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Background: The purpose of this study was to investigate if admission levels of total

tau (T-tau) and β-amyloid isoforms 1-40 (Aβ40) and 1-42 (Aβ42) could predict clinical

outcome in patients with mild traumatic brain injury (mTBI).

Methods: A total of 105 patients with mTBI [Glasgow Coma Scale (GCS) ≥ 13]

recruited in Turku University Hospital, Turku, Finland were included in this study. Blood

samples were drawn within 24 h of admission for analysis of plasma T-tau, Aβ40, and

Aβ42. Patients were divided into computed tomography (CT)-positive and CT-negative

groups. The outcome was assessed 6–12 months after the injury using the Extended

Glasgow Outcome Scale (GOSE). Outcomes were defined as complete (GOSE 8)

or incomplete (GOSE < 8) recovery. The Rivermead Post Concussion Symptoms

Questionnaire (RPCSQ) was also used to assess mTBI-related symptoms. Predictive

values of the biomarkers were analyzed independently, in panels and together with

clinical parameters.

Results: The admission levels of plasma T-tau, Aβ40, and Aβ42 were not significantly

different between patients with complete and incomplete recovery. The levels of T-tau,

Aβ40, and Aβ42 could poorly predict complete recovery, with areas under the receiver

operating characteristic curve 0.56, 0.52, and 0.54, respectively. For the whole cohort,

there was a significant negative correlation between the levels of T-tau and ordinal GOSE
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score (Spearman ρ = −0.231, p = 0.018). In a multivariate logistic regression model

including age, GCS, duration of posttraumatic amnesia, Injury Severity Score (ISS), time

from injury to sampling, and CT findings, none of the biomarkers could predict complete

recovery independently or together with the other two biomarkers. Plasma levels of T-tau,

Aβ40, and Aβ42 did not significantly differ between the outcome groups either within the

CT-positive or CT-negative subgroups. Levels of Aβ40 and Aβ42 did not significantly

correlate with outcome, but in the CT-positive subgroup, the levels of T-tau significantly

correlated with ordinal GOSE score (Spearman ρ = −0.288, p = 0.035). The levels of

T-tau, Aβ40, and Aβ42 were not correlated with the RPCSQ scores.

Conclusions: The early levels of T-tau are correlated with the outcome in patients with

mTBI, but none of the biomarkers either alone or in any combinations could predict

complete recovery in patients with mTBI.

Keywords: traumatic brain injury, total tau, β-amyloid 1-40, β-amyloid 1-42, outcome

INTRODUCTION

Traumatic brain injury (TBI), “the silent epidemic,” will become
a leading cause of disability and death globally by 2030 according
to the recent estimation of the World Health Organization (1).
Approximately 80–90% of all TBIs presenting to emergency
departments are mild (mTBI) (2). Although most of the patients
with mTBI show good recovery, a subgroup comprising 15–
20% continue to have post-injury symptoms after 1 year (3).
Computed tomography (CT), which is the standard tool for the
assessment of acute TBI, is not sensitive enough for the long-term
outcome prediction of mTBI (4, 5). Furthermore, there is still no
clinically validated models for the outcome prediction following
mTBI, and the performance of the tested models for mTBI are
poor (6).

The process of recovery from mTBI is highly variable and
individual. Importantly, there are no validated TBI biomarkers
to provide objective measures of the degree of neuronal damage
as well as the pathophysiological events following a TBI, which
could help the clinician to evaluate the risks for incomplete
recovery and to properly recognize patients who will need follow-
up care (7–9). Glial fibrillary acidic protein (GFAP), ubiquitin C-
terminal hydrolase-L1 (UCH-L1), and neurofilament light (NF-
L) protein have been reported as promising biomarkers for the
outcome prediction of mTBI (10–17).

Recently, also tau protein and β-amyloid isoforms 1-40
(Aβ40) and 1-42 (Aβ42), axon terminal biomarkers, known as
the neurodegenerative biomarkers (18, 19), have been studied
to explore the association between post-concussion symptoms
(PCS) and neuronal damage, especially after repeated mTBIs.
Tau is a microtubule-associated protein that is located in the
axons of central nervous system (CNS) neurons and serves
as a structural element in the axonal cytoskeleton (20–22).
Total tau (T-tau) has been reported as a biomarker of injury
to thin unmyelinated axons in a human post-mortem study
(23). One study reported that elevated levels of plasma tau are
associated with repetitive mTBIs in amateur boxers (24). Another
study showed a marked increase in the plasma levels of tau

in concussed professional ice hockey players (25). Serum tau
levels were reported as a significant outcome predictor following
severe TBI (26). In addition, admission cerebrospinal fluid (CSF)
tau was correlated with long-term outcome in patients with
severe TBI (27). Lately, it has been suggested that acute plasma
hyperphosphorylated tau protein (P-tau) levels and the P-tau–T-
tau ratio outperform T-tau levels for the outcome prediction of
TBI (22).

Aβ40 (28) and Aβ42 (29, 30) reflect amyloidogenic amyloid
precursor protein (APP) metabolism and have been reported
as potential biomarkers of axonal damage in TBI (31). Aβ

pathology, primarily consisting of aggregated Aβ42 peptides,
is a histologic hallmark of Alzheimer’s disease (AD) (32), and
TBI has been suggested to be one of the risk factors for AD
(33). Aβ pathology (amyloid plaques) have been found in boxers
having dementia pugilistica (34) and in a proportion of other
contact sport athletes having chronic traumatic encephalopathy
(35). Although ventricular CSF levels of Aβ40 and Aβ42
were elevated during the first week after severe TBI (36), no
changes in Aβ40 or Aβ42 were reported in mTBI where CSF
samples were collected by lumbar puncture (37). However,
for repetitive mTBI, post-injury subjective symptoms were
associated with the reduction of CSF levels of Aβ40 and Aβ42
(15, 38). It has been reported that plasma levels of Aβ40
and Aβ42 do not have a value for the diagnosis and the
prediction of outcome of mTBI (15, 23, 33, 35, 36). Lately,
our research group has reported significant relationship between
the acute plasma levels of axonal protein biomarker NF-L
and the outcome in patients with mTBI (16). There are no
studies correlating the admission plasma levels of the other
axonal biomarkers such as Aβ40 and Aβ42 with the outcome
of mTBI.

The aim of the current study was to correlate the levels of
T-tau and Aβ40 and Aβ42 during the first 24 h after admission
with outcome in patients with mTBI, using ultrasensitive single
molecule array (Simoa) technology (39, 40). We hypothesized
that these biomarkers would show some correlation with the
outcome in these patients.
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METHODS

Study Population
This prospective study was a part of the EU-funded TBIcare
(Evidence-based Diagnostic and Treatment Planning Solution
for Traumatic Brain Injuries) project. One hundred seven (107)
patients with mTBI [Glasgow Coma Scale (GCS) ≥ 13] were
recruited whose blood samples were available within 24 h from
the arrival to the ED of Turku University Hospital, Finland.

Inclusion criteria were lowest GCS ≥ 13, age ≥ 18 years,
clinical diagnosis of TBI, and indications for acute head
CT according to the NICE criteria (http://www.nice.org.uk/
guidance/cg176).

Exclusion criteria were age < 18 years, blast-induced or
penetrating injury, chronic subdural hematoma, inability to live
independently due to pre-existing brain disease, TBI or suspected
TBI not needing head CT, more than 2 weeks from the injury,
not living in the district thereby preventing follow-up visits, not
speaking native language, or no consent received.

Analysis of T-Tau and Aβ40 and Aβ42
Plasma T-tau was analyzed using the Human Neurology 4-Plex
A assay (N4PA) on an HD-1 single molecule array (Simoa)
instrument according to instructions from the manufacturer
(Quanterix, Lexington, MA, USA). For T-tau, the lower limit
of detection (LLoD) was 0.024 pg/ml, while the lower limit
of quantification (LLoQ) was 0.053 pg/ml, and the calibration
range was 0.136 pg/ml to 112 pg/ml. Plasma Aβ40 and
Aβ42 concentrations were measured using a duplex Simoa
immunoassay (Quanterix, Lexington, MA, USA). For Aβ40, the
LLoD was 0.045 pg/ml, and the LLoQ was 0.142 pg/ml with a
calibration range between 0 pg/ml to 90.0 pg/ml. For Aβ42, the
LLoD was 0.142 pg/ml, and the LLoQ was 0.69 pg/ml with a
calibration range between 0 and 11.0 pg/ml. The measurements
were performed by board-certified laboratory technicians who
were blinded to the clinical data. There were no samples below
the LLoDs and LLoQs.

TBI Severity and Outcome Grading
For the assessment of TBI severity, the lowest recorded GCS was
used either at the scene of accident or emergency department
(11, 17). The overall injury severity of the patients was assessed
using the Injury Severity Score (ISS) (41). The duration of
posttraumatic amnesia (PTA) was assessed at the outcome
visit using the Rivermead method (42). The descriptive system
proposed byMarshall et al. was used to analyze the CT scans (43),
where class 1 corresponds with normal CT, classes 2–4 diffuse
injuries, and classes 5–6 CTs with mass lesions.

Outcome
The Extended Glasgow Outcome Scale (GOSE) was used at
6–12 months after the injury to assess the outcome (44).
Outcomes were defined as complete recovery (GOSE 8) and
incomplete recovery (GOSE < 8). The presence and severity
of mTBI-related symptoms were assessed using the Rivermead
Post Concussion Symptoms Questionnaire (RPCSQ) (45). Every
patient was evaluated by the same experienced neurologist at the
Turku Brain Injury Centre.

Time Elapse
Time elapse was defined as the interval between the injury and
sampling. Although the samples were obtained within 24 h of
admission, they were not always drawn within 24 h after injury.
Time elapse was used as a dichotomous variable, less than 24 h or
more than 24 h, in the multiparameter prognostic panel analyses.

Ethics Declarations
Ethics Approval and Consent to Participate

The study protocol was approved by the ethical review board of
the Hospital District of South-West Finland. A written informed
consent was obtained from all patients or from their next of kin.

Statistical Analyses
Demographics of the subjects are presented as mean ± SD
or percentages. The Kolmogorov–Smirnov test and visual
inspection of data histograms were used to assess the normality
of distribution. The levels of T-tau and Aβ40 and Aβ42 were not
normally distributed, therefore, nonparametric tests were used
in the statistical analyses. Data are presented as medians and
interquartile range (IQR). Spearman rank correlation coefficient
was used to assess the correlations between the levels of
biomarkers and the outcomes. Correlations of biomarker levels
with age and gender were analyzed with Pearson’s and Spearman
rank correlation, respectively. Spearman correlation coefficient
was also used to assess the correlation between the levels of T-
tau and amyloids in the whole cohort, as well as in the complete
and incomplete recovery groups. Mann–Whitney U test was
used to compare the levels of biomarkers between the outcome
groups. A multivariate logistic regression analysis was performed
in order to investigate if a biomarker alone or combined with
other biomarkers had independent predictive power for the
outcome beyond the clinical predictors. A biomarker panel
analysis was used to investigate if a combination of biomarkers
had better predictive ability than any biomarker alone. The
regression analysis included the following variables: age, sex,
educational level, ISS, worst GCS, Marshall CT classification,
duration of PTA, time elapse, and the levels of T-tau and
Aβ40 and Aβ42. Educational level was divided into basic school
education, lower level professional, higher level professional,
and academic. Marshall CT classification, sex, time elapse, and
educational level were taken into account as categorical variables.
Marshall class I (denoting CT-negative finding), female sex, time
elapse of more than 24 h, and basic school education were
used as reference categories in multivariate logistic regression.
All other variables were considered to be numerical variables
in the analyses. T-tau and Aβ40 and Aβ42 were used in the
multivariate logistic regression models independently with the
other variables and together in the same models. To study the
prognostic ability of the biomarkers, area under the receiver
operating characteristic (ROC) curve (AUC) was also used. AUC
of 0.8 to 1.0 was considered very good; AUC of 0.7 to 0.8 was
considered adequate; and AUC of 0.5 to 0.7 was considered
poor (23). A value of p < 0.05 was considered statistically
significant. For the prediction of dichotomized outcomes, cut-
off values were defined using the ROC curve at the clinically
compatible sensitivity >90%. For the data analyses, IBM SPSS
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Statistics 22 (IBM Corp, Armonk, New York, NY, USA) and
MATLAB R2016b (Math Works, Natick, MA, USA) were used.
Furthermore, a multiparameter prognostic panel was formed
by PanelomiX toolbox (38) using clinical information (age, sex,
educational levels, GCS, duration of PTA, ISS, time elapse, CT
findings, and GOSE) and the admission levels of T-tau and Aβ40
and Aβ42 for the best prediction of incomplete recovery. Cut-
off values were selected to ensure a sensitivity of more than 90%.
For the prognostic panels, the partial AUC (pAUC) was used as a
local comparative approach that focuses only on a portion of the
ROC curve.

RESULTS

Study Subjects
One hundred seven (107) patients with mTBI were recruited,
of which GOSE score was available for 105, forming the final
study population. There were 72 males (68.6%) and 33 females
(31.4%), with a mean age of 47±20 years. The number of patients
with CT-positive and CT-negative findings were 54 (51.4%) and
51 (48.6%), respectively. Patient characteristics are shown in
Table 1. With regard to the outcome, 37 patients (35.0%) had
complete recovery, 68 patients (65.0%) had incomplete recovery,
and the mortality was 3.8% (n = 4). Among patients in whom
the exact time of injury was available, the time elapse from injury
to blood sampling was 28 ± 35 h (n = 76). In patients for
whom the exact time of injury was unavailable, 11 patients were
sampled within 24 h, and 18 patients were sampled after 24 h
from the injury.

The Levels of T-Tau and Outcome
The levels of T-tau were compared between patients with
complete recovery (2.65 pg/ml, IQR 3.58 pg/ml) and incomplete
recovery (2.8 pg/ml, IQR 7.5 pg/ml) (Figure 1), but significant
differences were not observed. There was a significant negative
correlation between the levels of T-tau and ordinal GOSE score
in all patients (Spearman ρ = −0.231, p = 0.018) (Table 2). The
level of T-tau was not able to predict the likelihood of complete
recovery (AUC 0.56, 95% CI 0.45–0.67) (Figure 2A). Gender
seemed to have an effect on T-tau (Table 2). The levels of T-tau
did not differ between the outcome groups, and the levels of T-
tau did not correlate significantly with the outcome within the
CT-negative subgroup. In the CT-positive subgroup, there was a
significant negative correlation between the levels of T-tau and
ordinal GOSE score (Spearman ρ = −0.288, p = 0.035). The
levels of T-tau did not correlate with the RPCSQ scores (Table 2).

The Levels of Aβ40 and Aβ42 and Outcome
The levels of Aβ40 were not significantly different between
patients with complete (16.9 pg/ml, IQR 12.76 pg/ml) and
incomplete recovery (17.42 pg/ml, IQR 12.65 pg/ml). The levels
of Aβ42 were also not significantly different between patients
with complete (16.94 pg/ml, IQR 12.36 pg/ml) and incomplete
recovery (15.23 pg/ml, IQR 10.61 pg/ml) (Figure 1). There was
no significant correlation between the levels of Aβ40 and Aβ42
and the GOSE score (Table 2). Aβ40 and Aβ42 were not able
to predict the likelihood of complete recovery (AUC 0.52, 95%

TABLE 1 | Patient characteristic.

Age (years) 47.46±20.25

Sex

Male 72 (68.6%)

Female 33 (31.4%)

Marshall grade

No visual pathology 51 (48.6%)

Diffuse injury 24 (22.9%)

Diffuse injury with swelling 1 (1%)

Diffuse injury with shift 1 (1%)

Mass lesions 28 (26.7%)

Pupil reactivity

Unreactive 1 (1%)

Sluggish 2 (1.9%)

Reactive 98 (96.2%)

Missing data 4 (3.8%)

GOSE

1 4 (3.8%)

2 0

3 6 (5.7%)

4 5 (4.8%)

5 7 (6.7%)

6 14 (13.3%)

7 32 (30.5%)

8 37 (35.0%)

Total 105 (100%)

Demographics are reported in mean ± SD or percentages (%).

CI 0.41–0.64 and AUC 0.54, 95% CI 0.43–0.63, respectively)
(Figures 2B,C).

When patients were divided into CT-positive and CT-negative
subgroups, the levels of Aβ40 andAβ42 did not differ between the
outcome groups, nor did the levels correlate significantly with the
outcome within these subgroups. The levels of Aβ40 and Aβ42
did not correlate with the RPCSQ scores (Table 2).

Combining T-Tau, Aβ40, and Aβ42
Using conventional multivariate logistic regression model, Aβ40
and Aβ42 were not able to predict outcome independently or
together with T-tau, or vice versa. We also used the Panelomix
tool for evaluating the capacity of these three biomarkers in
predicting incomplete recovery. When setting the sensitivity to
>90%, we found that the optimal sensitivity and specificity
was 92.5% (95% CI, 85.1–98.5) and 27.8% (95% CI, 13.9–41.7),
respectively (Supplementary Figure 1), when the levels of at least
two out of T-tau, Aβ40, and Aβ42 were above 0.55, 20.26, and
23.9 pg/ml, respectively.

Correlation Among the Levels of T-tau,
Aβ40, and Aβ42
For the whole population, as well as complete and incomplete
recovery subgroups, the levels of T-tau and Aβ40 and Aβ42 were
not significantly correlated with each other.
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FIGURE 1 | Levels of total tau (T-tau), β-amyloid isoform 1-40 (Aβ40), and β-amyloid isoform 1-42 (Aβ42) in patients with complete (GOS 8) and incomplete (GOS < 8)

recovery (y axis is zoomed). Box plots represent medians in picograms per milliliter and interquartile ranges.

TABLE 2 | Correlation between biomarkers and Glasgow outcome scale extended (GOSE), gender, total PRQ, age, and RPCSQ (16 cut-off).

Biomarker GOSE Gender RPCSQ (total) Age RPCSQ

(16 cut-off)

Spearman

ρ

p-Value n Spearman

ρ

p-Value n Pearson’s

r

p-Value n Pearson’s

r

p-Value n Pearson’s

r

p-Value n

Amyloid β40 −0.082 0.410 104 0.034 0.731 104 −0.007 0.948 95 0.180 0.068 104 −0.007 0.946 95

Amyloid β42 0.063 0.525 103 −0.032 0.750 103 −0.015 0.889 94 0.063 0.525 103 −0.028 0.788 94

Tau −0.231 0.018 105 0.252 0.010 105 −0.013 0.900 96 0.013 0.899 105 −0.026 0.799 96

GOSE, Glasgow Outcome Scale extended; RPCSQ, Rivermead Post Concussion Symptoms Questionnaire. Statistically significant findings are in bold.

Best Multiparameter Panel for Outcome
Prediction
We also tried to find the best combination for predicting the
outcome by combining clinical variables, biomarker levels, and
taking into consideration the time from injury to sampling. The
best available panel found was for the levels of T-tau taken
more than 24 h from the injury and combined with age and
ISS. This panel had a sensitivity of 90.8% (95% CI, 83.1–96.9)
and a specificity of 57.1% (95% CI, 40–74.3), provided that at
least two of these three variables were above their cut-off values
(22.5 years for age, 3.5 for ISS, and 12.84 pg/ml for T-tau)
(Supplementary Figure 2).

DISCUSSION

This prospective, observational study including patients with CT-
positive and CT-negative mTBI investigated the performance of
the blood protein biomarkers T-tau, Aβ40, and Aβ42 for the
outcome prediction during the first 24 h after admission, utilizing
modern highly sensitive immunoassays in a well-characterized

cohort. We found that T-tau was significantly correlated with
the outcome in the whole population as well as in the subgroup
of patients with CT-positive mTBI. However, the levels of T-
tau, Aβ40, and Aβ42 were not significantly different between the
patients with complete and incomplete recovery, and the levels of
T-tau, Aβ40, and Aβ42 were not able to give any useful prediction
about the likelihood of complete recovery. Moreover, none of the
biomarkers was correlated with the symptom severity as assessed
with the RPCSQ scores. Yet, a multiparameter panel method
suggested that levels of T-tau may have predictive value when
sampled >24 h from the injury and combined with age and ISS,
obtaining a sensitivity of 90.8% and a specificity of 57.1% for
predicting incomplete recovery.

Earlier studies reported that serum tau had limited value for
the diagnosis of intracranial injury and the outcome prediction
of mTBI (46, 47), which is in agreement with our results.
Recently, TRACK-TBI investigators used another high-sensitive
assay platform and reported that acute P-tau levels and the P-tau–
T-tau ratio outperformed T-tau levels in the outcome prediction
of TBI (22). As only the levels of T-tau were measured in
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FIGURE 2 | (A) Receiver operating characteristic (ROC) curves for predicting complete recovery (GOS 8). Area under the curve (AUC) for T-tau, 0.56 (95% CI

0.45–0.67). (B) ROC curves for predicting complete recovery (GOS 8). AUC for Aβ40, 0.52 (95% CI 0.41–0.64). (C) ROC curves for predicting complete recovery

(GOS 8). AUC for Aβ42, 0.54 (95% CI 0.43–0.63).

our study, the results might have been different if also P-tau
was measured. Since tau is mainly expressed in unmyelinated
cortical axons (15), the inability of the admission levels of plasma
T-tau to differentiate complete and incomplete recovery may
support the concept that in most of the cases of mTBI, mainly
subcortical myelinated axons of the white matter are injured
(15, 16, 48). Another possible explanation is that the eventual
injury of cortical axons is a slower process, not reflected in blood
levels of T-tau during the time frame used in this study.

Our study findings of Aβ40 and Aβ42 are in line with the
results of the previous studies (15, 23, 33, 35, 36), where the

levels of Aβ40 and Aβ42 did not correlate with the outcome
as well as the levels were unable to predict complete and
incomplete recovery.

A recent study reported that there was no significant
relationship between the plasma levels of T-tau and Aβ42 and
neurocognitive tests following mTBI (49). The study used late
levels of T-tau, which is why our results cannot be compared with
those data.

There are limitations in our study. First, we had data on T-tau
and Aβ40 and Aβ42 available only at a single timepoint—within
24 h after admission. A kinetic study with serial sampling would
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allow estimation of the total efflux of a biomarker and timing of
the peak values, which could reveal more information about the
outcome prediction abilities of the studied biomarkers (50). Tau
has been reported to be a long-term biomarker having the peak
value within the first hour after the initial injury and a second
peak after 36 h following mTBI (25). Aβ42 becomes significantly
elevated within the first 24 h after injury and remains quite stable
for ca. 6 days (18), although, there are contraindicatory studies
reporting no significant elevation of Aβ40 and Aβ42 following
mTBI (48). Indeed, we found that the levels of T-tau seemed to
perform best when taken >24 h from the injury and combined
with clinical variables. The outcome prediction abilities of the
studied blood biomarkers could be negatively driven by the
variability in timing of sample collection in relation to injury
between patients. The most accurate diagnostic time windows
for the biomarkers might have been missed; however, the time
from injury to sampling was taken into account as a covariate
in the analysis. Second, the variability in assessing the GOSE
between 6 and 12 months after the injury should be considered
as a limitation of the study. This limitation has been elaborately
discussed in one of our recently published biomarker studies
utilizing the same study cohort (16). Third, our patients with
mTBI had more severe injuries than an average mTBI population
who are seen at the ED. This is because there was a recruitment
bias favoring those patients who required in-hospital treatment.
This is why many patients of our mTBI cohort had abnormalities
on CT. In addition, some patients—although having GCS in the
mild category—had PTA for >24 h, which according to many
classifications indicate a more severe TBI. These issues reflect the
problems in defining an acute TBI by severity, nicely shown also
in the CENTER-TBI study (51), where about one-third of cases
treated at the ICU had mTBI based on GCS (52). Thus, when
interpreting our results, the nature of our study population has
to be taken into account. Additionally, in our study, the
duration of PTA was assessed retrospectively at the outcome
visit, which is considered to be less reliable than prospective
evaluation. When comparing our results with earlier studies, it is
important to note that none of our patients had a sports-related
repetitive injury as the injury mechanism, and CSF samples were
not collected.

A strength of our study is the use of ultrasensitive
single molecule array (Simoa) technology. Especially for
T-tau, the concentrations are very low in the peripheral
blood and are thus almost impossible to measure
precisely by most of the immunoassays (18). In addition,
our patient cohort was prospectively collected and
well characterized.

In this study, we studied biomarkers that mainly originate
from axon terminals. However, they apparently represent
a different kind of axonal damage, and thus, we sought
to investigate their outcome prediction ability in a panel
analysis. Since mTBI is a complex cascade of neurometabolic
changes (25), therefore, developing a prediction model including
the blood biomarkers of different cellular origins is an emerging
need. It has recently been reported that panels of biomarkers
from different cellular origins outperform single proteins’ ability
to detect patients with a need for head CT scanning after TBI
(53). It has also been reported that a serum biomarker panel

consisting of proteins of different cellular origins improved
outcome prediction in TBI, where 70% of the cohort had severe
TBI (50).

CONCLUSIONS

The main finding of the current study was that the admission
levels of T-tau were significantly correlated with the outcome
in patients with mTBI. Neither T-tau, Aβ40, or Aβ42 alone or
their different combinations could predict complete recovery in
patients with mTBI. Our study showed that T-tau may have
potential in outcome prediction of mTBI, but more studies
are needed using larger sample sizes, serial sampling method,
and possibly including P-tau and P-tau/T-tau ratio. Panels of
biomarkers of different cellular origins are recommended to
be utilized as they appear to outperform single biomarkers in
outcome prediction.
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