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Objectives:White matter (WM) impairments involving both motor and extra-motor areas

have been well-documented in amyotrophic lateral sclerosis (ALS). This study tested the

potential of diffusion measurements in WM for identifying ALS based on support vector

machine (SVM).

Methods: Voxel-wise fractional anisotropy (FA) values of diffusion tensor images

(DTI) were extracted from 22 ALS patients and 26 healthy controls and served as

discrimination features. The revised ALS Functional Rating Scale (ALSFRS-R) was

employed to assess ALS severity. Feature ranking and selection were based on Fisher

scores. A linear kernel SVM algorithm was applied to build the classification model, from

which the classification performance was evaluated. To promote classifier generalization

ability, a leave-one-out cross-validation (LOOCV) method was adopted.

Results: By using the 2,400∼3,400 ranked features as optimal features, the highest

classification accuracy of 83.33% (sensitivity = 77.27% and specificity = 88.46%, P

= 0.0001) was achieved, with an area under receiver operating characteristic curve of

0.862. The predicted function value was positively correlated with patient ALSFRS-R

scores (r = 0.493, P = 0.020). In the optimized SVM model, FA values from several

regions mostly contributed to classification, primarily involving the corticospinal tract

pathway, postcentral gyrus, and frontal and parietal areas.

Conclusions: Our results suggest the feasibility of ALS diagnosis based on SVM

analysis and diffusion measurements of WM. Additional investigations using a larger

cohort is recommended in order to validate the results of this study.

Keywords: amyotrophic lateral sclerosis, diffusion tensor imaging, white matter, support vector

machine, diagnosis

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a cryptogenetic and fatal neurodegenerative disorder that
occurs in adults, involving the upper motor neurons as well as lower motor neurons. ALS is
a heterogeneous disease and is generally difficult to diagnosis during the early stages. Most
ALS patients die of respiratory failure. The median survival time of ALS is 3–5 years (1).
Riluzole can only prolong survival time by 2–3 months (2). Therefore, early diagnosis of ALS is
particularly important.
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Diffusion tensor imaging (DTI) is a non-invasive scanning
procedure that provides exquisite details on white matter (WM)
tissuemicrostructure (3) and thus plays a key role in investigating
the pathology of neurological disorders. DTI parameters, such
as fractional anisotropy (FA), axial diffusivity (AD), radial
diffusivity (RD), andmean diffusivity (MD), provide information
on the molecular diffusion in various directions. Several DTI
studies have revealed that ALS patients have the decreased
FA and increased diffusivity parameters in both motor and
extra-motor areas (4–6). Of these changes, the alterations in
DTI measurements in the corticospinal tract (CST) and corpus
callosum are considered as the promising biomarker candidate
for the diagnosis and evaluation of ALS (7). For instance, many
studies have consistently demonstrated the reduction of CST
FA value (6) and its high ability to differentiate ALS patients
from healthy controls, at the group-level (8, 9). Also, several
discrimination studies at the individual level have suggested
that altered diffusion metrics in the CST and corpus callosum
can be used as the sensitive marker to identify ALS (10, 11).
Furthermore, DTImeasurement may have an improved potential
role in the correct discrimination of ALS when combined
with other neuroimaging biomarkers (such as cortical thickness
and functional measurement) (10, 12). In addition, adopting
diffusion measuring and high-resolution volumetric/surface
imaging simultaneously, researchers have demonstrated the
feasibility of multi-model neuroimaging for predicting survival
of ALS patients (13, 14).

Recently, the field of machine learning that holds promise
to enable the computer-aided diagnosis of neuropsychological
disorders has attracted widespread attentions. With the
various model neuroimaging data (such as high-resolution
T1-weighted image, magnetic resonance spectroscopy, and
DTI), many machine learning approaches have been successfully
implemented in the predictive modeling of ALS (15, 16). Of
them, Random Forests method is a good case in point, which
can incorporate multimodal imaging data and achieve quite
promising result for individual identification of ALS (10, 12).

Support Vector Machine (SVM) is another algorithm
that has been employed in assessing the discriminative
brain map of patients diagnosed with ALS (15). In fact,
there is increasing studies examining the application of
SVM with neuroimaging data for clinical prediction of ALS.
For example, a previous resting-state functional magnetic
resonance imaging investigation has employed SVM to identify
ALS based on the functional connectivity measurements in
brain networks and achieved high accuracy for disease state
classification (17). Recent studies have also demonstrated
that 18F-FDG PET (18F-2-fluoro-2-deoxy-D-glucose Positron
Emission Tomography) with SVM discriminant analysis can
yield the promising result in differentiating ALS patients

Abbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS-R, revised ALS

Functional Rating Scale; DTI, diffusion tensor imaging; FA, fractional anisotropy;

AD, axial diffusivity; RD, radial diffusivity; MD, mean diffusivity; SVM, support

vector machine; ROC, receiver operating characteristic; LOOCV, leave-one-out

cross-validation; CST, corticospinal tract; SLF, superior longitudinal fasciculus; ILF,

inferior longitudinal fasciculus.

TABLE 1 | Demographic and clinical information of the study participants.

Healthy controls

(n = 26)

ALS patients

(n = 22)

P-value

Age (years) 53.1 ± 6.4 55.4 ± 6.0 0.21*

Sex (male/female) 16/10 15/7 0.82#

Education (years) 8.2 ± 3.2 7.5 ± 3.3 0.63*

Site of onset

(Bulbar/Cervical/

Thoracic/Lumbosacral)

− 1/14/1/6 −

Diagnostic category

(Definite/Probable/Possible)

− 7/6/9 −

ALSFRS-R score − 40.1 ± 7.2 −

Disease duration (months) − 15.7 ± 13.2 −

Disease progression rate − 0.66 ± 0.49 −

ALS, amyotrophic lateral sclerosis; ALSFRS-R, revised ALS Functional Rating Scale.

Calculation of Disease Progression Rate was performed using the equation: (48 - ALSFRS

- R)/Disease duration. “-” denotes no data available. P-values marked with “*” and “#” were

calculated by the Student’s t-test and chi-square test, respectively.

from healthy controls. In this exploratory study, we were to
make the attempt to test the potential of voxel-wise diffusion
measurements in WM in identifying ALS, based on the SVM
learning method.

MATERIALS AND METHODS

Subjects
A total of 22 ALS patients (1 familial, 21 sporadic) as well as 26
healthy controls (HC) were enrolled in this study. We employed
the El Escorial criteria (18) in diagnosing ALS, whereas the
revised ALS Functional Rating Scale (ALSFRS-R) was utilized
to assess their severity of disease. The clinical and demographic
information of the study participants are presented inTable 1. No
significant differences between the patient and control groups in
terms of age, sex, or educational level were observed (the detailed
information see Table 1). The exclusion criteria were as follows:
(1) existence of other neuropsychiatric disorders, including
Parkinson’s disease, Alzheimer’s disease, epilepsy, or depression;
(2) receiving psychotropic drugs; (3) occurrence of respiratory
failure or other severe conditions such as angiocardiopathy or
cancer; or (4) contraindication of MRI examination. Approval
for this evaluation was obtained from the Research Ethics
Committee of Fujian Medical University Union Hospital, China.
All of the subjects provided their written informed consent.

MRI Data Acquisition
A 3T MRI scanner (Prisma, Siemens Medical Systems, Erlangen,
Germany) was utilized in image acquisition. DTI data were
gathered with a spin-echo single-shot echo-planar imaging
sequence using the following parameters: b-value= 1,000 s/mm2

and 64 encoding diffusion directions; repetition time= 2,500ms;
echo time = 81ms; number of averages = 1; slice thickness =
2mm without gaps; field of view= 260× 260mm; matrix= 130
× 130; flip angle= 90◦; 72 axial slices; and multiband factor= 4.
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FIGURE 1 | Machine learning flowchart based on the SVM algorithm.
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DTI Data Processing
DTI data were processed by an FSL-based pipeline (19).
We corrected the raw DTI data for head movement and
eddy-current distortion, and we then fitted a diffusion tensor
model independently for each voxel. Thereafter, FA images
of each subject were obtained. All of the FA images of the
study participants were aligned to an FMRIB-58 FA template
in Montreal Neurological Institute (MNI) space by a non-
linear registration algorithm. Then, all of the images were
smoothed with a 6mm full width at half maximum (FWHM)
Gaussian kernel.

Machine Learning Classification
Figure 1 shows the five steps of the machine learning process: (i)
splitting the entire dataset into two parts: one subject served as
the test set, whereas the remaining comprised the training set;
(ii) extracting the features from the DTI images; (iii) calculating
the Fisher scores of each feature and ranking the features, (iv)
selecting the top k discriminative features to build the SVM
classifier model and test it; and (v) evaluating the performance of
themachine learning classification. The code was implemented in
MATLAB (release 2016a, MathWorks, Natick, MA, USA), based
on the LibSVM toolbox (20).

To assess the generalization performance of the developed
SVM classifier, we adopted the leave-one-out cross-validation
(LOOCV) method. If the number of subjects was n, then this
cross-validation process is conducted n times (i.e., the flowchart
in Figure 1 is repeated n times). In each fold, one subject was
selected as the test dataset, and the remaining n-1 subjects
constituted the training dataset.

In step (ii), the feature vector was extracted from the FA image
for each subject to form the raw featurematrixes. The dimensions
of the feature matrixes were (n-1)×m and 1×m for the training
and test datasets, respectively.

Due to the presence of the unrelated or redundant features, the
learning model will tend to overfit, which in turn will degrade the
classification performance (21). The Fisher score algorithm is a
supervised feature selection method that can effectively measure
data discrimination from two classes and assign the higher score
to the feature, which has more discriminative ability (22).

We calculated the score for each feature independently based
on the Fisher criterion. Then, we selected the top k features with
the highest ranking scores. The Fisher score for the qth feature is
defined as follows:

F(q) =

(

x(1)q − xq

)2
+

(

x(2)q − xq

)2

1
n1−1

n1
∑

p=1

(

x
(1)
p,q − x(1)q

)2
+

1
n2−1

n2
∑

p=1

(

x
(2)
p,q − x(2)q

)2
, (1)

where xq, x
(1)
q , and x(2)q are the mean values of the qth feature

of the entire cohort and the HC and patient group, respectively;
n1 and n2 are the number of the HC and patient subjects,

respectively; x
(1)
p,q denotes the qth feature of the pth subject

in HC group; and x
(2)
p,q represents the qth feature of the pth

subject in the patient group. The numerator represents interclass
variance, whereas the denominator signifies intraclass variance.

Apparently, the greater the Fisher score, the stronger the
discriminative power of the feature.

The features were sorted in descending order according to
the pre-calculated Fisher scores. Then, some of these features
were selected as the input to build and test the SVM classifier
model. Figure 1 shows that the dotted box shows a loop within
the machine learning process. For each loop, the ranked features
were selected with an increase in length of 100 (i.e., for loop t,
the number of the selected feature (denoted as k) was equal to t
× 100). The total number of cycles was 200; therefore, the length
of the selected feature ranged from 100 to 20,000. Feature sorting
and selection were built in a nested leave-one-out procedure to
promotemodel generalization, by which we obtained the training
input and test input (whose dimensions were (n-1) × k and 1 ×
k, respectively).

Based on these inputs, the SVM classifier model was trained
and tested. The SVM is a classification algorithm that separates
two classes by means of the maximal hyper-plane margin. Its
main task is to establish a discriminant decision function f from
the training input, so that for the test input x, this decision
function can predict the class label through y = f (x). The
decision function is defined in this form:

y = f (x) = w
Tφ(x) + b, (2)

where w is the weight vector perpendicular to the decision
hyper-plane; T represents the matrix transpose manipulation; b
is the offset of the hyper-plane (bias parameter); and φ is the
transformation function that converts the input vector x into
some other feature space where the SVM algorithm can provide
a linear separation for the training input. By applying the kernel
method and duality theorem, the predicted function value for the
test input x can be written as follows:

y =

n−1
∑

j=1

αjyjφ(xj)
Tφ(x)+ b =

n−1
∑

j=1

αjyjK(xj, x)+ b, (3)

where αj is the Lagrange multiplier; and K(xj, x) is the

kernel function that computes the dot product φ(xj)
Tφ(x) and

can be generalized to the non-linear case. When the feature
dimensionality is high, the data tend to be linearly separable;
therefore, we selected the linear kernel other than the commonly
used RBF kernel (23). There was only one parameter C that
controlled themisclassification penalty for the linear SVMmodel.
This parameter was fixed to 1, as previously described (23, 24).
When using the linear kernel, the weight vector would be w =
n−1
∑

j=1
αjyjxj, and the decision function was y = f (x) = w

T
x + b,

according to Equation (3). According to the SVM optimization
theory, the weight vector w represents the direction along which
the feature differed most between two groups. Hence, it was
used to produce the discrimination brain map. A positive value
in the discrimination map indicated that the patient’s FA value
was relatively lower than the HC’s, whereas a negative value
indicated that the HCs had lower FA values. The magnitude of
the absolute value of the weight vectorw represented the intensity
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of between-group differences in FA (25). Given the length of the
top ranking features as k = t × 100, we could obtain the weight
vector w (whose length = k) and the bias parameter b for each
LOOCV fold. Once w and b were calculated, we could predict
the function value y for test input x. If the function value y was
>0, then the test subject was assigned to the HC group (label
1); otherwise, the test subject was assigned to the patient group
(label 2). The accuracy, sensitivity, and specificity of the classifier
model were computed based on these class labels. It should be
noted that the mean centering and normalization operations
were pre-conducted on the selected features before establishing
the SVMmodel.

As the weight vector w slightly varied from fold to fold,
we calculated the average weight vector to generate the
discriminative map. The quantitative analysis of the classifier
performance was made by the receiver operating characteristic
(ROC), and the permutation test was conducted to evaluate
the statistical significance (denoted by P-value) of classification
accuracy (26, 27). We permuted the class labels of the input
subjects randomly and repeated the classification analysis
procedure (=10,000 times). We counted the number when the
classification accuracy in the permutation test was no less than
the real classification accuracy of 83.33%; then, we divided this
number by 10,000 to obtain the P-value.

In addition, the other DTI-derived parameters (i.e., RD,
AD, and MD) were also calculated and analyzed by the
above processes. Overall, the machine learning classification
performance based on the FA feature was systematically
better than those based on the other DTI parameters
(Supplementary Table 1 and Supplementary Figures 1–3).

RESULTS

Figure 2 shows the detailed results on the accuracy, sensitivity,
and specificity based on the distinct number of FA features.
When the size of the feature set was small, the input data
could not provide enough information to train a reliable model;
and when the size was too large, there would be redundant
or irrelevant information in the input data, which degraded
the machine learning performance. The classification algorithm
could attain the optimal performance only when we selected
the appropriate dataset. The best classification accuracy was
acquired when a specific amount (from 1,400 to 3,400) of
features was selected. Thus, we selected the top 2,400 (middle
value between 1,400 and 3,400) ranked features as the optimal
features. Using these discriminative features, we determined that
SVM classifier accuracy can be as high as 83.33% (sensitivity
= 77.27% and specificity = 88.46%, P = 0.0001). Taking the
generalization accuracy as the statistical variable, the estimated
permutation distribution is shown in Figure 3, which shows
that the probability (when the classification accuracy > 83.33%)
is very low (P = 0.0001), indicating that our results are
highly reliable.

In addition, the predicted function value of each test subject
was acquired using the SVM classifier (Figure 4). The circle and
triangle points represented the HCs and patients, respectively.

FIGURE 2 | Classification accuracy with respect to the distinct number of FA

features. The range of features (from 1,400 to 3,400) can result in the highest

accuracy (83.33%), with a sensitivity of 77.27% and specificity of 88.46%.

FIGURE 3 | The estimated permutation distribution using the linear SVM

classifier (number of repetitions = 10,000), when the 2,400 most

representative features were selected. The x- and y-axes denote the

generalization accuracy and occurrence number, respectively. This figure

demonstrated that the proposed method was unlikely to exceed the optimal

accuracy of 83.33% that was obtained from the real class labels.

The circles at the right were the correctly labeled HC subjects,
whereas the triangles at the left were correctly labeled patients.
According to the distribution of these points, we found that most
of the subjects (40/48) were assigned to the correct labels by
the classifier.

By taking each subject’s predicted function value as an
indicator, we generated a receiver operating characteristic (ROC)
curve for the classifier (Figure 5). The area under the ROC
curve (AUC) of the developed method was 0.862, illustrating
the relatively strong power for classification. The Spearman
correlation coefficient was calculated to assess the correlation
between the predicted function value and the ALSFRS-R score
(Figure 6). We observed a positive correlation between these
parameters (r = 0.0.397, P = 0.034).
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FIGURE 4 | Predicted function values of the test subjects. The healthy

controls and patients are indicated by circle and triangle points, respectively.

The points on the two sides of the dotted line are labeled as different classes.

FIGURE 5 | The results of receiver operating characteristic (ROC)

curve analysis.

The weight vector w was used to indicate a subset of features
that were most discriminative between the two groups. Thus,
the WM regions whose FA value contributed mostly to the
discrimination were identified, using a threshold of ≥10% of
the maximum weight vector score. The details on these regions
are presented in Table 2 and we sorted them according to
the contribution for between-group discrimination (i.e., the
weight vector w). The relevant distribution of attribute weights
generated by SVM analysis is presented in Figure 7. The WM
regions with relatively increased FA in the HC group were located
in several areas, such as bilateral corona radiate and precentral
gyrus, right postcentral gyrus, right posterior limb of internal
capsule, left superior frontal gyrus, left angular gyrus, left middle
temporal gyrus, left middle occipital gyrus, bilateral midbrain,
and bilateral pons and medulla, whereas the WM regions with
relatively increased FA in the patient group were located in the
left frontal lobe, left inferior parietal lobule, and right superior
parietal lobule.

FIGURE 6 | Correlation between the predicted function values and

ALSFRS-R scores.

DISCUSSION

In the present study, we combined DTI with SVM to classify
ALS patients and HCs. The high classification accuracy of
83.33% can be obtained in the optimized SVM model. The
permutation statistics further validated the reliability of our SVM
classifier. The FA values from both motor and extra-motor areas
contributed to the classification, which may indicate that ALS is
a multi-system neurodegenerative disease. Further ROC analysis
also indicated the high potential of FA measurement in the
accurate discrimination of ALS.Moreover, the predicted function
value of classifier was correlated with ALS disease severity.
These results suggested the promising perspective related to the
application of SVM approach to ALS identification, based on the
DTI measurement in WM.

The impairments of WM integrity (as reflected by reduced
FA) have been well-documented in ALS, which may be due to
the destruction of the axons and myelin (6, 28, 29). An early
neuropathological feature of ALS is defective axonal transport,
which may contribute to distal axon energy deficiency and
dying-back axonopathy (30, 31). Oligodendrocytes myelinate the
central nervous system (CNS) axons and support the function
and survival of axons (32, 33). The pathological abnormalities
in oligodendrocytes (e.g., oligodendrocyte death and impaired
maturation of new oligodendrocytes) have been reported in ALS
(34, 35), which could contribute to axonal demyelination (36).

Consistent with previous studies (37, 38), we found that the
WM regions with decreased FA in ALS involved the bilateral
precentral gyrus and the CST pathway, such as bilateral corona
radiate, right posterior of internal capsule, bilateral midbrain,
and bilateral pons, and medulla. The precentral gyrus is part of
the primary motor cortex (PMC). The degenerative alterations of
the PMC such as significantly decreased Betz cells and cortical
thinning (39, 40) have been reported in ALS. The CST, which
connects the neurons in the motor cortex and spinal cord, is
the fibers that are associated with cortical control of spinal cord
activity (41). Degeneration of the CST is also a hallmark of ALS
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TABLE 2 | White matter regions in which the FA feature largely contributed to the

classification.

Cluster size

(number of

voxels)

White matter region MNI coordinates Peak

Wi

x y z

HC group > ALS group

31 Left middle occipital gyrus −24 −84 10 0.158

23 Left angular gyrus −34 −62 38 0.146

39 Left precentral gyrus −30 −14 56 0.132

297 Right corona

radiate/precentral and

postcentral gyrus

22 −20 40 0.120

27 Left superior frontal gyrus −18 0 54 0.106

125 Right midbrain and

posterior limb of internal

capsule

12 −12 −12 0.105

48 Left midbrain −8 −26 −18 0.099

58 Left corona radiate −22 −22 42 0.095

46 Bilateral pons and medulla −6 −34 −40 0.089

20 Left middle temporal gyrus −54 −34 −12 0.018

HC group < ALS group

27 Right superior parietal

lobule

26 −42 52 −0.335

21 Left inferior parietal lobule −28 −64 28 −0.241

51 Left frontal lobe −30 −2 32 −0.137

The above brain regions were identified by using a threshold of ≥10% of the maximum

weight vector score. The first column only lists clusters larger than 20 voxels. Wi (reported

in the last column) is the weight of each cluster centroid, i.e., the value that indicates the

relative contribution of the FA feature to the SVM-based classification.

(42). In sum, damage to these motor-related regions could lead
to motor neuron dysfunction and is responsible for the relevant
symptoms (e.g., muscle weakness and loss of voluntary control)
observed in ALS patients (43).

The regions with decreased FA also included several extra-
motor areas such as the right postcentral gyrus, left superior
longitudinal fasciculus (SLF) that involves the left superior
frontal gyrus, left angular gyrus, and left middle temporal gyrus,
and left inferior longitudinal fasciculus (ILF) that involves the
left middle temporal gyrus and left middle occipital gyrus, which
agrees with the findings of previous studies (44–46). For example,
it has been demonstrated that the significant cortical thinning
of the postcentral gyrus, namely, primary somatosensory cortex
(47), occurring in ALS is correlated with disease severity
(48, 49). In addition, the SLF, which connects the frontal,
parietal, and temporal lobes and plays a key role in language
function (50, 51), is disrupted in ALS (52, 53). Meanwhile,
damage to the left ILF, the fiber that is primary associated with
visual processing, language/semantic function, and regulation of
emotion (54, 55), has been reported in ALS patients (45, 56).
Therefore, damage to these extra-motor regions, as reflected
by decreased FA, may be associated with the non-motion
dysfunctions that have been reported in ALS, such as sensory
deficits, language dysfunction, and behavioral and psychiatric
abnormalities (57–59).

FIGURE 7 | White matter regions whose FA features mostly contribute to

classification. These regions were identified by using a threshold of ≥10% of

the maximum weight vector score and their cluster size were larger than

20 voxels.

In contrast, our results showed several brain areas, including
the left frontal lobe, left inferior parietal lobule, and right superior
parietal lobule, with relatively increased FA in ALS patients. It is
speculated that these changes may be related to the functional
compensation or the reorganization of the cerebral structure
in ALS (60, 61). In agreement with this speculation, several
compensatory phenomena, as reflected by the increased gray
matter volume or the overactivation of specific brain regions
(62, 63), have been demonstrated in ALS.

The accurate recognition and characterization of ALS remain
challenging due to its low incidence [≈5/100,000 (64)] and
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heterogeneous nature (1, 15). Our results suggest that DTI
measurement in the white matter could be utilized as an
alternative biomarker of ALS based on machine learning
method. Consistently, previous studies have also demonstrated
the potential of diffusion measurement in identifying ALS, at the
group and individual levels (6, 15, 16, 65, 66). The ROC analysis
and permutation statistics further verified the reliability of our
classification results. Moreover, our results suggested that FA was
the most promising biomarker for ALS identification, relative to
other DTI metrics, which keeps in line with previous evidences
highlighting FA change is the consistent hallmarker of ALS (6).
In addition, the correlation between the SVM predicted function
value and the ALSFRS-R score was observed. As the predicted
function value was computed by projecting the optimal features
onto the weight vector of the hype-plane, a larger absolute value
meant that the subject was situated farther away from the hyper-
plane and more significantly contributed to the classification.
Thus, we could deduce that when the ALSFRS-R score was
higher (i.e., higher disease severity), the subject is less likely to
be misclassified.

From a data-driven methodological perspective, this study
employed SVM method to establish the predicting model of
ALS, given that SVM can accommodate all of voxel-wise DTI
measures simultaneously and can model their interactions in
high dimensional feature space to optimize between-group
classification. As a supervised learning model, the advantage
of SVM relies on its regularization parameter that is helpful
in preventing model overftting and SVM also have good
performance and generalization capability when processing
small-sample data (67, 68), such that SVM formalism was
preferred for this exploratory work with the limited sample size.
Different from our study, recent machine learning researches
using DTImetrics of the pre-defined region of interest (e.g., CST)
have applied Random Forests approach to build discrimination
model between ALS and healthy control (10–12). Random
Forests holds the advantages over other methods in the aspects of
ability to handle highly non-linear biological data, robustness to
noise, and tuning simplicity (12, 69). Taken together, it is noted
that SVM and other methods (such as Random Forests) can be
used in the implementation of prediction modeling of ALS and
show the distinct methodological advantages, thereby, a systemic
comparison of the diagnostic performances of various machine
learning methods is recommended in the future.

This study has a number of limitations. First, unlike
other previous studies on ALS, we did not consider disease
heterogeneity (70, 71) and did not perform any investigation to
examine the potential of DTI measurements in distinguishing
ALS subtypes. Second, despite the prevalence of the SVM
algorithm for medical data analysis, other machine learning
algorithms could also be explored to promote the performance
of the classification model and seek more reliable biomarkers for
ALS patients. Third, other neuroimaging features (e.g., functional
connectivity) can also contribute to ALS identification (17), so
the combination of DTI and other modalities of MRI data should
be considered in future classification studies. Fourth, further

investigations using a larger cohort are recommended to further
validate the findings of our study.

Our results suggest the feasibility of ALS diagnosis based
on SVM analysis and diffusion measurements of WM. The
WM regions whose FA values mostly contributed to SVM
classification involvedmotor as well as extra-motor areas, thereby
supporting the notion that ALS is a disease involving multi-
system neurodegeneration. In addition to the existing studies,
our findings further provided the confirmatory evidences that
the application of machine learning method such as SVM with
neuroimaging data holds the promising perspective for the
prediction of ALS. However, in consideration of the small sample
size and other limitations, this study represented an exploratory
work in nature. The further investigation using a larger cohort is
warranted to validate the generality of our results and the future
studies are recommended to verify the added diagnostic value of
the inclusion of other modality neuroimaging data.
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