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Introduction: Memory alterations are common in Parkinson’s disease (PD) patients but

the mechanisms involved in these deficits remain poorly understood. The study aims to

explore the profile of episodic memory deficits in non-demented early PD patients.

Methods: Weobtained neurological, cognitive and behavioral data from 114 PD patients

and 41 healthy controls (HC). PD participants were grouped as normal cognition (PD-NC)

and mild cognitive impairment (PD-MCI) according to the Level II criteria of the Movement

Disorders Society Task Force (MDS-TF). We evaluate the performance amongst groups

on an episodic memory task using the Free and Cued Selective Reminding Test (FCSRT).

Additionally, gray matter volume (GMV) voxel based morphometry, and mean diffusivity

(MD) analyses were conducted in a subset of patients to explore the structural brain

correlates of FCSRT performance.

Results: Performance on all subscores of the FCSRT was significantly worse in PD-MCI

than in PD-NC and HC. Delayed total recall (DTR) subscore was the best at differentiating

PD-NC from PD-MCI. Using crosstabulation, DTR allowed identification of PD-MCI

patients with an accuracy of 80%. Delayed free and cued recall was associated with

decreased GMV and increased MD in multiple fronto-temporal and parietal areas.

Conclusion: Encoding and retrieval deficits are a main characteristic of PD-MCI and

are associated with structural damage in temporal, parietal and prefrontal areas.
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INTRODUCTION

At the time Parkinson’s disease (PD) diagnosis, up to 30% of
patients meet diagnostic criteria for mild cognitive impairment
(PD-MCI) (1–3). The rate of progression of PD-MCI is
heterogeneous, with up to 36% of patients fulfilling diagnostic
criteria for PD dementia (PDD) after 4 years after diagnosis,
with cumulative PDD prevalence of 80% in 20 years long-
term survivors (4–6). Thus, despite dementia is not an
inevitable consequence of PD, it affects a significant proportion
of patients for which treatments to ameliorate this entity
are lacking.

Identifying early cognitive indicators suggestive of
progression to dementia is a major need to stratify patients
in different groups of risk and also to design interventions
before PDD onset. In this sense, the addition of posterior-
cortical type deficits -to the prototypical frontal-executive
alterations seen in most PD patients- seem to characterize
the transition from PD-MCI to PDD in this population.
Accordingly, the development of language, memory and
visuospatial/visuoperceptive alterations are indicative of a
more aggressive progression of cognitive deterioration in PD
(7, 8).

Episodic memory alterations are also found in PD and
affects up to 45% of de novo PD patients. However, its
role in the delineation of progression from PD-MCI to PDD
and the mechanisms participating in these deficits has been
scarcely studied (9). Attention and retrieval deficits -rather
than storage and retention alterations- has been pointed to

sub-serve episodic memory difficulties in PD (10). This is
supported by the benefit commonly observed in retrieval when

semantic or recognition cues are presented to PD patients.
Accordingly, decreased performance in memory tasks in PD

have been attributed to frontal-executive deficits rather than
to hippocampal or medial temporal lobe alterations. However,
difficulties in retrieving information even during recognition
and cued-facilitated recall have also been described in PD
(11). This suggests that in some patients amnestic difficulties
may be associated to hippocampal alterations rather than been
restricted to frontal-executive alterations. The role that this kind
of deficits might play in PD-MCI and in the conversion to
PDD is mostly unknown. However, exploring differences in
episodic memory performance in non-demented PD patients
with and without PD-MCI may help to delineate early cognitive
changes with significant prognostic implications in terms of
cognitive progression.

In the present study, we aimed to explore the profile of
episodic memory deficits in non-demented early PD patients
with normal cognition (PD-NC) and PD-MCI. To explore
the extent of structural brain differences accompanying these
deficits, we also conducted voxel based morphometry (VBM)
and mean diffusivity (MD) analyses in a subset of participants.
Gray matter volume (GMV) analyses through VBM is a
macrostructural neuroimaging technique that has been widely
used to characterize brain atrophy. In recent years, increases
in MD both in white-matter and gray-matter tissues have been
suggested to infer microstructural brain damage.

METHODS

Participants
We prospectively recruited 114 PD patients who fulfilled the UK
Brain Bank Diagnostic Criteria for PD and regularly attending
the Movement Disorders Unit at our center and a group
of 41 age-matched and education-matched healthy controls.
The study procedures included a neurological examination
and the administration of a comprehensive neuropsychological
assessment battery which was done to all participants, including
patients and healthy controls. Presence of PDD according
to consensus guidelines (12); having undergone deep brain
stimulation surgery; brain abnormalities evidenced in imaging
studies performed in the previous year; major depression;
treatment with anticholinergic drugs; and any known causes of
cognitive impairment other than PD defined exclusion criteria.
Written informed consent was obtained from all participants
and all procedures were performed in accordance with the
standards of the local Ethic Review Board of the Sant Pau hospital
in Barcelona, and with the 1964 Helsinki declaration and its
later amendments.

Procedures
Data was collected during two separate visits. Data at screening
included: age, educational level, current medications with
dopaminergic drugs converted to levodopa equivalent daily dose
(LEDD), formal application of the MDS criteria to exclude
PDD, the MDS-Unified Parkinson’s Disease Rating Scale part III
(UPDRS-III) motor subscale, Hoehn, and Yahr (H&Y), and the
Parkinson’s Disease-Cognitive Rating Scale (PD-CRS), which is
a screening instrument that addresses global cognition. On the
second visit, a comprehensive neuropsychological examination
that fulfilled the standards proposed by the MDS Task Force for
the diagnosis of PD-MCI was completed (2).

Neuropsychological Assessment and Group

Classification
PD participants were grouped as PD-NC and PD-MCI according
to the Level II criteria of the Movement Disorders Society
Task Force (MDS-TF) for the diagnosis of PD-MCI (1, 2).
Thus, five cognitive domains (attention, language, memory,
visuospatial skills, and executive functions) were examined using
a comprehensive battery composed of two tests per domain.
We applied cut-offs of 1.5 SD below normative values and
PD-MCI was confirmed when any two (or more) impaired
neuropsychological test were present (2, 13). The following
standardized and recommended neuropsychological measures
were used: Parkinson’s Cognitive dementia rating scale (PD-
CRS), forward and backward Corsi’s block-tapping task, forward
digit span task, phonetic and semantic verbal fluency, the Rey-
Osterrieth complex figure test, the Boston Naming test, the
Judgment of Line Orientation, and the number location subtest
of the Visual Object and Space Perception Battery.

Episodic memory was assessed using the Free and Cued
Selective Reminding Test (FCSRT). The FCSRT is a widely used
episodic memory test which assesses immediate and delayed
free-recall and cued-facilitated immediate and delayed recall. In
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studies assessing memory performance in MCI in the general
population, the FCSRT has shown to reflect hippocampal-
mediated consolidation memory defects better than free-list
learning tests. Moreover, the FCSRT performance predicts
progression to dementia in close relationship with progressive
atrophy of the medial temporal lobe and other neocortical
temporal and parietal regions (10, 14–19). The FCSRT was
administered using standard procedures as described by Grober
and Buschke (20). Participants were shown a card with four
words, and were asked to determine which one of the four
corresponds to a particular category (e.g., cue; clothing, and
the word “vest”). The participant should learn the four items
on the four cards (total 16 words). Three recall trials were
conducted, each one preceded by 20 s of counting backwards
used as interference. For each trial, participants were asked
to freely recall as many items as possible and category cues
were provided for items not retrieved by total free recall. The
same procedure of recalling (freely and cued) was done after a
30min interval. Subjects were required to freely remember the
words and category cues were provided for items not retrieved
freely. The measures evaluated here were: total free recall-TFR
(cumulative sum of free recall from the three trials; range 0–48),
total recall-TR (cumulative sum of free recall + cued recall from
the three trails, range 0–48), delayed free recall-DFR (free delayed
recall, range 0–16), and delayed total recall-DTR (free delayed
recall+ cued delayed recall, range 0–16).

Both patients and healthy controls followed the
same assessment.

Neuroimaging Acquisition
A subsample of 56 patients underwent 3-Tescla Magnetic
Resonance Imaging (MRI) (Philips Achieva). T1-weighted MRI
acquisition was performed using a dedicated axial T13D-
MPRAGE MRI (TR/TE, 500/50ms; flip angle, 8, field of view
[FOV], 23 cm; with in-plane resolution of 256 × 256 and 1-
mm slice thickness). Diffusion Tensor Imaging (DTI) scans were
also obtained (FOV 220mm, voxel size 2mm, TR 8,000ms,
TE 80ms, flip angle 90◦, 32 directions, b-factor 1000). The
neuropsychological and MRI scans were performed within a
maximum of 3 months between procedures.

Statistical Analysis
Data are expressed as means ± standard deviation (SD) for the
continuous variables and as mean range for the ordinal variables.
Differences between groups were analyzed with independent
two-tailed t-tests and analyses of variance (ANOVA) for
continuous variables, the Mann-Whitney test for ordinal data,
and the χ2 test for categorical variables. Comparison of clinical,
demographic, and neuropsychological data between groups were
done using One-Way ANOVA between the three groups, with
additional Tukey post-hoc tests for more direct comparisons
between each pair of groups.

Binary logistic regression analysis was performed to test
the independent classification capacity of the different FCSRT
subscores.To calculate the effect size of the differences observed
between cognitive groups we used Cohen’s d coefficient (d
values: 0–0.3, small effect size; 0.3–0.6, moderate effect size;

>0.6, large effect size). Receiver operator characteristic (ROC)
curves were generated to explore the discriminative capacity
of each FCSRT subscore. We used cross-tabulation to calculate
diagnostic accuracy. Associations between demographic, clinical
and cognitive variables were studied using Pearson’s correlations.
Significance was set at p< 0.05. All the statistical procedures were
performed using the SPSS v16.0 statistical software package.

Neuroimaging Analysis
A voxel-based morphometry (VBM) analysis of gray matter
volume (GMV) was performed using the Statistical Parametrical
Mapping (SPM12) software (http://www.fil.ion.ucl.ac.uk/spm/).
T1-MRI images were segmented to obtain GMV probability
maps, which were then normalized to the Montreal Neurological
Institute (MNI) stereotactic space using DARTEL. The resulting
images were smoothed using a Gaussian kernel of 8mm full
width at half maximum (FWHM).

DTI images were preprocessed using FSL 5.0 software
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). First, non-brain tissue was
removed using the Brain Extractor Tool (BET). Second, motion
and eddy current correction was performed using the FMRIB’s
Diffusion Toolbox (FDT). Diffusion tensors were then computed
and mean diffusivity (MD) maps were obtained for each patient.
These maps were then normalized to MNI space and smoothed
using an isotropic filter of 6 mm FWHM.

The normalized GMV and MD images were entered into
a voxel-wise multiple regression analysis to explore the brain
correlates of the DFR and DTR scores in both modalities.
Age, sex, education and total intracranial volume were used as
covariates of no interest. Voxelwise imaging results showing p <

0.005 (uncorrected) and a minimum cluster extent size of k =

100 voxels was considered significant (21–23). Clusters surviving
family-wise error (FWE) correction for multiple comparisons are
reported in the corresponding cluster description table (Table 4).
The MRIcron software tool (https://www.nitrc.org/projects/
mricron) was used to represent the statistical voxelwise maps.

RESULTS

One hundred and fourteen PD patients (68.0 ± 8.3 years) and
41 healthy controls (HC; 66.3 ± 7.4 years) were included in the
study. PD patients were in the early to mid-stages of the disease
(disease duration 5.3± 3 years; H&Y stage 2.0± 0.2; UPDRS-III
25.2± 8.1). As seen inTable 1, PD patients andHCwerematched
for age, gender and education.

According to MDS-TF level II criteria for PD-MCI, using a
detection threshold of −1.5 SD, 22 of the 114 patients (19.0%)
were classified as having PD-MCI and all HCwere classified in the
range of normal cognition, following this same criteria. Looking
at the different cognitive groups, those in the PD-MCI group
were significantly older than PD-NC [t(113) = 3.174; p < 0.01]
and HC [t(63) = 3.78; p< 0.01], have lower educational level than
PD-NC [t(113) = −4.18; p < 0.01] and HC [t(63) = −3.66; p <

0.01], and had higher UPDRS-III score than PD-NC [t(63) = 3.10;
p < 0.05].

As depicted in Table 2, between-group comparisons showed
significant differences in all the cognitive measures with the

Frontiers in Neurology | www.frontiersin.org 3 April 2020 | Volume 11 | Article 240

http://www.fil.ion.ucl.ac.uk/spm/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.nitrc.org/projects/mricron
https://www.nitrc.org/projects/mricron
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Horta-Barba et al. The FCSRT in Parkinson’s Disease

TABLE 1 | Clinic and sociodemographic characteristics of the sample.

Controls PD total sample PD-NC PD-MCI P* P†

Age (years) 66.3 ± 7.4 68 ± 8.3 67.5 ± 8.1 72.9 ± 4.9 0.251 0.012

Gender (m/f) 21/20 72/42 64/28 8/14 χ
2 = 0.125 χ

2 = 0.004

Education (years) 13.2 ± 4.8 12.2 ± 4.7 13 ± 4.4 8.7 ± 4.4 0.250 <0.001

Disease duration (years) – 5.3 ± 3.4 5 ± 3.1 6.1 ± 4.2 – 0.278

MDS-UPDRS IIIa 1.2 ± 1.2 25.2 ± 8.1 24 ± 7.4 29.8 ± 9 <0.001 <0.01

H&Yb – 2 ± 0.2 2 ± 0.2 2 ± 0.2 – 0.891

Total LEDDc – 565 ± 312 571 ± 320 540 ± 282 – 0.680

aMovement Disorders Society—Unified Parkinson’s Disease Rating Scale part III.
bHoehn and Yahr stage.
cTotal levodopa equivalent daily dose.
*P-values were determined with t-test for independent samples between healthy controls and PD.
†P-values were determined with t-test for independent samples between PD-NC, and PD-MCI.

TABLE 2 | Level I and Level II assessment scores.

Controlsa PD-NCb PD-MCIc ANOVA Turkey’s

PD-CRS Total score 101.2 ± 12.9 95 ± 15.4 73 ± 7.1 <0.001 a−b0.056; b−c
<0.001

Frontal-subcortical 72.3 ± 12.1 66.4 ± 14.6 44.8 ± 7 <0.001 a−b0.057; b−c
<0.001

Posterior-cortical 28.9 ± 1.7 28.5 ± 1.7 27.1 ± 2 <0.001 a−b0.594; b−c
<0.005

Attention

Corsi Forward 5.2 ± 0.9 5.2 ± 0.9 4.1 ± 1 <0.001 a−b0.987; b−c
<0.001

Digit span forward 5.5 ± 1 5.5 ± 1.1 4.6 ± 0.7 <0.01 a−b0.947; b−c
<0.005

Executive functions

Phonetic fluency 15.4 ± 4.6 15.5 ± 4.9 8.7 ± 3.4 <0.001 a−b0.993; b−c
<0.001

Corsi Backward 4.8 ± 0.9 4.7 ± 1 3.4 ± 0.9 <0.001 a−b0.878; b−c
<0.001

Memory

PD-CRS delayed memory total recall 6.6 ± 1.8 6.2 ± 2.4 4.5 ±1.7 <0.001 a−b0.660; b−c
<0.001

ROCFT −30 min1 16.1 ± 5.8 13.3 ± 6.8 4.8 ± 5.3 <0.001 a−b0.076; b−c
<0.001

Language

BNT-602 54.6 ± 6.7 54.7 ± 4.6 47.7 ± 5.2 <0.001 a−b0.685; b−c
<0.001

Semantic fluency 20.6 ± 4.8 19 ± 5.5 12.1 ± 3.2 <0.001 a−b0.229; b−c0.001

Visuospatial

JLOT3 23.3 ± 4.6 22.4 ± 5 15.1 ± 6.9 <0.001 a−b0.679; b−c
<0.001

VOSP—number location4 19.7 ± 1 19.6 ± 0.9 19.3 ± 1.2 0.351 a−b0.907; b−c0.424

1Rey-Osterrieth complex figure test −30min delayed recall.
2Boston Naming Test −60 items.
3Judgement of line orientation test.
4Visual object and shape perception test.
a−bControls vs. PD-NC.
b−cPD-NC vs. PD-MCI.

exception of the number location subtest of the VOSP. Post-
hoc comparisons showed no significant differences in cognitive
performance between PD-NC and controls. Conversely, PD-
MCI performed significantly worse than PD-NC in all cognitive
measures with the exception of the number location subtest of
the VOSP.

Looking at the FCSRT test performance, no differences were
found between PD-NC and HC in any of the obtained FCSRT
subscores. Conversely, performance of the patients in the PD-
MCI group was significantly worse than performance of the HC
and the PD-NC in all the subscores (p < 0.001). As reflected
by Cohen’s d, large effect sizes were found for TFR (d = 1.09),

TR (d =1.23), DFR (d = 1.03), and DTR (d = 1.60) when
comparing PD-MCI with PD-NC. Large effects were also found
when comparing PD-MCI with HC in all FCSRT subscores: TFR
(d = 1.31), TR (d = 0.94), DFR (d = 1.05), and DTR (d =

1.14). When comparing PD-NC with HC with Cohen’s d, we
found small effects in all FCSRT subscores: TFR (d = 0.29);
TR (d = 0.11); DFR (d = 0.06); and DTR (d = 0.10). We
used stepwise logistic regression analysis (forward; conditional)
to determine FCSRT subscores that independently differentiated
PD-NC from PD-MCI. The variables found to be significantly
different between cognitive groups in the one-way ANOVA were
included in the analysis to assess their contribution to group
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discrimination. From all the variables included in the model, the
DTR (r = 549; p < 0.001) was the best differentiating PD-NC
from PD-MCI independently on age, education or UPDRS-III
score (see Table 3).

Discriminative Capacity of the FCSRT
Receiver operating characteristics (ROC) curves to discriminate
between PD-MCI and PD-NC indicated that a cut-off of≤ 20/21
points on the TFR score yielded sensitivity, 73%; specificity,
77% (AUC = 0.770; 95% confidence interval, 0.663–0.878, p <

0.005). A cut-off score ≤ 38/39 points on the TR score showed
sensitivity, 80%; specificity, 69% (AUC = 0.803; 95% confidence
interval, 0.704–0.902, p < 0.001). A cut-off score ≤6/7 on the
DFR score showed sensitivity, 80%; specificity, 70% (AUC =

0.760; 95% confidence interval 0.647–0.874, p< 0.005). The DTR
score showed the best discriminative properties to differentiate
PD-MCI from PD-NC using a cut-off ≤12/13 points, achieving

sensitivity, 86%; specificity, 81% (AUC = 0.870; 95% confidence
interval 0.804–0.936, p< 0.001). Using crosstabulation, we found
DTR scores identified PD-MCI patients with 80% accuracy
(see Figure 1).

Neuroimaging Data
Voxel-wise multiple regression analysis between GMV and DFR
and DTR respectively showed significant positive associations
between FCSRT performance and GMV in multiple fronto-
temporal and parietal areas. Specifically, poorer DFR scores
were associated with decreased GMV in the left mid temporal
gyrus (BA 21), the paracentral gyrus and the superior temporal
gyrus (BA 41) (FWE corrected p < 0.05). Less restrictive criteria
(uncorrected p < 0.005; k = 100) showed positive associations
with the right mid temporal gyrus, the right superior frontal
gyrus and the left inferior parietal gyrus (BA 40). Performance
in the DTR was significantly associated with GMV in the

TABLE 3 | Comparative FCSRT performance between PD-MCI, PD-NC and HC.

Controlsa PD-NCb PD-MCIc ANOVA Turkey’s Cohen’s d*

FCSRT

Total free recall 26.7 ± 7.5 24.5 ± 7 16.7 ± 7 <0.001 a−b0.300; b−c
<0.001 1.09

Total recall 41.6 ± 6.7 42.8 ± 5.1 35.1 ± 9.1 <0.001 a−b0.872; b−c
<0.001 1.23

Delayed free recall 9.6 ± 3.1 9.4 ± 3 6.4 ± 3 <0.001 a−b0.952; b−c
<0.001 1.03

Delayed total recall 14.2 ± 2.6 14.4 ± 1.8 11 ± 3 <0.001 a−b0.878; b−c
<0.001 1.60

a−bControls vs. PD-NC.
b−cPD-NC vs. PD-MCI.
*Cohen’s d for PD-NC vs. PD-MCI comparisons.

FIGURE 1 | Receiver operating characteristic (ROC) curves illustrating the discriminative properties of the FCSRT.
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TABLE 4 | Results of the GMV voxel-based morphometry and MD-DTI analysis.

Anatomical region Cluster size T value MNI coordinates (x, y, z)

VOXEL-BASED MORPHOMETRY ANALYSIS OF GMV

FCSRT delayed free recall

Left mid temporal (BA 21) / postcentral / superior temporal (BA 41)* 2,799 4.63 −60, −26, −5

−57, −21, 26

−57, −18, 8

Right mid temporal 551 3.25 60, −39, 9

Left inferior parietal (BA 40) 498 3.76 −47, −45, 45

Right superior frontal 371 3.55 21, 6, 59

FCSRT delayed total recall

Right SMA / superior frontal (BA 6)* 1,832 4.44 17, 11, 66

21, 8, 60

Left mid temporal (BA 21) 606 3.90 −60, −26, −5

MD-DTI ANALYSIS

FCSRT delayed free recall

Left superior temporal (BA 22) 1,212 3.72 −46, −7, 1

Left inferior frontal (BA 47) 916 3.44 −40, 14, −5

Left hippocampus 884 4.41 −36, −21, −15

Left mid temporal 509 3.69 −56, −25, −5

Left middle temporal 246 4.23 −54, −59, 1

FCSRT delayed total recall

Left inferior frontal* 4,158 4.04 −45, 12, 22

Left postcentral 2,307 3.70 −58, −11, 27

Left superior temporal 1,210 3.31 −62, −16, 1

Left inferior temporal 574 3.79 −40, −18, −19

Left superior temporal pole 553 4.12 −43, 13, −23

*Cluster level FWE corrected (p < 0.05).

right supplementary motor area (SMA), in the right superior
frontal gyrus (BA 6) (FWE corrected p < 0.05) and in the
left mid temporal gyrus (BA 21) (see Table 4, Figure 2 and
Supplementary Table 1).

Voxel-wise MD multiple regression analysis with DFR and
DTR showed a significant association between performance
and MD in multiple fronto-temporal and parietal clusters
predominantly located in the left hemisphere. Specifically,
associations were found between worse DFR and increased MD
in the left superior temporal gyrus (BA 22), the left inferior
frontal gyrus (BA 47), the left hippocampus, the left mid temporal
and the left middle temporal gyrus. Performance in the DTR
was significantly associated with MD in the left inferior frontal
(FWE corrected p < 0.05), the left postcentral, the left superior
temporal gyrus, the left superior temporal pole, and the left
inferior temporal gyrus (see Table 4 and Figure 3).

Voxel-wise multiple regression analysis between GMV and
MD with both IFR and ITR scores did not show any significant
association surviving FWE correction.

DISCUSSION

In the present study we assessed performance in the FCSRT
in non-demented PD and compared the performance in this
task between PD-MCI and PD-NC. We also explored the

discriminative properties of different subscores of the FCSRT
and, in a subset of patients; we addressed the structural
neuroimaging correlates of FCSRT performance by means of
GMV-VBM and MD.

Our results show that, among other neuropsychological
measures, PD-MCI patients perform significantly worse than
PD-NC and healthy controls in the FCSRT. No significant
differences were seen between PD-NC and healthy controls in
this respect.

The FCSRT performance in the PD-MCI group was worse
than that in PD-NC patients and controls in all the free and cued
immediate and delayed recall conditions, suggesting difficulties
at level of encoding, consolidation and retrieval. Interestingly,
multiple measures of memory performance and specifically a
single measure of episodic memory (DTR) correctly classified
as PD-MCI up to 80% of the cases. These results emphasize
the notion that beyond the prototypical frontal-executive deficits
characterizing cognitive impairment in PD, amnestic difficulties
are also inherent features of the cognitive changes observed in
PD. Accordingly, this indicates that early to mid in the course of
PD-MCI, not just frontal-executive, but also amnestic difficulties
are present.

Neuroimaging data showed an association between
widespread cortical (temporal, parietal and prefrontal) areas
and FCSRT performance. Less GMV in mid temporal (BA 21),
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FIGURE 2 | Results of the VBM analysis. The slices show regions with significant GMV decreases in association with poorer FCSRT performance. Section (A) (top)

depicts GMV associated with DFR performance; section (B) (bottom) depicts GMV associated with DTR performance. For depiction purposes results are showed with

a p < 0.005 (uncorrected) and k = 100.

FIGURE 3 | Results of the voxelwise MD analysis. The slices show regions with significant MD increases in association with poorer FCSRT performance. For depiction

purposes results are showed with a p < 0.005 (uncorrected) and k = 100.

the superior temporal, the supramarginal, the inferior parietal
and the superior frontal gyrus was clearly associated with
delayed free recall. Conversely, a more selective involvement
of superior frontal regions was found for delayed total recall.
All these areas have complex connections that can be grouped
into (a) temporal and parietal areas more specialized in storage
processes, and (b) prefrontal areas more specialized in retrieval
processes (5, 24). Altogether, our results suggest that episodic
memory deficits in PD-MCI are sub-served by dysfunction of
parieto-temporal and prefrontal-related encoding, consolidation
and retrieval processes. Similarly, MD-DTI analyses delineated
the involvement of a set of fronto-temporal regions including
the temporal pole and the hippocampus. All these regions are
connected through the parahippocampal cingulum bundle,

which extends along the parahippocampal gyrus, running from
the anteromedial temporal lobe to the inferior parietal and
occipital lobes (25). The parahippocampal cingulum bundle
is closely linked to learning and episodic memory (26–28).
Furthermore, microstructural white matter changes in this
region have been consistently associated with episodic and
recognition memory deficits in amnestic MCI and early AD
patients (29–31).

In the only previous study that has analyzed the performance
of FCSRT in PD patients with amnestic mild cognitive
impairment, PD patients performed worse than healthy controls
on delayed free recall, but no differences were found regarding
delayed cued recall scores (10). This discrepancy could be
explained by both the smaller sample size and the lack of
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comparison between PD patients with and without MCI, as the
study focused on comparing amnestic mild cognitive impairment
with healthy controls and patients with amnestic mild cognitive
impairment without PD. Although memory deficits in PD-MCI
patients are widely considered to be caused by retrieval problems,
studies using comprehensive neuropsychological batteries have
shown that memory impairment in pre-dementia stages is also
the consequence of encoding and storage failure (32). The ability
of a memory test, such as the FCSRT, to assess both encoding and
retrieval deficits would explain its appropriateness for screening
PD-MCI accurately.

Recent studies in newly diagnosed and non-demented
PD patients have also underlined the relevance and early
development of cortical gray matter changes and DTI-MD
alterations in hippocampal and parahippocampal structures as
predictors of worsening cognition (33, 34).

This study has several limitations. First, there were fewer PD-
MCI patients than PD-NC patients. However, the prevalence of
PD-MCI is representative of the one observed in PD patients
in the early to mid-stages of the disease. Second, we did not
include in the study the measure “trial 1 free recall of the FCSRT”
which would have given us more information about encoding.
Third, the fact that we did not include patients with dementia
limits our ability to see how this population performs on FCSRT.
Fourth, not all the participants underwent neuroimaging, and
although the number of PD patients with available neuroimaging
was comparable to other VBM andDTI studies, imaging data was
lacking for the healthy control group used in this study. And fifth,
only a small subset of the clusters described in the neuroimaging
analyses survived FWE correction.

To our knowledge, this is the first study to look for FCSRT
cut-off scores in the screening of PD-MCI by using currently
accepted MDS-TF criteria, providing evidence that this test is
highly accurate for this purpose. Furthermore, we observed
that FCSRT impairment correlates with structural changes in
crucial areas of the semantic network and memory storage. The
combination of these clinical and imaging findings supports
the use of this test as an appropriate neuropsychological

tool to detect PD-MCI patients with widespread
cortical alterations.
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