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Motivation: Brain morphometry from magnetic resonance imaging (MRI) is a

promising neuroimaging biomarker for the non-invasive diagnosis and monitoring of

neurodegenerative and neurological disorders. Current tools for brain morphometry

often come with a high computational burden, making them hard to use in clinical

routine, where time is often an issue. We propose a deep learning-based approach

to predict the volumes of anatomically delineated subcortical regions of interest (ROI),

and mean thicknesses and curvatures of cortical parcellations directly from T1-weighted

MRI. Advantages are the timely availability of results while maintaining a clinically

relevant accuracy.

Materials and Methods: An anonymized dataset of 574 subjects (443 healthy controls

and 131 patients with epilepsy) was used for the supervised training of a convolutional

neural network (CNN). A silver-standard ground truth was generated with FreeSurfer 6.0.

Results: The CNN predicts a total of 165 morphometric measures directly from raw

MR images. Analysis of the results using intraclass correlation coefficients showed, in

general, good correlation with FreeSurfer generated ground truth data, with some of the

regions nearly reaching human inter-rater performance (ICC > 0.75). Cortical thicknesses

predicted by the CNN showed cross-sectional annual age-related gray matter atrophy

rates both globally (thickness change of −0.004 mm/year) and regionally in agreement

with the literature. A statistical test to dichotomize patients with epilepsy from healthy

controls revealed similar effect sizes for structures affecting all subtypes as reported in a

large-scale epilepsy study.

Conclusions: We demonstrate the general feasibility of using deep learning to estimate

human brain morphometry directly from T1-weighted MRI within seconds. A comparison

of the results to other publications shows accuracies of comparable magnitudes for the

subcortical volumes and cortical thicknesses.
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1. INTRODUCTION

Magnetic resonance imaging (MRI) is the method of choice
for non-invasive assessments of brain structure. Clinicians use
MRI for diagnosis, disease monitoring, and therapy control
in a wide range of neurological and neurogenerative disorders
like e.g., epilepsy, multiple sclerosis, Alzheimer’s, Parkinson’s,
or Huntington’s disease, which are often associated with
structural changes of the brain (1). Structural MRI including
high-resolution T1-weighted (T1w) imaging is part of today’s
protocol recommendations for many of these disorders (2–4).
Beyond visual assessment by trained experts, quantitative brain
morphometry is gaining increasingly more attention for medical
applications. Precise and automatic reconstruction of structures
from MRI is still a topic of active research. Commonly used
methods are voxel-based morphometry (VBM) (5) and surface-
based analysis (SBA) (6).

A variety of morphometric parameters have been proposed.
Three of the most frequently used parameters are the volumes
of anatomically delineated regions of interest (ROIs), and the
thickness and the curvature of the cortical band. Volumes are
either reported in physical units as mm3 or cm3, or as fractions
of the intracranial volume. Total gray matter (GM) volume
is known to decrease with aging (7), which can regionally or
globally be accelerated by neurodegenerative diseases (8, 9).
Atrophy of brain tissue is generally accompanied by enlarged
ventricles and increased volume of cortical (sulcal) cerebrospinal
fluid (CSF) that sustains the brain within the skull (10).

Cortical thickness is the distance in mm between the white
matter (WM) surface (i.e., the interface between GM and WM)
and pial surface (i.e., the interface between GM and CSF). The
overall mean thickness of the healthy human cerebral cortex
is about 2.5 mm, with regional variations between 1 and 4.5
mm (11). Amultitude of geometrical definitions for the curvature
of a surface exist (12). The mean curvature, as an extrinsic
measure for the folding of the cortex (13), roughly corresponds
to the inverse of the radius of a sphere fitted to the surface and is
measured in mm−1. Both, thickness and curvature of the cortex,
can be reported per vertex on a reconstructed surface mesh or as
ROI-wide averages (parcellations). In the interest of readability,
we here use the terms thickness and curvature to refer to their
parcellation-wise averages.

Large-scale studies of brain morphometry are only possible
if morphometric parameters are available for a large number of
MR images, with high accuracy and in a reproducible manner.
However, manual segmentation andmeasurements are extremely
labor intensive, prone to errors, and good intra- and inter-
rater reproducibility depends on task-specific training (14).
Software for automatic or semi-automatic extraction of brain
morphometry from MRI is available and includes tools such as
FreeSurfer (15), FSL (16), ANTs (17), NeuroQuant (18), and
IBASPM (19). Among these morphometry tools, FreeSurfer is
the most comprehensive, as it provides many metrics, including
direct measures of volumes and cortical thickness and curvature.

In a large-scale, multi-center study by the ENIGMA
consortium (20), significant structural changes in the brains
of epilepsy patients have been identified recently (21). When

compared to a cohort of healthy controls, altered subcortical
volumes and reduced cortical thickness in distinct regions were
observed. The feasibility of applying morphometry tools to
individual patients and to support clinical diagnostics has been
shown (22) by comparing personalized morphometric analysis to
a normative database adjusted for confounding factors like age
and sex.

Brain morphometry is expected to become an essential
quantitative neuroimaging biomarker (23). Although currently
mainly used in the academic realm, it has great potential
to complement today’s predominantly qualitative visual
assessments of MRI by neuroradiologists. If morphometry
is to be used for diagnostics of individual patients in daily
clinical practice, the timely availability becomes crucial. Today’s
state of the art tools for the automatic determination of brain
morphometry often come with a high computational burden
(∼10 h with FreeSurfer), heavily hampering their use in clinical
routine, where time is often an issue.

The adoption of deep learning in medical image analysis has
increased rapidly over the past years. In current research projects,
it has even become the method of first choice for many tasks.
In a review of recent studies that use deep learning in medical
image analysis (24), MRI was the most frequently used imaging
modality, and the brain themost prominent organ.While the vast
majority of tasks concern image segmentation and classification,
applications of deep learning for regression (prediction) of
morphometry in medical image applications are still rare,
especially for brain MRI. Technically, convolutional neural
networks (CNNs) (25) are the most prevalent architectures for
image analysis. Despite the 3D nature of MRI, many methods
still use 2D convolutions. Input is often fed patch- or slice-wise
into the networks, partially motivated by limited computational
resources and the lack of large-scale training data (26). The
increase of power andmemory of modern GPUs has the potential
to change this, though.

A regression problem leveraging the full 3D MRI volume
using a CNN was proposed by Cole et al. (27), where they
successfully predicted brain age directly from raw MRI with
a mean absolute error of < 5 years, i.e., much smaller than
the age range of available datasets. Deep learning has been
used to directly estimate the wall thickness of the ventricular
myocardium from a sequence of cardiac images (28). The authors
made use of both, the spatial and temporal information, by
combining a CNN and a recurrent neural network (RNN).
Directly classifying neurological diseases is another popular
challenge that is being tackled by deep learning, mainly for
Alzheimer’s disease (29–31) where a large public dataset is
available from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (32).

Regarding brain anatomy, promising results in the
application of deep learning-based models were observed for the
segmentation of tissue classes and subcortical structures (33–38).
The challenge of having access to enough labeled data for training
is addressed by semi-supervised (39) and unsupervised (40)
approaches or data augmentation strategies simulating diverse
pulse sequences (41). While these segmentation-based methods
enable calculation of volumes in a timely fashion, none
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of them provide thickness or curvature measures of the
cortex. Graph convolutional networks (GCN) have been
used (42, 43) to parcellate the surface of the cerebral cortex.
For calculating the cortical thickness, alternative methods like
Laplace equations (44) or registration-based solutions (45)
have been proposed. Recently, FastSurfer was proposed as an
optimized FreeSurfer pipeline, reducing the runtime to about
1.7 h, which is primarily achieved by a deep learning-based
whole brain segmentation and a faster surface reconstruction
and spherical mapping using marching cube and Laplace
eigenfunctions (46).

A classical machine learning approach for brainmorphometry
estimation from MRI was proposed by Suter et al. (47), using
a Random Forest to directly estimate cortical thickness and
curvature, both on a per voxel and parcellation level. As a
limitation, their approach still depended on the first part of the
FreeSurfer pipeline to pre-process the data before feeding it into
the model. Including feature extraction, this required about 30
min to predict the morphometric parameters of a single subject.

Recent advances in deep learning for image analysis motivated
us to propose a deep learning-based approach for direct
estimation (regression) of brain morphometry from MRI. We
hypothesized that a neural network can directly predict the
volumes of anatomically delineated subcortical ROI, and mean
thicknesses and curvatures of cortical parcellations. Advantages
would be the availability of results within seconds while
maintaining a clinically relevant accuracy (see Figure 1). While
deep learning-based methods are increasingly used for fast brain
anatomy segmentation, this is—to the best of our knowledge—
the first application to directly regress morphometric measures
of the cortex.

This paper is structured as follows: after a description of
the data, their pre-processing, the network architecture and the
evaluation metrics in the methods section, we first analyze the
predictions in terms of correlation coefficients against a silver-
standard ground truth. The relevance of our predictions beyond
correlation is assessed via a group comparison of epilepsy patients

with healthy controls approximating the worldwide recognized
ENIGMA study, and an analysis of cross-sectional age-related
cortical GM atrophy rates. Finally, we contrast the results to the
literature and analyze the reliability by means of rescan tests.

2. MATERIALS AND METHODS

2.1. Data
The data for this project were used in previous studies (22,
48) by the Bern University Hospital (Inselspital). The dataset
consists of anonymized, high-resolution isotropic T1-weighted
MR images, acquired at the Inselspital on two 3T MR scanners
(Magnetom Trio and Verio, Siemens, Erlangen, Germany).
Images were acquired in sagittal direction and MRI protocols
were either MDEFT (49), standard 3D MP-RAGE (50), MP-
RAGE according to the recommendations of the Alzheimer’s
Disease Neuroimaging Initiative (51) orMP-RAGE optimized for
gray-white contrast (52). Detailed sequence parameters can be
found in the Supplementary Material of Rummel et al. (48).

Only age, sex, scanner, and sequence are known from the
anonymized data. Both healthy controls (n = 443) and patients
with epilepsy (n = 131) are included in the dataset. The age

TABLE 1 | Demographic information of the subjects and its distribution to the

three datasets.

Healthy controls Epilepsy

n Mean age (±SD) % Male n Mean age (±SD) % Male

Train 336 34.5 ± 20.2 44.3 102 35.0 ± 14.4 48.0

Validate 35 30.9 ± 21.3 37.1 11 30.3 ± 13.0 45.5

Test 72 31.5 ± 12.9 38.9 18 33.9 ± 16.2 44.4

Overall 443 33.7 ± 19.3 42.9 131 34.4 ± 14.5 47.3

Age in years.

FIGURE 1 | Deep learning-based estimation of brain morphometry directly from T1-weighted MRI, making results available within seconds.
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range across all subjects is from 6 to 84 years. The demographic
distribution of the subsets is shown in Table 1.

The dataset contains a certain number of re-scans, i.e., for
some healthy controls more than one MRI is available (48) in
intervals not longer than 2 years. All MR images of these subjects
were intentionally assigned to the test set to enable robustness
tests. Since all these subjects are within the age range of 21–41
years, this results in a lower standard deviation of the age in
the test set. The remaining subjects were randomly distributed
among the three sets.

2.1.1. FreeSurfer
Due to the lack of a gold-standard ground truth for brain
morphometry, we used FreeSurfer to generate a silver-standard
ground truth in this project. FreeSurfer (FS) (15) is a freely
available software package for the analysis of neuroimaging data.

To obtain the volumes of anatomical brain segmentations,
FreeSurfer performs a whole brain segmentation of subcortical
and ventricular structures, assigning a label to each voxel (53).
The SBA is derived from a geometric model of the cortical
surface (6). SBA measures are available per vertex or averaged
for ROI for which the cortex is parcellated and mapped to a
brain atlas.

An automatic reconstruction of a topologically correct surface
for the highly folded brain cortex is an extraordinarily difficult
task. A breakthrough in the development of FreeSurfer was
to use a combination of both the pial and the gray/white
matter boundaries along with volume intensities to achieve
an anatomically accurate surface representation. This iterative
process of topological corrections is computationally expensive
and the most time-consuming part in the whole FreeSurfer
pipeline. It is owed to this high-resolution surface mesh that
allows measurements of cortical thickness with submillimeter
accuracy, which is necessary to characterize subtle cortical
atrophy in diseases (11).

The accuracy and reliability of FreeSurfer have been
investigated multiple times, e.g., by comparing the results with
manual segmentation by experts (54–56), by performing scan-
rescan studies (57, 58), or through comparison with other
tools (59). FreeSurfer’s output may be influenced by the image
acquisition setup like scanner manufacturer, field strength, and
protocols (60), but also the version of FreeSurfer, and even
the underlying hardware and operating system, are known to
influence the results when applied to the same MR image (61).

2.1.2. Ground Truth Generation
A silver-standard ground truth for the cortical and
subcortical morphometrics was generated with FreeSurfer
6.0 (recon-all) running on CentOS Linux, release 6.9.
Average processing time was 11.3± 3.3 h per MR image.
Subcortical volumes in mm3 for 29 ROI were extracted from
the segmentation statistics (aseg.stats) (53). The volume
of the corpus callosum was calculated by summing up its five
sub-regions (anterior, mid-anterior, central, mid-posterior, and
posterior). Cortical thicknesses in mm and curvatures in mm−1

were extracted from the surface statistics (lh.aparc.stats,
rh.aparc.stats) as their parcellation-wise averages defined

by the Desikan-Killiany (DK) atlas (62), resulting in 34 ROIs
per hemisphere.

The reliability of the FreeSurfer output depends on previous
steps in the processing pipeline, mainly the tissue segmentation
and surface reconstruction. Errors therein may lead to significant
deviations. As a simple automatic quality check to detect likely
erroneous large outlier, the output from FreeSurfer was fed
into an existing pipeline for automated morphometric analysis
developed by Rummel et al. (48). The pipeline reported an
unusually high number of significantly abnormal regions for 17
subjects which were removed from the dataset. One additional
subject was removed after visual inspection due to a severely
distorted white matter mask from FreeSurfer.

2.1.3. Data Pre-processing
Pre-processing of the raw MR images for deep learning included
the following steps: The brain mask from the FreeSurfer output
was used for skull-stripping the original T1w image. This
anonymized image was then re-sampled and cropped to 256 ×

256 × 256 voxels with a size of 1 mm3 (mri_convert) in
order to have a common input size across all subjects. The
voxel intensities of each image were re-scaled into the range
0–4,095 to account for intensity variations between different
images. Last, the center of mass from all foreground voxels was
moved to the center of the image to facilitate data augmentation
described below.

2.2. Convolutional Neural Network
Architecture
The scaffold for the development of the custom network
architecture for brain morphometry was to some extent inspired
by AlexNet (63), the winner of the 2012 ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) (64). Motivated by the
volumetric nature of MR images, we use 3D convolutions on
the full input volume instead of 2D with three input channels
in AlexNet. Further modifications include a reduction by two
convolution layers, adjustments in the fully connected layers to

TABLE 2 | Architecture of the CNN for brain morphometry.

Layer Kernel Stride Filters Output size Activation

function

Input – – – 256× 256× 256 –

Conv3D 11× 11× 11 3 144 86× 86× 86× 144 ReLU

MaxPool 3× 3× 3 2 – 42× 42× 42× 144 –

Conv3D 5× 5× 5 2 192 21× 21× 21× 192 ReLU

MaxPool 3× 3× 3 2 – 10× 10× 10× 192 –

Conv3D 5× 5× 5 1 192 10× 10× 10× 192 ReLU

MaxPool 3× 3× 3 2 – 4× 4× 4× 192 –

FC – – – 374 ReLU

FC – – – 192 –

FC – – – 165 –

Dropout (0.4) is applied after the last MaxPool layer and after first FC layer.

A bias is added to the first convolutional and all fully connected layers. Conv3D, 3D

convolution; FC, fully connected layer; ReLU, rectified linear unit.
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account for different sizes, and a regression output. This results
in a network architecture with a total of six layers, as depicted
in Table 2. Accordingly, the receptive field after the last pooling
layer is 209 in all three dimensions.

The total number of trainable parameters in the network is
9 467 877, about half of them being in the convolutional layers.
The weights of the convolutional kernels are initialized randomly
according to the Xavier Uniform Initializer (65). All variables of
the fully connected layers and the bias are zero-initialized.

The mean squared error (MSE) objective function is
minimized using Adam (66) as gradient-based optimizer with
an empirically determined initial learning rate of 10−5. With a
batch size of 6, the training of one epoch consists of 73 steps and
requires about 3 min to complete.

The model was implemented in Python using Tensorflow
1.8 (67). Training was performed on a NVIDIA Titan Xp
GPU with 12 GB memory. During training, the accuracy was
periodically evaluated on the validation set. The model of the
best epoch, measured in terms of mean R2 across all regression
morphometrics, was kept for early stopping.

We found the following data augmentation strategy allows
the model to be trained for more epochs before the onset
of overfitting: The skull-stripped input image was randomly
translated by up to ±15 voxel in a randomly selected dimension,
followed by three consecutive 90◦ rotations around a random
principal axis. Besides artificially increasing the amount of
training data, this has the positive side effect of enabling the
model to process images in an arbitrary orientation. These
transformations are computationally inexpensive and can be
performed for the (pre-fetched) next batch on the CPU while
calculations of the current batch are running on the GPU.

2.3. Evaluation
Several metrics exist to evaluate the correlation and reliability
of a regression model. For direct comparison with others, we
report the results for all three metrics mentioned below in
the Supplementary Material.

The coefficient of determination, denoted R2, is an indicator for
the goodness of fit of a linear regression model:

R2 = 1−

∑N
i=1 (yi − gi)2

∑N
i=1 (gi − ḡ)2

(1)

where yi is the prediction for the ith sample, gi the silver-standard
ground truth and ḡ the sample mean for N samples.

The Pearson correlation coefficient, denoted r when applied to
a sample, measures the linear correlation of two variables:

r =
cov(y, g)

σyσg
(2)

where σ is the standard deviation of the prediction and silver-
standard ground truth, respectively. Pearson’s r is less susceptible
to large outlier than R2.

A fixed bias remains unrecognized by Pearson’s r (e.g., reports
a perfect correlation of 1 for y = 2g or y = g + 1). Therefore we
employed the intraclass correlation coefficient (ICC) along with a

95% confidence interval as primary quantitative metric to assess
the reliability of the predictions (68). Reflecting both degree of
correlation and agreement between measurements, ICC is widely
used in medicine to measure intra- and inter-rater performance
as well as for the evaluation of test-retest experiments. In its
original form, ICC is defined as the ratio of true variance (σ 2

g )

to true variance plus error variance (σ 2
ǫ
):

ICC =
σ
2
g

σ
2
g + σ

2
ǫ

(3)

Modern definitions use sample mean squares from analysis of
variance (ANOVA). Various assumptions lead to slightly different
forms of ICC (69). By following the guideline from Koo and Li
(70), the appropriate form for our task is two-way mixed effects,
absolute agreement, single rater/measurement also known as:

ICC(2, 1) =
MSR −MSE

MSR + 1
N (MSC −MSE)

(4)

where MSR = mean square for rows, MSE = mean square for
error and MSC = mean square for columns from ANOVA.
However, some papers lack a clear definition of which ICC was
used exactly, making one-to-one comparisons more difficult.

Rules of thumb for the interpretation of ICC in the context of
clinical significance are given by Cicchetti et al. (71):

• Less than 0.40 : poor
• Between 0.40 and 0.59 : fair
• Between 0.60 and 0.74 : good
• Between 0.75 and 1.00 : excellent

All three evaluation metrics yield values below 0 for negative
correlation or poor agreement, 0 for no correlation, e.g., a model
just predicting the average expected outcome, and gradually
become 1 for perfect correlation. The metrics were calculated in
R (72) with the additional package irr (73) for ICC.

Besides simple correlation plots and the quantitative metrics
described above, we further analyzed the predictions qualitatively
using Bland-Altman plots (74) by plotting the differences against
the means of the two methods (75). Studying the difference rather
than the agreement is a recommended (76) analysis technique if a
new method is to be compared to an existing, well-established
method and the underlying true values are actually unknown
(as in our case with brain morphometry and FreeSurfer as the
established method).

2.4. Clinical Significance - Patients With
Epilepsy
A widely used application of brain morphometry in clinical
research is the statistical comparison of two different groups in
a population. To explore the efficacy of our deep learning-based
approach beyond purely technical metrics, we assessed to which
degree we could replicate the findings of such a research study
with the morphometrics estimated by the CNN.

In a large-scale study (21), including more than 2,000
patient cases, the ENIGMA consortium assessed structural brain
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abnormalities in patients with epilepsy. Among the findings were
increased volumes of the lateral ventricle bilaterally, decreased
volumes of the thalamus and globus pallidus from the right
hemisphere, and a reduced mean thickness of the precentral
gyrus and paracentral lobule bilaterally in patients with epilepsy
when compared to a group of healthy controls. Only the
aforementioned eight metrics showed statistically significant
deviations in all four epilepsy subgroups examined by the
study. Our dataset contains patients with epilepsy from all four
subgroups, but the sample size does not allow for stratification
into small subgroups. The baseline from ENIGMA is, therefore,
the “All epilepsies” phenotype. Effect sizes adjusted for age
and sex to compare healthy controls vs. patients with epilepsy
were calculated using Cohen’s d, implemented in the R package
effsize (77). Statistical significance was determined with a one-
sided t-test (p < 0.05).

To increase the sample size for the test, we created three
additional train/validate/test splits of the dataset, each with a
unique set of subjects in the validation and test set (non-
exhaustive cross validation). Models were trained (as described
in section 2.2) independently of each other using these sets. The
combined predictions from the four resulting test sets yield a
sample of 274 healthy controls and 86 patients with epilepsy.
Although our population is much smaller than in ENIGMA
(1,727 healthy controls and 2,149 patients with epilepsy), a
comparison using the effect size is valid as this statistical test is
not confounded by the sample size.

2.5. Age-Related Cortical Gray Matter
Atrophy
The overall cortical thickness is known to decrease with normal
aging (7). This age-related atrophy varies regionally (78). We
assessed whether this trend is recognizable in the predictions
from the CNN on the whole cohort of controls and patients.
The age effect on the predicted thicknesses was analyzed in R by
fitting a general linear model, both globally for the whole brain
(all parcellations averaged) and regionally for each parcellation.
In order to account for multiple tests, the significance level was
Bonferroni corrected with a factor of 68 (number of parcellations
in both hemispheres).

The results were compared to the study of Lemaitre et al.
(78) in which a similar cohort (216 participants with a mean
age of 39.8 ± 16.5 years) was analyzed for age-related regional
morphometric changes.

2.6. Reliability by Rescan Tests
Due to the lack of a gold-standard ground truth, we should
not solely rely on the accuracy to judge on the performance
of a method. Reliability is another important quality feature.
Repeated measurements of the same subject should ideally yield
similar values, or in our case, differentMRI from the same subject
should report similar results. For nine subjects, between three and
six scans are available in the dataset. Since these rescans were
acquired within a time frame of maximum 2 years, we assume
only minor structural changes in the brain occurred during this
time. Hence we assume an unchanged ground truth and assessed
the reliability by means of evaluating the standard deviation of
the morphometrics predicted by the CNN.

3. RESULTS

The final model was trained during 7 days over 4,500 epochs, with
the best mean R2 score on the validation set reached at epoch
3,920 (early stopping). As depicted in Figure 2, the final model
using dropout and data augmentation required more training
steps to converge. Both translations and rotations contributed to
reduce overfitting and to achieve a higher R2. Dropout roughly
tripled the number of epochs required to converge. About 15% of
the performance gain, in terms of mean R2, was attributed to data
augmentation. The corresponding metrics on the training data
can be found in Figure S1 (Supplementary Material), showing
earlier convergence without data augmentation.

All results below are from the evaluation on the test set
consisting of 90 subjects, as described in section 2.1. The total
runtime required for predicting all 165 morphometrics for these
90 subjects was 698 s, which is less than 8 s for a single MR
image. This included all necessary pre-processing steps of which
re-sampling to unit volume and isovoxel took most of the time,
whereas passing the data through the CNN on the GPU was
below 1 s.

Figure 3 shows a Box-and-Whiskers plot of the averaged
relative error for each category. The mean relative deviations
from silver-standard ground truth were below 5% for all three
categories (volume = 3.43 ± 5.41%, thickness = 0.63 ± 2.44%,
curvature = 0.02 ± 2.58%). The subsequent sections report and
analyze the accuracy of the individual predictions for each of the
three categories.

3.1. Subcortical Volume
An overview of all intraclass correlation coefficients along with
95% confidence intervals is shown in Figure 4 and detailed
numbers are reported in Table S1 (Supplementary Material).
Intraclass correlation coefficients were excellent (ICC above 0.75)
for 11 out of 29 predicted volumes, good (ICC 0.60–0.74) for
7, and fair (ICC 0.40–0.59) for the remaining 11 volumes. The
highest scores were reached for the volumes of total gray matter
(ICC = 0.91), cerebral white matter (0.90), and left (0.87) and
right lateral ventricle (0.90). Also excellent ICCs were reached for
amygdala (left= 0.79, right= 0.76), thalamus (left/right= 0.79),
left nucleus accumbens (0.79), brainstem (0.78), and left ventral
diencephalon (0.78). Scores on the lower end were reported for
the volumes of white matter hypointensities (0.40), right inferior
horn of lateral ventricle (0.46) and corpus callosum (0.47). The
mean ICC over all volumes was 0.68 (left hemisphere = 0.69,
right hemisphere= 0.66). The ICCs were not significantly related
to the size of the structures (r = 0.247, p = 0.215).

When analyzing individual estimations using Bland-Altman
plots, we observe a tendency of the CNN to have overestimated
smaller volumes and underestimated the larger (see Figure 5

for an example of the left thalamus). The red horizontal
line representing the mean difference between prediction and
silver-standard ground truth was close to zero (the relative
mean difference was below 3.2% for all structures except for
the white matter hypointensities and inferior horn of lateral
ventricles). This suggests only a small bias is present. The
regression lines in the correlation plots were not as steep
as 45◦ (perfect correlation) for most of the volumes, which
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is an indication the CNN was not able to fully capture the
variance of the silver-standard ground truth. Correlation and
Bland-Altman plots for all subcortical volumes are listed in
the Supplementary Material.

3.2. Cortical Thickness and Curvature
Figure 6 shows the intraclass correlation coefficients of all
cortical parcellations (detailed numbers are reported in
Table S2). For the cortical thickness, the mean ICC of all 68

parcellations was 0.53 (left hemisphere = 0.52, right hemisphere
= 0.54). An excellent ICC was reached for 5 parcellations,
namely the thickness of left precuneus (0.79), left (0.78) and
right inferior parietal lobule (0.76), right middle temporal gyrus
(0.77), and right rostral middle frontal cortex (0.76). Good
ICCs included 21 parcellations, fair 28, and poor 14. The lowest
scores for the thickness were found for the left (0.06) and right
entorhinal cortex (0.20) and left temporal pole (0.10).

The mean ICC of the cortical curvatures was 0.39 (left
hemisphere = 0.38, right hemisphere = 0.41). No parcellations
reached an excellent ICC for the cortical curvature, the 5
parcellations with a good ICC were: left (0.69) and right
precentral gyrus (0.71), left (0.68) and right postcentral gyrus
(0.61), and right parahippocampal gyrus (0.60). Fair ICCs were
reached for 30 and poor for 33 parcellations. The lowest scores
were found in the area of the cingulate cortex: left rostral anterior
cingulate cortex (0.08), and left (0.16) and right isthmus of the
cingulate cortex (0.08).

When looking at the anatomical location, we observed the best
results in the parietal and frontal lobes, both for thickness and
curvature (see Figure 7). For the cortical thickness, themean ICC
per lobes were: parietal (left = 0.73, right = 0.68), frontal (left
= 0.57, right = 0.55), occipital (left = 0.50, right = 0.52), and
temporal (left = 0.42, right = 0.52). For the cortical curvature,
the results were in the same order with slightly lower scores,
namely: parietal (left = 0.50, right = 0.51), frontal (left = 0.41,
right = 0.46), occipital (left = 0.38, right = 0.43), and temporal
(left= 0.35, right= 0.39).
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FIGURE 5 | Accuracy of the predictions for the volumes of the left thalamus. Left: Correlation plot, Right: Bland–Altman plot. The CNN model shows a small

(−116 mm3 ) bias and a slight tendency to overestimate smaller volumes and underestimate the larger. The gray shaded area represents the 95% confidence interval

of the regression line. Horizontal dashed lines delineate the 95% confidence intervals indicating the likelihood of individual measures to be within ±1.96 standard

deviations. HC, healthy controls; EPI, patients with epilepsy.

3.3. Patients With Epilepsy
The predictions from the CNN were used to perform a
population study equivalent to ENIGMA (21), dichotomizing
epilepsy from healthy controls. Effect size differences
between epilepsy and healthy control groups are shown
in Table 3. The first column replicates the numbers from
the ENIGMA epilepsy study. Cohen’s d for the CNN and
FreeSurfer were calculated on the combined test dataset of
274 subjects.

In agreement with the findings from ENIGMA, the
predictions from the CNN showed statistically significant
(p < 0.05) positive effect sizes for the volume of the lateral
ventricles and negative effect sizes for the mean thickness of
the paracentral lobules and precentral gyri bilaterally. Contrary
to ENIGMA, the result showed an increased volume of the
right globus pallidus for patients with epilepsy. No statistically
significant effect size was found for the volume of the right
thalamus. For the two deviating structures, both the predictions
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from the CNN and FreeSurfer fail to replicate the findings
from ENIGMA.

3.4. Age-Related Cortical Gray Matter
Atrophy
Linear regression revealed a statistically significant cross-
sectional age-related reduction in global mean cortical thickness
(r = −0.65, p = 4.6 × 10−12) with an overall effect of
0.004 ± 0.002 mm per year (average ± SD), see Figure 8A. The

regional distribution of the age effects can be seen in Figure 8B.
Predominant reductions were observed in the frontal (average
−0.0049 ± 0.0020 mm/year) and parietal (−0.0047 ± 0.0008
mm/year) lobes and less in the temporal (−0.0037 ± 0.0029
mm/year) lobe. In the occipital lobe, the age-dependent thickness
change was considerably smaller (−0.0009± 0.0012 mm/year).

Statistically significant (p < 0.0007, Bonferroni corrected)
age-related reductions were seen not only globally, but also on
most (55/68) of the individual parcellations. Figure 9 shows an
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FIGURE 7 | Intraclass correlation coefficients of all cortical regions for thickness (first row) and curvature (second row) superimposed on a standard brain. Color scales

indicate poor (black, blue) to excellent (orange, yellow) ICC.

TABLE 3 | Effect size differences between patients with epilepsy and healthy

controls.

Structure ENIGMA (21) CNN FreeSurfer

Cohen’s d Cohen’s d P-value Cohen’s d

Lateral ventricle (lh) 0.288 0.261 2.66×10−2 0.145

Lateral ventricle (rh) 0.268 0.282 1.86×10−2 0.245

Thalamus (rh) −0.368 0.136 1.79×10−1 0.051

Globus pallidus (rh) −0.316 0.250 3.70×10−2 0.055

Paracentral lobule (lh) −0.311 −0.382 6.37×10−4 −0.421

Paracentral lobule (rh) −0.315 −0.279 1.09×10−2 −0.270

Precentral gyrus (lh) −0.384 −0.303 1.26×10−2 −0.363

Precentral gyrus (rh) −0.399 −0.341 4.31×10−3 −0.121

lh, left hemisphere; rh, right hemisphere; bold numbers, effect size of CNN in agreement

with ENIGMA. P−value: statistical significance of a one−sided t−test comparing the

two groups.

example of the superior frontal gyrus from the left hemisphere.
A list of all thickness vs. age plots can be found in the
Supplementary Material. A decreasing thickness was observed
for all parcellations except the pericalcerine and entorhinal
cortex. The linear age trend for the entorhinal cortex was
slightly positive. When fitting a quadratic model (dashed line
in Figure 9 right), we observed an increased thickness with age
until a peak around 45 years followed by a decrease again. This
observation is consistent with the finding of Hasan et al. (79).
They have identified the same pattern for the entorhinal cortex
with a peak thickness at about 44 years in a large cohort of
1,660 participants.

3.5. Comparison With Others
The accuracy and reliability of morphometric measures from
MRI have been subject to various studies, both for automatic

methods and manual segmentation. A comparison of our results
to metrics reported by others is shown in Table 4. Selected
structures include some of the most frequently investigated
subcortical volumes and the cortical thickness of all parcellations
in the parietal lobe.

Morey et al. (55) compared automatic measurement by
FSL/FIRST of the hippocampus and amygdala to expert hand
tracing. A single expert rater with experience segmented the
structures in MR images from 20 participants. The authors
reported the numbers only combined for both hemispheres.With
the CNN, we observed significantly better correlations for the
amygdala (left = 0.83, right = 0.81 vs. FIRST = 0.24) and
comparable results for the hippocampi.

Similar, Tae et al. (56) compared IBASPM to manual
segmentations of hippocampi. The authors reported both
Pearson’s r and ICC. However, they used a different form of
ICC (equivalent to Cronbach’s alpha) measuring consistency
and not agreement. Hence we are comparing using Pearson’s r.
With a dataset of 41 subjects consisting of controls and patients
with chronic major depressive disorder, they reported lower
correlations (left= 0.59, right= 0.49) than our CNN (left= 0.70,
right= 0.60).

The FDA approved software NeuroQuant was compared
to FreeSurfer by Ochs et al. (59). Initially developed as a
commercial version of FreeSurfer, NeuroQuant meanwhile uses
an independent code base and relies on a different probabilistic
atlas. A total of 60 MRI scans (20 healthy, 20 Alzheimer’s disease
patients, and 20 mild traumatically brain-injured patients) were
processed by both tools. The authors reported higher correlations
for the volumes of the amygdalae and hippocampi, but lower
correlations for the globus pallidi and thalami.

Using MR images from former professional football players,
Guenette et al. (54) compared volumes of selected brain regions
based on fully automated labels from FreeSurfer to manually
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corrected labels. Two trained raters manually corrected the
labels from FreeSurfer in 108 subjects, followed by a review
of a neuroanatomist. To assess inter-observer performance, 10
randomly chosen subjects were independently corrected by a
third trained rater. Intraclass correlation coefficients for the inter-
observer performance were generally higher compared to our
CNN, except for the left amygdala (CNN = 0.79, inter-observer
= 0.72). However, ICCs for the fully automated vs. manually
corrected volumes were slightly lower for the hippocampus
and significantly lower for the amygdala where the authors
even reported negative values. Since correlation coefficients for

the combined amygdala-hippocampal complex were good, the
authors suspect a deviating definition of the border between the
amygdala and hippocampus in FreeSurfer’s atlas.

The test-retest reliability of FreeSurfer was assessed by Madan
and Kensinger (57). Thirty young volunteers (20–30 years old)
were scanned ten times within a 1-month period. TheMR images
were processed with FreeSurfer 5.3.0, and the reliabilitymeasured
using ICC (both hemispheres combined for subcortical volumes).
In agreement with our findings, they generally observed less
reliable measures of the cortical thickness in the temporal lobe.
Compared to the results of our CNN, ICCs for subcortical
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TABLE 4 | Comparison of results to metrics reported by others.

CNN vs.FS FIRST vs.

Manual

IBASPM

vs.

Manual

NeuroQuant

vs.

FS

Inter-

observer

FS

corr.vs.FS

FS Test-

Retest

FS Test-

Retest

FIRST

Test-

Retest

(55) (56) (59) (54) (57) (58)

Structure r ICC r r r ICC ICC ICC ICC ICC

Amygdala (lh) 0.83 0.79 0.24 0.86 0.72 -0.10 0.68 0.87 0.75

Amygdala (rh) 0.81 0.76 0.24 0.85 0.89 -0.17 0.68 0.82 0.52

Hippocampus (lh) 0.70 0.66 0.66 0.59 0.82 0.76 0.64 0.60 0.98 0.93

Hippocampus (rh) 0.60 0.56 0.66 0.49 0.81 0.63 0.54 0.60 0.94 0.86

Globus pallidus (lh) 0.61 0.54 0.21 0.79 0.92 0.93

Globus pallidus (rh) 0.59 0.54 0.36 0.79 0.91 0.89

Thalamus (lh) 0.82 0.79 0.67 0.83 0.98 0.98

Thalamus (rh) 0.83 0.79 0.79 0.83 0.98 0.98

Inferior parietal (lh) 0.78 0.64

Inferior parietal (rh) 0.76 0.84

Postcentral (lh) 0.63 0.85

Postcentral (rh) 0.59 0.87

Precuneus (lh) 0.79 0.73

Precuneus (rh) 0.72 0.78

Superior parietal (lh) 0.72 0.76

Superior parietal (rh) 0.63 0.85

Supramarginal (lh) 0.74 0.70

Supramarginal (rh) 0.68 0.80

First eight rows: selected subcortical volumes.

Last ten rows: cortical thicknesses of parietal lobe. Bold numbers highlight the best ICC for each row. r, Pearson’s r; ICC, Intraclass correlation coefficient; FS, FreeSurfer; lh, left

hemisphere; rh, right hemisphere.

volumes were higher for the globus pallidi, thalami, and right
hippocampus, but lower for the left hippocampus and both
amygdalae. For the cortical thickness in the parietal lobe, they
reported a higher ICC for seven parcellations and a lower
ICC for three parcellations. An other test-retest experiment
by Morey et al. (58) using four rescans for each of the 23
healthy subjects revealed higher ICCs with FS and FSL/FIRST for
subcortical volumes.

3.6. Reliability
To assess the reliability of the method, we analyzed the
predictions where several rescans of the same subject are
available. Figure 10 shows the standard deviations (SD) across
all 90 scans (leftmost bars) followed by the SD across rescans
within each of the nine subjects separately. For the cortical
thickness and curvature, the SD are reported as an average of all
68 parcellations. A general observation is that the SD across all 90
scans were lower for the CNN (±0.116 mm and ±0.005 mm−1

for thickness and curvature, respectively) than for FreeSurfer
(±0.193mm,±0.010mm−1). This suggests the CNN is unable to
fully capture the inter-subject variance. Partially, this is probably
due to some of the less accurate parcellations (they show less
variance with a bias toward the mean), lowering the averaged SD.

When looking at selectedmorphometrics individually (second
row in Figure 10, selected structures of interest for epilepsy),

the SD of the CNN was closer to the one from FS. For the
rescans, SD from the CNNwere lower than those from FreeSurfer
for all nine subjects, some significantly. A good to excellent
accuracy for the volume of the right thalamus (ICC = 0.79
within CI95% 0.70–0.86) comes along with good reliability for
the rescans (SD below 4.1% for all subjects). As an example,
the CNN predicted the following volumes for the right thalamus
from the six scans of subject S2: 7,079, 7,066, 7,028, 7,010, 7,021,
7,003 mm3. This corresponds to an average of 7,035 mm3 and
a standard deviation of 31 mm3. Whereas FreeSurfer reported
an average volume of 7,011 mm3 with a standard deviation
of 230 mm3 for the scans of the same subject. Corresponding
reliability plots for the remaining structures can be found in the
Supplementary Material.

4. DISCUSSION

We have used data from 574 subjects, processed with FreeSurfer,
for the supervised training of a CNN to predict brain
morphometry from MRI. The customized CNN predicts a
total of 165 morphometric measures (subcortical volumes, and
cortical thicknesses and curvatures) directly from minimally
pre-processed (skull-stripped) T1w MR images, without the
need of prior image registration nor segmentation, enabling
results to be available within seconds. With 438 samples in the
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training set, which is considered to be on the lower end for
successfully training a deep learning model (80, 81), a simple
data augmentation strategy of translations and rotations further
improved the accuracy. Besides quantitative evaluations of the
results, we have shown methods to assess the clinical relevance
of the achieved accuracy (sections 3.3, 3.4 and 3.6) beyond
correlation coefficients.

4.1. Convolutional Neural Network
Architecture
Our aim of directly regressing all morphometric measures
requires passing the entire 3D volume as input into the
network, ruling out slice- or patch-based strategies. The large
input size consequently constrains the network to simpler
architectures, or otherwise would require special infrastructure
to train large networks with high-resolution input (82). We have
not performed an extensive architecture search, but explored
different directions within the given constraints and found
the proposed architecture suitable for the task to demonstrate
the feasibility. Besides optimizing the network architecture,

further improvements could be achieved by leveraging recent
developments in how to deal with sparse or noisy labels in
medical image analysis (83) of which semi- or self-supervised
learning might be promising strategies (84).

The chosen data augmentation is effective, while still
computationally efficient. Arbitrary rotations would require
resampling, which is computationally expensive and might cause
unwanted artifacts. Future work should also investigate contrast-
related data augmentation techniques (random scale and shift
of intensity distributions) to make the network more robust to
scanner and sequence variations (85).

4.2. Evaluation
We consider intraclass correlation coefficients (ICC) to be the
best suited quantitative evaluation metric for the given task,
as it measures both, degree of correlation and agreement.
Nevertheless, its interpretation is non-trivial. As we can infer
from the general definition of ICC (ratio of true variance to true
variance plus error variance), a low ICC could also relate to a
lack of variability among subjects (70). Consequently, absolute
values of ICC between categories should be compared with
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care, e.g., between subcortical volumes (naturally higher inter-
subject variance) and cortical curvatures (lower inter-subject
variance). Instead, the results should be contrasted with other
established methods.

A fair, good or excellent ICC [according (71)] was reached for
all 29 subcortical volumes and the vast majority (54 out of 68)
of the cortical thicknesses. The reliability of the predictions for
the cortical curvatures is questionable, with only about half of
them (35/68) being in the range of fair and above. For the cortical
structures, the lowest ICC were found in the temporal lobe, an
observation that is also reported by Madan et al. in a reliability
evaluation of FreeSurfer (57).

As we can see from the correlation plots, the CNN model
was unable to capture the full variance of the silver-standard
ground truth (trend toward the mean expected outcome). This
observation is a known challenge in regression tasks (86)
which are inevitably prone to the “regression toward the mean”
effect (87) when optimizing a model by minimizing its prediction
errors. The Bland-Altman plots revealed only a small bias from
zero, but a tendency of the model to overestimate smaller values
and underestimate the larger ones.

4.3. Patients With Epilepsy
Using morphometry predicted by the CNN, structural changes
between healthy controls and patients with epilepsy were
observed in our dataset, similar to the findings from the
ENIGMA epilepsy study (21). Effect size differences were
consistent for six out of eight regions. In case of the two deviating
results for the right thalamus and globus pallidus, FreeSurfer is
not in agreement with the findings from ENIGMA either. The
cause is unknown, but might be related to the type of epilepsies
in our dataset.

4.4. Age-Related Cortical Gray Matter
Atrophy
Age-related gray matter atrophy is an extensively studied
aspect of brain morphometry. Based on the predicted cortical
thicknesses, a linear regression model revealed a statistically
significant change of−0.004mm/year in global average thickness
for the population in our test set. Exactly the same value has been
reported by Lemaitre et al. (78). Regionally, we found age-related
atrophy to be less pronounced in the parcellations of the temporal
lobe, which is in agreement with the literature (7, 78, 88). The
cortical thickness of the entorhinal cortex was classified as less
reliable from an ICC point of view, yet its age trend suggests a
better correlation. A linear model suggested a slightly increasing
thickness over the lifespan. A closer examination with a quadratic
model revealed a remarkably similar pattern to what has been
reported by Hasan et al. (79), namely an increasing thickness
until around 45 years followed by a decrease again. It is worth
highlighting again, that the age of the subjects is not part of the
input data for the CNN.

4.5. Comparison With Others
Nomethod can reasonably achieve a 100% accuracy for the given
problem (MRI being a surrogate for the underlying anatomy,

with a limited resolution and partial volume effects). Therefore,
comparing a new method to well-established methods is
common practice. We have contrasted the results to publications
covering a variety of evaluation methods, such as manual tracing
by experts, scan-rescan studies, and comparisons among different
tools. The selected subcortical volumes and cortical thicknesses
of the parietal lobe showed quite comparable magnitudes of
intraclass correlation coefficients. Human inter-rater reliability
for segmentation of hippocampi was reported (89) to be in the
range of ICC = 0.73 − 0.85, which is considered as a reasonable
upper bound on the accuracy of automated segmentation by
Stein et al. (90). A comparison to other recently proposed fast
methods (section 1) is not directly possible as these are either
segmentation methods reporting the spatial overlap with Dice
coefficients, or evaluation metrics for parcellation-wise averages
are not available.

4.6. Limitations and Outlook
The lack of a gold-standard ground truth is one of the major
challenges. Supervised training of a model with ground truth
data generated by another method (in this case FreeSurfer)
always leads to a bias toward the results from the tool, rather
than the (unknown) true underlying values. The evaluation
is limited to a comparison with the other method, in which
the new model is unable to be superior to the baseline by
definition. Furthermore, although FreeSurfer is a well-established
and thoroughly validated tool, it is not immune to errors (in
rare cases producing exceptionally large outliers). We have not
performed any systematic quality control of the FreeSurfer
output, such as visual inspection of the pial and white matter
boundaries, neither on the training nor the test set.

Although we used data acquired on two different scanners,
with four different MRI protocols, they are all from the same
center (Inselspital). We have no indication how well the trained
model would generalize to data from other centers. On one hand,
morphometric measures derived from traditional voxel-based
morphometry (VBM) are also known to be biased to site-specific
variations (91). On the other hand, deep learning has shown
its ability to generalize toward a range of acquisition settings in
MRI (92). To what extent this applies to brain morphometry
remains to be investigated. Although the data comprised of
both healthy controls and patients with epilepsy, the behavior
of the model on pathologies not present in the training data
is unknown.

Despite progress to improve the interpretability of deep
learning (93), deep neural networks are still considered, to a large
extent, as black boxes (94). The difficulty to understand their
decision-making-process poses a challenge in its adoption for
medical applications (95), especially for direct classification and
regression tasks. Future work should address the lack of visual
inspection options for quality control, particularly for cortical
thickness and curvature measures. For volumetric information
of tissue classes and subcortical structures, a segmentation
algorithm is probably still the preferred approach as it facilitates
a visual verification of the results.
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The efficacy of a deep learning-based approach for brain
morphometry for clinical applications has yet to be shown,
ideally on an individual patient level. We plan to further
evaluate this novel approach along with other established
and emerging morphometry methods on a larger scale, with
a broader dataset from several centers including different
neurodegenerative diseases.

5. CONCLUSIONS

We have shown the general feasibility of using deep learning
to estimate human brain morphometry directly from MRI
within seconds. To the best of our knowledge, this is currently
the fastest reported solution to obtain subcortical and cortical
morphometric measures from MRI. A trained CNN predicts a
total of 165 morphometric measures within seconds, compared
to several hours of traditional methods.

Analysis of the results using intraclass correlation coefficients
and Bland-Altman plots showed, in general, good correlation
with FreeSurfer generated silver-standard ground truth data.
Some of the regions (namely subcortical volumes and cortical
thicknesses in the parietal lobe) nearly reached human inter-
observer performance.

Besides a good rescan reliability, further indications support
the hypothesis of reaching an accuracy to be clinically
relevant. Namely, (1) replication of the findings from the
large-scale ENIGMA study to detect structural morphometric
changes in patients with epilepsy, (2) observed cross-sectional
annual age-related gray matter atrophy rates both globally and
regionally in agreement with literature, and (3) contrasting
the results with other publications reporting accuracies of
comparable magnitudes.

DATA AVAILABILITY STATEMENT

The datasets used for this study cannot be made publicly
available. The experiments were performed with data from
patients and healthy controls of the Bern University Hospital. All
study participants signed informed consent for the use of their
data for research. However, this does not include permission to

make the raw data publicly available. Code may be shared upon
direct request.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of Kantonale Ethikkommission Bern with
written informed consent from all subjects. All subjects
gave written informed consent in accordance with the
Declaration of Helsinki. The protocol was approved by
the Kantonale Ethikkommission Bern (protocol 2017-
00697). Written informed consent to participate in this
study was provided by the participants legal guardian/next
of kin.

AUTHOR CONTRIBUTIONS

RW and MRey: conceive the project idea. MReb, CR, and
YS: design of experiments. MReb: perform experiments, data
analysis, and manuscript drafting. CR: manuscript revision.
MReb, YS, and CR: result interpretation. All authors reviewed
and approved the final version of the manuscript.

FUNDING

This work was supported by the Swiss National Science
Foundation under grant number 180365.

ACKNOWLEDGMENTS

The authors thank the NVIDIA Corporation for the donation
of a Titan Xp GPU. Calculations were partially performed on
UBELIX, the HPC cluster at the University of Bern.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.
2020.00244/full#supplementary-material

REFERENCES

1. May A, Gaser C. Magnetic resonance-based morphometry: a window into
structural plasticity of the brain. Curr Opin Neurol. (2006) 19:407–11.
doi: 10.1097/01.wco.0000236622.91495.21

2. Johnson KA, Fox NC, Sperling RA, Klunk WE. Brain imaging in
Alzheimer disease. Cold Spring Harbor Perspect Med. (2012) 2:a006213.
doi: 10.1101/cshperspect.a006213

3. Traboulsee A, Simon J, Stone L, Fisher E, Jones D, Malhotra A, et al.
Revised recommendations of the consortium of MS centers task force
for a standardized MRI protocol and clinical guidelines for the diagnosis
and follow-up of multiple sclerosis. Am J Neuroradiol. (2016) 37:394–401.
doi: 10.3174/ajnr.A4539

4. Wellmer J, Quesada CM, Rothe L, Elger CE, Bien CG, Urbach H.
Proposal for a magnetic resonance imaging protocol for the detection of
epileptogenic lesions at early outpatient stages. Epilepsia. (2013) 54:1977–87.
doi: 10.1111/epi.12375

5. Ashburner J, Friston KJ. Voxel-based morphometry-the methods.
Neuroimage. (2000) 11:805–21. doi: 10.1006/nimg.2000.0582

6. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis: I.
Segmentation and surface reconstruction. Neuroimage. (1999) 9:179–94.
doi: 10.1006/nimg.1998.0395

7. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, et al.
Thinning of the cerebral cortex in aging. Cereb Cortex. (2004) 14:721–30.
doi: 10.1093/cercor/bhh032

8. Fisher E, Lee JC, Nakamura K, Rudick RA. Gray matter atrophy in
multiple sclerosis: a longitudinal study. Ann Neurol. (2008) 64:255–65.
doi: 10.1002/ana.21436

9. Karas G, Scheltens P, Rombouts S, Visser P, Van Schijndel R,
Fox N, et al. Global and local gray matter loss in mild cognitive
impairment and Alzheimer’s disease. Neuroimage. (2004) 23:708–16.
doi: 10.1016/j.neuroimage.2004.07.006

10. Symonds LL, Archibald SL, Grant I, Zisook S, Jernigan TL. Does
an increase in sulcal or ventricular fluid predict where brain

Frontiers in Neurology | www.frontiersin.org 15 April 2020 | Volume 11 | Article 244

https://www.frontiersin.org/articles/10.3389/fneur.2020.00244/full#supplementary-material
https://doi.org/10.1097/01.wco.0000236622.91495.21
https://doi.org/10.1101/cshperspect.a006213
https://doi.org/10.3174/ajnr.A4539
https://doi.org/10.1111/epi.12375
https://doi.org/10.1006/nimg.2000.0582
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1093/cercor/bhh032
https://doi.org/10.1002/ana.21436
https://doi.org/10.1016/j.neuroimage.2004.07.006
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Rebsamen et al. Morphometry Estimation Using Deep Learning

tissue is lost? J Neuroimaging. (1999) 9:201–9. doi: 10.1111/jon1999
94201

11. Fischl B, Dale AM.Measuring the thickness of the human cerebral cortex from
magnetic resonance images. Proc Natl Acad Sci USA. (2000) 97:11050–11055.
doi: 10.1073/pnas.200033797

12. Pienaar R, Fischl B, Caviness V, Makris N, Grant PE. A methodology
for analyzing curvature in the developing brain from preterm to
adult. Int J Imaging Syst Technol. (2008) 18:42–68. doi: 10.1002/im
a.20138

13. Ronan L, Pienaar R, Williams G, Bullmore E, Crow TJ, Roberts N,
et al. Intrinsic curvature: a marker of millimeter-scale tangential
cortico-cortical connectivity? Int J Neural Syst. (2011) 21:351–66.
doi: 10.1142/S0129065711002948

14. Frisoni GB, Jack CR Jr, Bocchetta M, Bauer C, Frederiksen KS, Liu Y, et al. The
EADC-ADNI harmonized protocol for manual hippocampal segmentation
on magnetic resonance: evidence of validity. Alzheimers Dement. (2015)
11:111–25. doi: 10.1016/j.jalz.2014.05.1761

15. Fischl B. FreeSurfer. Neuroimage. (2012) 62:774–81.
doi: 10.1016/j.neuroimage.2012.01.021

16. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl.
Neuroimage. (2012) 62:782–90. doi: 10.1016/j.neuroimage.2011.09.015

17. Avants BB, Tustison NJ, Stauffer M, Song G, Wu B, Gee JC. The Insight
ToolKit image registration framework. Front Neuroinform. (2014) 8:44.
doi: 10.3389/fninf.2014.00044

18. Ross DE, Graham TJ, Ochs AL. Review of the evidence supporting the medical
and legal use of NeuroQuant R©in patients with traumatic brain injury. Psychol
Injury Law. (2013) 6:75–80. doi: 10.1007/s12207-012-9140-9
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