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Hearing loss not only has a significant impact on the quality of life of patients and

society, but its correlation with cognitive decline in an aging population will also increase

the risk of incident dementia. While current management of hearing loss is focused

on hearing rehabilitation (and essentially symptomatic), patients are suffering from the

burden of progressive hearing loss before hearing aids or cochlear implants are fitted.

Although these devices have a significant effect on speech understanding, they do

not always lead to normal speech understanding, especially in noisy environments. A

significant number of patients suffer from autosomal dominantly inherited disorders that

can produce progressive sensorineural hearing loss. This includes DFNA9, a disorder

caused by pathologic variants in the COCH gene that leads to post-lingual profound

sensorineural hearing loss and bilateral vestibulopathy. Carriers of a pathogenic variant

leading to DFNA9 can be diagnosed at the pre-symptomatic or early symptomatic

stage which creates a window of opportunity for treatment. Preventing hearing loss

from occurring or stabilizing progression would provide the opportunity to avoid hearing

aids or cochlear implants and would be able to reduce the increased incidence of

dementia. While innovative therapies for restoration of hearing have been studied for

restoration of hearing in case of severe-to-profound sensorineural hearing loss and

congenital hearing loss, further research is needed to study how we can modify disease

progression in late-onset autosomal dominant hereditary sensorineural hearing loss.

Recently, gene editing strategies have been explored in autosomal dominant disorders

to disrupt dominant mutations selectively without affecting wild-type alleles.
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“Why the model of autosomal dominant hereditary hearing loss can be of interest.”

INTRODUCTION

Hearing loss has a significant impact on quality of life and society in general. Hearing impairment is
the most frequent sensory deficit, affecting 360 million people worldwide and therefore it has been
listed by the World Health Organization (WHO) as one of the priority diseases for research into
therapeutic interventions to address public health needs (1). The global annual cost of unaddressed
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hearing loss has been estimated by the WHO to be in the
range of $750–790 billion (1). Currently, no disease-modifying
therapies are available to slow down or prevent progressive
sensorineural hearing loss from happening. Instead, treatment is
currently focused on hearing rehabilitation, which means fitting
hearing aids that amplify sounds in case of moderate-to-severe
sensorineural hearing loss (2, 3). In case of severe-to-profound
sensorineural hearing loss, when amplification no longer leads to
adequate speech perception, cochlear implantation may provide
a solution (4–6). During cochlear implantation a multi-channel
electrode is surgically introduced in the cochlea to electrically
stimulate the spiral ganglion neurons, replacing mechano-
transduction in the hair cells (7).

REHABILITATION OF HEARING LOSS

Hearing aids and cochlear implants should be regarded as
symptomatic treatments that are able to restore functionality (i.e.,
communication) and quality of life to a certain level. Bilateral
cochlear implantation has been reported to restore binaural
hearing to a certain level and improve speech comprehension,
while reducing tinnitus burden and psychological comorbidities
(8–10). However, in most health services, adult cochlear
implantation is only reimbursed in a single ear because of
its significant cost (10, 11). Despite the availability of these
treatments, hearing-impaired patients are often reluctant to
adopt any (12, 13). Although many studies have confirmed
significant improvement in speech understanding after cochlear
implantation, even in aging patients, many potential adult
CI candidates are unaware of this treatment option or opt
out, with <10% of those with severe-to-profound bilateral
sensorineural hearing loss receiving a cochlear implant (14). This
low rate is widespread, regardless of geographical location, and is
independent of how health services are organized and country-
specific economic output (15–18). In contrast, congenital severe-
to-profound sensorineural hearing loss is identified at a very
young age using universal neonatal hearing screening and the
cochlear implantation rate in children is high (19). The obvious
disadvantage of hearing rehabilitation is that we are waiting for
loss of functionality to occur and act whenever certain hearing
thresholds are reached to reimburse hearing aids or cochlear
implants (6, 20).

HEARING LOSS AND COGNITIVE DECLINE
ARE LINKED

Over the past decade the correlation between hearing loss and
cognitive decline in the older population has gained more
research interest. Large prospective studies have found an
independent relationship between hearing loss on the one hand
and age-related cognitive decline and incident dementia on the
other hand (21–24). Worldwide, around 50 million people have
dementia, with 10 million new cases added every year, and no
cure available yet. Therefore, the WHO has also recognized
dementia as a public health priority to identify any disease-
modifying treatments (25, 26). Because of its close relationship

to the cochlea, the vestibular system has also been implicated in
cognitive decline (27). However, because earlier studies did not
take a potentially concomitant sensorineural hearing loss in to
account or were performed in a static condition, further research
will be necessary to identify its role (28–32).

THE PATHOPHYSIOLOGY BEHIND THE
LINK BETWEEN HEARING LOSS AND
COGNITIVE DECLINE

The underlying cause of the correlation between hearing and
cognition remains unclear, but several hypotheses have been
suggested. The common cause hypothesis suggests that hearing
impairment and cognitive decline may result from one common
mechanism. The cognitive load on perception hypothesis implies
that a reduction in cognitive functioning may result in a heavier
load on sensory processing. Both hypotheses suggest a top-
down correlation. Another hypothesis, the sensory-deprivation
hypothesis, implicates peripheral hearing loss as the direct
cause of permanent cognitive decline, while the information-
degradation hypothesis will point at depression and social
isolation resulting from sensorineural hearing loss as the indirect
cause. The latter hypotheses rather suggest a bottom-up causality
from the periphery. At a pathophysiological level, evidence from
rodent studies suggests that sensorineural hearing loss may
result in a decreased adult hippocampal neurogenesis, which
subsequently leads to impairments of learning and memory (33–
35). At a clinical level, brain atrophy has been observed in
longitudinal MRI studies in patients with hearing loss when
compared with their normally hearing peers (36, 37). This brain
atrophy may be a result of ongoing decreased adult hippocampal
neurogenesis and would argue in favor of a bottom-up causality,
i.e., peripheral sensorineural hearing loss induces changes in
the central nervous system. Cognitive decline may lead to
mild cognitive impairment, which may subsequently progress to
incident dementia. Hearing loss has been identified as the most
important modifiable risk factor to dementia onset in middle
life (45–65 years). Livingston et al. raised the importance of
prevention in dementia and focuses on potentially modifiable
risk factors, which totals 35% of known risk factors (38). When
specifically looking at these population attributable fractions,
hearing loss accounts for 9.1% of these potentially modifiable risk
factors, in contrast to hypertension (2%) and obesity (0.8%) (38).

CAN HEARING REHABILITATION SLOW
DOWN COGNITIVE DECLINE?

The increased risk of cognitive decline in hearing-impaired
patients brings the impact of progressive sensorineural hearing
loss to another level. In case of mild hearing loss, the risk
of incident dementia will increase by x1.89, it will increase
by x3 where the patient progresses to moderate hearing loss
and will increase by 4.94 if the patient reaches the level
of severe-to-profound hearing loss (21). As hearing aids can
improve hearing and contribute to reestablishing the individual’s
participation in society, they could have a positive effect
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on the expected trajectory of cognition (39). However, the
results of studies investigating the effect of hearing aids on
cognitive function in older adults are inconclusive (40–47).
Recent studies have also studied the impact of unilateral
cochlear implantation on the cognitive capabilities of older adults
with bilateral severe-to-profound sensorineural hearing loss
(28, 48–61). While cochlear implantation leads to a significant
improvement of speech understanding in older adults and
some improvement in cognition overall when compared to the
preoperative performance, even experienced cochlear implant
users still underperform when compared with their peers when
matched for age, sex and education. It is unclear what the exact
reason for some of the improvement that has been observed may
be: are hearing aids and cochlear implants improving cognitive
abilities or are cognitively healthy individuals more educated
about hearing rehabilitation and more prone to seek help (62)?

CHALLENGES AND OPPORTUNITIES FOR
DISEASE-MODIFYING THERAPIES IN
PROGRESSIVE POST-LINGUAL
SENSORINEURAL HEARING LOSS

Instead of waiting for hearing loss to occur and rehabilitate
hearing function to a subpar level, we could aim to develop
disease-modifying treatments that are able to slow down or
prevent hearing loss progression. Current actions that try
to prevent hearing loss are protection from noise exposure
and adequate treatment of (or immunization to prevent)
upper airway and central nervous infections, such as acute
and chronic otitis media, or meningitis (1). A significant
challenge in case of age-related hearing loss is the prediction
of hearing loss progression. Although the annual deterioration
rate of hearing is ∼1 dB hearing level (dBHL) per year
and patients with mild-to-moderate sensorineural hearing loss
may progress to severe-to-profound sensorineural hearing
loss, this progression may stabilize spontaneously for an
indefinite period at any level (Figure 1) (63–65). For this
reason, longitudinal studies evaluating hearing loss over time
are essential to enable multi-state modeling and predictions
of hearing progression on a population and individual level
(66). Several potential therapeutic targets related to age-
related hearing loss have been identified, including oxidative
phosphorylation dysfunction-related apoptosis and mutations
in mitochrondrial DNA. Strategies that have been suggested
to influence hearing loss progression are stem cell-based
therapy, gene therapy, aspirin, antioxidant defense, antioxidant
enhancement, aldosterone modulation, and operant training
(67–69). To date, no treatment has emerged to act as
a disease-modifier to slow down or prevent sensorineural
hearing loss.

There is one important cause of postlingual (adult-onset)
sensorineural hearing loss where we do know what is happening
in the cochlea and what will happen to hearing loss progression
in a single adult patient: non-syndromic autosomal dominant
hereditary hearing loss. Non-syndromic hearing impairment is
a partial or total impairment of hearing not associated with

other signs and symptoms. Between 75 and 80 percent of these
cases are inherited through an autosomal recessive pattern, while
another 20–25 percent of non-syndromic hearing impairment
have an autosomal dominant pattern of inheritance (70, 71). The
latter means that one copy of the altered gene in each cell is
sufficient to cause the phenotype. Consequently, the inheritance
rate is 50%. Most reported disorders with postlingual non-
syndromic sensorineural demonstrate an autosomal dominant
inheritance pattern. One of the first autosomal dominant
disorders to be reported is called DFNA9. The DFN is an
acronym for DeaFNess, while the A stands for autosomal
dominant. DFNA9 is caused by heterozygous gain-of-function
mutations or pathogenic variants in the COCH gene. To
date, over 25 different variants have been identified worldwide
(28). The P51S variant (DFNA9P51S) is the most frequently
reported pathogenic variant in Belgium and the Netherlands.
The phenotype is characterized by a progressive sensorineural
hearing loss, starting from the 3rd−4th decade, followed by
a rapid decline to severe-to-profound sensorineural hearing
loss by the 6th−7th decade (72–74). Progressive vestibular
dysfunction starts at a similar age and evolves toward bilateral
vestibular function loss (bilateral vestibulopathy, BVP). BVP
causes oscillopsia and imbalance while walking (especially in
the dark) (75–83). Currently, no treatment is available to
prevent or slow down sensorineural hearing loss or BVP in
DFNA9 patients.

INNOVATIVE THERAPIES TO TREAT
SENSORINEURAL HEARING LOSS ARE
EMERGING

Over 100 clinical trials that evaluate novel inner ear therapies
are ongoing worldwide, while only one of these trials involves
gene therapy. The latter is the first-in-human phase 1/2 clinical
trial (supported by the FDA) to upregulate the atonal gene
(ATOH1/MATH1) in supporting cells of the inner ear and
to trigger trans-differentiation into functional hair cells (84).
For a review on the current state-of-art on gene therapy for
human sensorineural hearing loss, please refer to the following
papers (85, 86). Recently reported rodent studies on gene
editing have generally been aiming to restore hearing in case
of congenital sensorineural hearing loss by recovery of gene
and protein expression, and subsequent restoration of sensory
cell function, e.g., in Usher type 1c (87) or Usher type 1g (88).
Clinically, this strategy would imply early treatment (i.e., the
intrauterine or neonatal period in humans) in a population
with prelingual sensorineural hearing loss, in contrast to adult-
onset progressive sensorineural hearing loss. Recently, gene
editing strategies have been explored in autosomal dominant
disorders (which mainly involve single nucleotide substitutions)
to disrupt dominant mutations selectively without affecting
wild-type alleles (89). Specifically in DFNA36, Tmc1 point
mutations were targeted using an adeno-associated virus-
mediated delivery to prevent deafness up to 1 year post-
injection in mice (90). A similar strategy may work for other
forms of autosomal dominant disorders (91). RNA inhibition
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FIGURE 1 | The natural evolution of age-related hearing loss (ARHL). Subject four is the example of DFNA9 in carriers of the P51S pathogenic variant in the COCH

gene. HA, indication for a hearing aid; CI, indication for a cochlear implant.

using antisense nucleotides is another strategy that has been
studied to prevent sensorineural hearing loss in Usher syndrome
(92, 93).

WHY DFNA9 CAN SERVE AS A MODEL
FOR AGE-RELATED HEARING LOSS

The nature of DFNA9 may present some opportunities
for developing a disease-modifying treatment for progressive
sensorineural hearing loss and testing this potential treatment
in a future clinical trial. Not only do we know the exact
cause at a protein level (i.e., a mutated isoform of cochlin),
we also know in what area in the inner ear the protein
is expressed most abundantly (i.e., fibrocytes of the spiral
ligament and spiral limbus) and what its pathophysiology is
(primarily fibrocyte degeneration and subsequent spiral ganglion
degeneration) (94). Earlier studies have shed light on the annual
deterioration rate in DFNA9P51S, i.e., 3 dBHL per year -in
contrast to 1 dBHL per year in age-related hearing loss- and
has demonstrated high penetrance, i.e., the occurrence of a
phenotype in pathogenic variant carriers (74). It is important
to notice that each pathogenic variant in DFNA9 may have
another phenotype.

In potential pathogenic variant carriers with a known
family history, we can establish the genetic diagnosis in pre-
symptomatic patients by taking a routine blood sample. If
tested at the age of 18 years, early diagnosis in normal hearing
carriers will lead to a significant therapeutic interval of up
to 25 years to administer any disease-modifying therapy. It
also provides opportunity to study if any such therapy will be
able to reduce progression speed or (in an optimal scenario)
prevent hearing loss from occurring at all. Although restoring
hearing up to a certain level has become mainstream because

of cochlear implantation, little is known on patient attitudes
toward preventing, stabilizing or slowing down progression of
sensorineural hearing loss by means of such future potentially
disease-modifying treatments. In a survey performed in 53
carriers of pathogenic variants in the COCH gene, various
hypothetical scenarios were presented while using a Likert scale
to study willingness to participate in clinical trials studying
potential treatment strategies (95). Overall, most symptomatic
patients would likely consider participation in future innovative
inner ear therapy trials, even if it would only slow down the
decline of hearing and vestibular function. However, they were
more equivocal on high-risk treatments or a placebo-controlled
study design. Next to DFNA9, currently over 40 genes are
known to be responsible for autosomal dominant non-syndromic
hearing loss andmay present similar opportunities for innovative
treatment. The former data can be used to inform the recruitment
and consent process into future innovative treatments to
treat these other autosomal dominant disorders. However, the
phenotype of different autosomal dominant disorders can vary
quite significantly, and therefore may have a significant impact
on patient anticipation.
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