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Preterm birth is closely associated with cognitive impairment and generalized

dysconnectivity of neural networks inferred from water diffusion MRI (dMRI) metrics.

Peak width of skeletonized mean diffusivity (PSMD) is a metric derived from histogram

analysis of mean diffusivity across the white matter skeleton, and it is a useful biomarker

of generalized dysconnectivity and cognition in adulthood. We calculated PSMD and five

other histogram based metrics derived from diffusion tensor imaging (DTI) and neurite

orientation and dispersion imaging (NODDI) in the newborn, and evaluated their accuracy

as biomarkers of microstructural brain white matter alterations associated with preterm

birth. One hundred and thirty five neonates (76 preterm, 59 term) underwent 3T MRI at

term equivalent age. There were group differences in peak width of skeletonized mean,

axial, and radial diffusivities (PSMD, PSAD, PSRD), orientation dispersion index (PSODI)

and neurite dispersion index (PSNDI), all p < 10−4. PSFA did not differ between groups.

PSNDI was the best classifier of gestational age at birth with an accuracy of 81± 10%,

followed by PSMD, which had 77± 9% accuracy. Models built on both NODDI metrics,

and on all dMRI metrics combined, did not outperform the model based on PSNDI alone.

We conclude that histogram based analyses of DTI and NODDI parameters are promising

new image markers for investigating diffuse changes in brain connectivity in early life.
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1. INTRODUCTION

Preterm birth is closely associated with a phenotype that includes cognitive impairment in
childhood and cerebral white matter disease. White matter disease is apparent as diffuse changes
in signal intensity on conventional MRI (1, 2), and alterations in diffusion MRI parameters based
on the diffusion tensor [fractional anisotropy (FA), and mean, axial, and radial diffusivities, (MD,
AD, RD)], and more recently, metrics based on biophysical models, such as neurite orientation
and dispersion imaging (NODDI) (3, 4). These metrics have proven useful for making inferences
about microstructural alteration of white matter that characterizes dysmaturity associated with
preterm birth, for investigating upstream pathways to typical / atypical brain development, and
for studying the anatomical bases of subsequent cognitive function in early life (5–13). However,
deriving whole brain estimations of these parameters is often computationally expensive, there are
uncertainties about which metric or combination of metrics best captures generalized white matter
disease associated with preterm birth, and which is likely to be most useful for prognosis.
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Peak width of skeletonized mean diffusivity (PSMD) is
associated with processing speed—a foundational competence of
cognition—in patients with small cerebral vessel disease, patients
with Alzheimer’s disease, healthy adults, and with a broader set
of cognitive impairment (14, 15). In addition, it is a marker
of widespread white matter tissue damage in multiple sclerosis
(16). It works by calculating the width of the histogram of mean
diffusivity of the skeletonized white matter (WM) tracts, thereby
largely eliminating cerebrospinal fluid (CSF) contamination and
focusing on the core of the main WM tracts. The framework is
readily extensible to other DTI metrics (FA, RD, and AD) and to
NODDI metrics.

Peak width of skeletonized DTI and NODDI metrics have
potential to be useful biomarkers of preterm brain dysmaturation
because several are known to be altered throughout white matter
in association with preterm birth. Specifically, low FA and
increased MD occur throughout the white matter in preterm
infants at term equivalent age compared with term-born infants
(4, 17–20), and NDI at term equivalent age it is negatively
correlated with gestational age at birth (8). Additional advantages
are that this framework is fully automated, only requires a single
diffusion MRI acquisition, is computationally inexpensive, and
has high inter-scanner reproducibility so could be used in clinical
settings and for multi-center clinical trials (14).

In this work, we first optimized the PSMD pipeline described
by Baykara et al. (14) for application to neonatal data in order to
calculate values for PS- MD, FA, RD, AD, NDI, and ODI in early
life. Next, based on the generalized dysconnectivity phenotype
associated with preterm birth, we tested the hypothesis that
infants born preterm would have differences in one or more of
the histogram based metrics compared with infants born at term.
Finally, we investigated the utility of these metrics by studying
their relationship with gestational age at birth and testing their
predictive ability in a classification task to discriminate between
preterm and term brain images.

2. METHODS

2.1. Participants and Data Acquisition
Participants were recruited as part of a longitudinal study
designed to investigate the effects of preterm birth on brain
structure and long term outcome (www.tebc.ed.ac.uk) (21).
One hundred and thirty-five neonates underwent MRI at term
equivalent age at the Edinburgh Imaging Facility: Royal Infirmary
of Edinburgh, University of Edinburgh, UK.

A Siemens MAGNETOM Prisma 3 T MRI clinical scanner
(Siemens Healthcare Erlangen, Germany) and 16-channel
phased-array pediatric head coil were used to acquire: 3D T2-
weighted SPACE (T2w) (voxel size = 1 mm isotropic) with TE
409 ms and TR 3,200 ms; and axial dMRI. dMRI was acquired
in two separate acquisitions: the first acquisition consisted of 8
baseline volumes (b = 0 s/mm2 [b0]) and 64 volumes with b
= 750 s/mm2, the second consisted of 8 b0, 3 volumes with b
= 200 s/mm2, 6 volumes with b = 500 s/mm2 and 64 volumes
with b = 2,500 s/mm2; an optimal angular coverage for the
sampling scheme was applied (22). In addition, an acquisition
of 3 b0 volumes with an inverse phase encoding direction was

performed. All dMRI images were acquired using single-shot
spin-echo echo planar imaging (EPI) with 2-fold simultaneous
multislice and 2-fold in-plane parallel imaging acceleration and
2 mm isotropic voxels; all three diffusion acquisitions had the
same parameters (TR/TE 3,400/78.0 ms). Images affected by
motion artifact were re-acquired multiple times as required;
dMRI acquisitions were repeated if signal loss was seen in 3 or
more volumes.

Infants were fed and wrapped and allowed to sleep
naturally in the scanner. Pulse oximetry, electrocardiography
and temperature were monitored. Flexible earplugs and neonatal
earmuffs (MiniMuffs, Natus) were used for acoustic protection.
All scans were supervised by a doctor or nurse trained in
neonatal resuscitation. Structural images were reported by an
experienced pediatric radiologist (A.J.Q.) using the system
described in Leuchter et al. (23), the exclusion criteria were
the evidence of focal parenchymal injury (post-hemorrhagic
ventricular dilatation, porencephalic cyst or cystic periventricular
leukomalacia), or central nervous system malformation.

2.2. Data Pre-processing
All DICOM (Digital Imaging and Communication OnMedicine)
image files (dMRI and sMRI) were converted to the NIFTI
(Neuroimaging Informatics Technology Initiative) format (24).
Diffusion MRI processing was performed as follows: for each
subject the two dMRI acquisitions were first concatenated and
then denoised using a Marchenko-Pastur-PCA-based algorithm
(25–27); eddy current, head movement and EPI geometric
distortions were corrected using outlier replacement and slice-to-
volume registration (28–32); bias field inhomogeneity correction
was performed by calculating the bias field of themean b0 volume
and applying the correction to all the volumes (33). From the
diffusion images we calculated the tensor (FA, MD, AD, and RD)
and the NODDI (intracellular volume fraction [NDI] and the
overall orientation dispersion index [ODITOT]) maps (3, 34–36).

2.3. Atlas Construction
Images from 50 term born infants were used to create a
multi-modality template (including T1w, T2w, FA, and tensor
templates in addition to different parcellation schemes and
tissue probability maps) using established methods (37). The
final atlas is the Edinburgh Neonatal Atlas 50 (ENA50) (38).
Prior to template creation, the structural images were processed
using the minimal processing pipeline of the developing human
connectome project (39, 40). To obtain the parcellation schemes,
different neonatal atlases were registered to the T2w (38, 41–45).
The mean b0 of each subject was co-registered to the T2w (46)
and the inverse transformation was used to move all the maps to
diffusion space (label maps, T1w and T2w).

The template was constructed using DTI-TK. In summary,
it performs white alignment using a non-parametric,
highly deformable, diffeomorphic registration method that
incrementally estimates the displacement field using a
tensor-based registration formulation (37). The resulting
transformations were then applied to all the modalities. The final
templates were obtained by averaging all the images of the same

Frontiers in Neurology | www.frontiersin.org 2 April 2020 | Volume 11 | Article 235

www.tebc.ed.ac.uk
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Blesa et al. PSdMRI in the Neonatal Brain

FIGURE 1 | Overview of the full pipeline. For simplicity only NDI, MD, and FA are shown. The subject is registered to the ENA50 using a tensor registration. Then the

DTI derived maps are generated and the transformation applied to the NODDI maps. Using FA as a conductor, the images are skeletonized, and finally, all images are

multiplied by the custom mask.

modality registered to the template space. For the parcellation
maps, majority voting was used (47).

2.4. Peak Width of Skeletonized Water
Diffusion MRI Derived Maps Calculation
All the subjects were registered to the tensor atlas using DTI-TK
(48, 49). The tensor derived maps of each subject were calculated
after registration and the NODDI metrics were propagated using
the computed transformation. Then, the main skeleton of the FA
template was created (50) by thresholding at 0.15, and individual
FA maps were projected into this skeleton. Driven by the FA, the
rest of the maps were projected onto the WM skeleton.

A custom mask was created by editing the skeleton mask
to remove CSF and GM contaminated areas, and removing
tracts passing through the cerebellum, the brainstem and the
subcortical GM areas using ITK-Snap (51), using as a reference
the custom mask created by Baykara et al. (14). The resulting
skeletonized maps were then multiplied by the custom mask.
Finally, the peak width of the histogram of values computed
within the skeletonized maps was calculated as the difference
between the 95th and 5th percentiles (14).

A brief overview of the full pipeline can be seen in Figure 1.

2.5. Statistical Analysis
In the following analyses, metrics were adjusted for age a
scan by fitting a liner model of each metric on GA at scan
and retaining the residuals. We report Pearson’s correlations

between each of the residualized metrics and GA at birth in
the whole sample. A D’Agostino and Pearson’s test was used
to assess the normality of the residualized imaging metrics.
Group comparisons of residualized PS-MD, AD, RD, FA, NDI,
and ODI were made using two-sample t-test for normally
distributed variables and the Mann-Whitney U test for variables
that did not have a normal distribution. Reported p-values were
adjusted for the false discovery rate (FDR) using the Benjamini–
Hochberg procedure. We then used the residualized metrics as
predictors in a logistic regression model to discriminate between
preterm and term born infants. We compared the performance
of each metric individually and of three multivariate models
including all the metrics, only DTI metrics and only NODDI
metrics, respectively. We measured classification accuracy using
a 30-repeated 10-fold cross validation, meaning that in each
of 30 repetitions data are randomly split in 10-folds of which
one in turn is used as a test set to assess the generalization
ability of the model trained on the remaining 9-folds. Folds
were stratified to preserve the proportion of term and preterm
subjects of the whole sample. Accuracy was computed as
the percentage of correctly classified subjects across folds
and repetitions.

3. RESULTS

Table 1 shows summary statistics of demographic characteristics
of the study group.
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TABLE 1 | Demographic characteristics of the study group.

Preterm (N = 76) Term (N = 59) Term template (N = 50)

Male:Female 43:33 31:28 25:25

Mean GA at birth/weeks (range) 29.48 (23.42–32)* 39.48 (36.42–42) 39.49 (37–42)

Mean GA at scan/weeks (range) 40.97 (38–44.56) * 41.84 (38.28–43.84) 41.89 (38.28–43.84)

Values marked with * are significantly different in preterm subjects with p<0.01 after FDR correction.

TABLE 2 | Summary statistics for all metrics.

PSMD PSFA PSAD PSRD PSNDI PSODI

TERM

Median 0.50 0.32 0.70 0.62 0.22 0.26

25% 0.48 0.31 0.68 0.57 0.21 0.25

75% 0.54 0.33 0.72 0.66 0.23 0.27

Min 0.38 0.29 0.61 0.48 0.18 0.23

Max 0.66 0.37 0.80 0.77 0.25 0.35

PRETERM

Median 0.60 0.32 0.75 0.72 0.24 0.27

25% 0.56 0.32 0.72 0.67 0.23 0.27

75% 0.65 0.34 0.78 0.76 0.25 0.28

Min 0.45 0.28 0.63 0.54 0.19 0.24

Max 0.82 0.37 0.91 0.89 0.28 0.45

TABLE 3 | Mean 5th and 95th percentiles of imaging metrics in preterm and term

groups.

MD FA AD RD NDI ODI

TERM

5% 1.04 0.15 1.37 0.77 0.07 0.02

95% 1.55 0.48 2.07 1.38 0.29 0.28

PRETERM

5% 1.05 0.13* 1.37 0.79 0.05* 0.02

95% 1.65* 0.46* 2.12* 1.50* 0.29 0.29*

Values marked with * are significantly different in preterm subjects with p<0.01 after FDR

correction.

Table 2 shows the median, 25th and 75th percentiles,
minimum and maximum values for each of the six histogram
based metrics grouped by term and preterm categories,
and Table 3 shows the mean 5th and 95th percentiles for
the original metrics separated by group. Figure 2 shows
the variation of each histogram based metric with respect
to GA at birth and correlations between the metrics and
GA at birth are reported in Table 4, together with results
of group comparisons. With the exception of PSFA, all
metrics were correlated with GA at birth (p < 0.01)
and showed group differences in the term vs. preterm
comparison (p < 0.01).

Table 4 reports the cross-validation accuracy of each metric in
the classification task (term vs. preterm). Four out of six metrics
achieved at least 70% accuracy, with the exception of PSFA (60±
5%) and PSODI (67 ± 17%). PSMD and PSNDI obtained the

best results among the DTI and NODDI metrics, respectively.
Combining the metrics in a multivariate model increased only
slightly the prediction accuracy: using all DTI metrics: 79 ± 9%
accuracy; using all NODDI metrics: 81 ± 7% accuracy; using all
metrics: 79± 7% accuracy.

4. DISCUSSION

We developed a pipeline for calculating peak width of
skeletonized diffusion MRI derived metrics of the developing
brain, and we show that five of these histogram based markers
detect generalized white matter microstructural alteration
associated with preterm birth. Calculation of these image
markers is fully automated and computationally inexpensive,
so peak width of skeletonized water diffusion metrics could
have high value for research designed to investigate generalized
dysconnectivity phenotypes in early life.

The NODDI and tensor derived metrics have been applied
to different populations including healthy and aging adults (52,
53), patients with amyotrophic lateral sclerosis and Alzheimer’s
disease patients (54, 55), and to preclinical models (56, 57). In the
neonatal MRI field, tensor derived metrics have been widely used
to study the effects of prematurity on the brain (5), and several
other factors, such as chronic lung disease, nutrition, prenatal
drug exposure, among others (11, 13, 19, 58). In recent years
NODDI metrics have been applied to neonatal data because of
the added inference they offer with respect to microstructural
organization and characteristics (59). They have revealed new
insights into cortical maturation in perinatal life, and identified
dysmaturation in newborns with congenital heart disease (59,
60). Recently, the tensor derived and NODDI metrics have been
used together in integrated approaches, such as morphometric
similarity networks (12, 61), but to our knowledge, this is
the first time that DTI and NODDI metrics have been used
within the peak width skeletonized framework for studying the
developing brain.

We found that all the PS metrics with exception of the PSFA
were higher for preterm infants at term equivalent age compared
with values calculated from infants born at full term, meaning
that the range of values was wider for the preterm population.
However, the behavior of the metrics was different, which enables
an inference about underlying tissuemicrostructure. For example
MD has the same 5th percentile in term and preterm infants at
term equivalent age but the 95th percentile is much higher in
preterm group, whereas for NDI the opposite is true: both groups
have the same 95th percentile, but the 5th percentile is much
lower in preterm infants. Taken together, the metrics indicate
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FIGURE 2 | Scatter plots showing the relationship between each of the metric and gestational age at birth.

TABLE 4 | Results for the correlation with GA and the classification task.

Metric Correlation with GA at birth Group comparison Classification accuracy

PSMD r = −0.52, p = 2.72× 10−10 t = 7.59, p = 2.80× 10−11 0.77± 0.09

PSFA r = −0.11, p = 0.233 t = 2.02, p = 0.052 0.60± 0.05

PSAD r = −0.49, p = 4.95× 10−9 t = 6.40, p = 5.60× 10−9 0.73± 0.11

PSRD r = −0.50, p = 2.257× 10−09 t = 7.45, p = 4.78× 10−11 0.75± 0.09

PSNDI r = −0.51, p = 8.50× 10−10 t = 8.55, p = 4.56× 10−13 0.81± 0.10

PSODI r = −0.37, p = 1.39× 10−05 u = 3272, p = 7.86× 10−06 0.67± 0.17

higher variability in water content (toward higher values) and
in intra-axonal volume (toward lower values) in preterm infant.
This is consistent with lower myelination in preterm infants
and/or less coherent WM organization (62), which is suggested

by an overall higher PSODI for the preterm population. For RD
the values in 95th and 5th percentile are higher in preterm than
term, but the difference is much more accentuated in the 95th
percentile, in agreement with PSMD. Increased PSAD in preterm
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infants at term equivalent age is consistent with altered axonal
integrity, which is a feature of white matter disease in preterm
infants. PSFA was the only metric that did not show a significant
difference between groups, although there was a histogram shift
(Table 3) such that term infants do have higher mean FA across
the skeleton, which is a consistent finding across studies (4).

All the metrics, with exception of the PSFA and PSODI,
achieved high accuracy (≥70%) in the classification task of
preterm vs. term brain images. PSMD and PSNDI performed
with greatest accuracy (Table 3), and this was not enhanced
by combining multiple features in the same model. Different
methods for preterm vs. term classification have been proposed
with varying accuracy: 80% (63) or 92% (12). However, previous
methods usually require long acquisitions and/or complicated
processing frameworks. The main advantage of the histogram
based framework is that it is possible to calculate measures
from standard diffusion MRI acquisition and with relatively
simple processing, making it suitable for large scale multi-site
studies (14).

Application of histogram based methods to neonatal data
required some modifications to the original framework proposed
by Baykara et al. First, we optimized the method to operate in a
specific neonatal space, as opposed to the MNI152 co-ordinate
system (64). For doing this, a neonatal template was created
(ENA50) and used as a common space for the whole process.
The registration method was also changed: the original method
uses FNIRT (65) because it is based in the main TBSS framework
(50). Due the nature of the tensor-based neonatal atlas, we are
able to use a tensor-based registration (48, 49) with a three-
step registration, adding a rigid step at the beginning (19). This
method has been shown to improve the alignment of WM tracts
in neonatal data (10, 19, 66). One of the main advantages of the
proposed framework, is that due to the multi-modal nature of the
ENA50 (FA, T1-weighted, T2-weighted and tensor templates) the
pipeline can be easily modified to change the registration process
for any of the available intensity-based algorithms (41, 65, 67–69).

Histogram based analyses of DTI and NODDI metrics offer
tractable markers that could be used to investigate generalized
white matter connectivity in other neonatal populations at risk
of atypical brain development and the extensible nature of the
framework means that it could be applied to other myelin
sensitive metrics not derived from diffusion, such as T1w/T2w
(70) or g-ratio (71). Future work could investigate the utility of
histogram based metrics for assessing the impact of perinatal
exposures and co-morbidities on brain tissue development, and
their predictive value for cognitive and behavioral outcomes
in children at risk of impairment. Furthermore, their possible
utility in clinical settings, providing summary information about
WM microstructure from MRI datasets acquired on different
scanners, and as potential biomarkers in neuroprotection trials
should be evaluated.

5. CONCLUSION

In this work, we introduce an age-specific pipeline for
calculation of peak width of skeletonized MD, RD, AD,

FA, NDI, and ODI of the neonatal brain. We found that
these histogram based metrics, which represent generalized
water content, myelination, and complexity of dendrites and
axons across the WM skeleton, are altered in association
with preterm birth. PSMD and PSNDI appear to be the
most promising biomarkers due to their relative ease
of computation compared with other methods, and their
comparable accuracy.
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