify the relevant feature space and test the performance of
various classifiers and electrode numbers and configuration in
order to inspire DMD customized classifiers.

We included in our case study three participants with DMD
with large functional variability in order to explore a larger
spectrum of the disease instead of a cluster of cases with similar
characteristics. However, DMD is a disease with large functional
heterogeneity due to different progression patterns (60) and our
limited sample does not cover the complete spectrum. However,
our study is limited by the low number of participants with
DMD. This is an unavoidable limitation due to the low number
of available participants. We also intended to comply with
the ethical and legal standards while conducting our study by
not recruiting participants who are already involved in other
studies at the same time. Hence, our conclusions and results
need to be taken as indicative until research is performed
with more participants, which will allow for more general and
strong conclusions.

Additionally, we did not monitor the level of contraction
during the conduction of the measurements. We explicitly asked
our participants to perform all movements comfortably, but we
did not control this condition. It is known from the literature that
different contraction levels elicit a small shift in the main activity
area, however not significantly altering the spatial distribution of
HD-sEMG in the forearm (14). Another limitation of this study
is that the selection of the seven gestures used for acquiring and
analyzing the data was based on gestures involved in common
ADL (25), and each gesture was analyzed separately. However,

in reality, ADL involves multiple combinations of the selected
gestures in some case simultaneously, which would result in the
activation of more than onemuscle region when combined finger
and wrist movements are occurring in order to allow for object
grasping and manipulation. In such case, the spatial distribution
of the sEMG activations will not be so clearly segmented.
Therefore, before applying our findings for myocontrol targeting
ADL, we need to take caution and further test the validity of our
findings in situations demanding a higher degree of complexity
(combination of gestures).

Future work will evaluate the application of our protocol
to more participants with DMD in order to investigate further
the characterization of forearm electromyograms for individuals
with DMD and come to more general conclusions regarding
this very diverse population. Moreover, we are interested in the
exploration of online classification performance implemented
outside of the lab in order to resemble daily-use conditions. An
extended protocol in order to decode the neural drive (54) in
DMD would offer further insights regarding the source of the
differences in hand/wrist motor control observed in our analysis
between participants with DMD and healthy participants. Next
to that, the use of non-negative matrix factorization (NMF) may
give further insights regarding muscle group synergies in hand
movements in DMD (61). Lastly, an analysis of the homogeneity
of activations needs to be carried out using HD-sEMG, as it is
known that different joint positions and contraction strength and
duration may cause muscles to activate in a non-homogeneous
manner (21). The results of this study together with the future
studies will be further used for the development of myocontrol
algorithms for the robust control of an active hand exoskeleton
(29, 62), developed within the Symbionics project (63) for
individuals with DMD.

CONCLUSION

We characterized the forearm electromyograms spatiotemporally
of three individuals with DMD and compared to eight healthy
individuals. For the first time, we propose a systematic analysis
on how the disease affects the distribution of HD-sEMG pattern
in the forearm and the repeatability and activation distribution
of these patterns. Additionally, we explored the potential for the
myocontrol via decoding of motor intention from the forearm
muscles of individuals with DMD. We performed this study
in order to get a better understanding of DMD hand/wrist
motor control with regard to exoskeleton applications. Future
studies will focus on testing sEMG for the real-time decoding
of hand/wrist motor intention with individuals with DMD.
Moreover, we will implement and test the feasibility of sEMG
control with a new active hand exoskeleton for individuals
with DMD.
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