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Endovascular neuromodulation is an emerging technology that represents a synthesis

between interventional neurology and neural engineering. The prototypical endovascular

neural interface is the StentrodeTM, a stent-electrode array which can be implanted into

the superior sagittal sinus via percutaneous catheter venography, and transmits signals

through a transvenous lead to a receiver located subcutaneously in the chest. Whilst

the StentrodeTM has been conceptually validated in ovine models, questions remain

about the long term viability and safety of this device in human recipients. Although

technical precedence for venous sinus stenting already exists in the setting of idiopathic

intracranial hypertension, long term implantation of a lead within the intracranial veins has

never been previously achieved. Contrastingly, transvenous leads have been successfully

employed for decades in the setting of implantable cardiac pacemakers and defibrillators.

In the current absence of human data on the StentrodeTM, the literature on these

structurally comparable devices provides valuable lessons that can be translated to

the setting of endovascular neuromodulation. This review will explore this literature in

order to understand the potential risks of the StentrodeTM and define avenues where

further research and development are necessary in order to optimize this device for

human application.
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INTRODUCTION

Intracranial neuromodulation has numerous potential applications, including epilepsy monitoring
(1, 2), neurostimulation (3), thought to text and thought to speech paradigms (4–6), and control
of robotic limbs and exoskeletons (7). A number of neural interfaces are in established clinical
practice. These include electrocorticography (ECoG) and intraparenchymal depth electrodes (1),
which enable intracranial recording of neural signals, and deep brain stimulation (DBS) (3), which
enables therapeutic stimulation of deep brain nuclei. Since their implantation requires craniotomy,
these devices carry the risks of open brain surgery, such as hemorrhage, infection, postoperative
pain, and prolonged recovery time (8–11). Furthermore, surgically implanted electrodes induce
chronic inflammation at the electrode-tissue interface, leading to changes in electrical impedance
and signal degradation over time (12, 13). Endovascular neuromodulationmay provide aminimally
invasive solution that circumvents these issues whilst providing safe, accurate and long term
recording, or stimulation of the brain (14, 15).
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Given the proximity of cerebral vessels to numerous
important brain regions (14, 16), the cerebrovascular system
is a promising conduit for a neural interface. Most historical
endovascular EEG devices have been limited to short term
application ranging from hours to days (17–22). In contrast,
the recently developed StentrodeTM, which is permanently
implanted into the superior sagittal sinus (SSS) via percutaneous
catheter venography, is capable of long-term application (14). In
an ovine model, this device demonstrated stable endovascular
EEG recordings of sensorimotor cortex for up to 190 days, with
equivalent fidelity to extradural and subdural ECoG electrodes
(14, 23), as well as stimulation of discrete neuronal populations
in sheep motor cortex, with comparable somatotopic accuracy to
surgically implanted depth electrodes (15).

Although a human trial of the StentrodeTM is now underway
(SWITCH trial - StentrodeTM First in Human Early Feasibility
Study), significant questions remain about its risk-benefit profile,
should it progress to routine clinical application. Whilst the
StentrodeTM’s endovascular delivery confers greater ease of
implantation, it also relies on the transmission of signals through
a permanent transvenous lead. Possible complications of this
device include stent- or lead-associated venous thrombosis,
device-related infection and lead failure (14). Given the current
absence of human trial data on the StentrodeTM, existing
literature on structurally comparable devices may provide
valuable insights into these risks and their possible preventative
strategies. For example, there is a growing number of studies
on stent deployment in the intracranial sinuses for a range
of indications (24–31), from which possible stent-related
complications of the StentrodeTM may be surmised. Although
a transvenous lead has never been previously implanted in
the human brain, substantial lessons about the safety and
design characteristics of transvenous leads can be taken from
the literature on cardiac electrotherapy devices (32–36). This
review aims to translate these findings to the neurological
setting and define avenues for further optimisation of the
StentrodeTM prototype.

OVINE STUDIES OF THE STENTRODETM

For any novel biomedical device, rigorous animal testing is a
necessary precursor to human trials. Whilst proof of concept for
the StentrodeTM currently only exists in ovine models (14, 15, 23,
37), these experiments provide important insights into the safety
characteristics of the device.

Oxley et al. implanted the StentrodeTM into the SSS of 20
sheep for up to 190 days (14). Whilst there was a slight reduction
in lumen area of the SSS in animals implanted for over 100 days
compared to animals implanted for less than seven days (38, 39),
there were no cases of complete SSS occlusion. However, 37%
of the cortical veins (3 out of a total of 8 veins in 3 animals)
that entered the SSS at point of implantation were occluded
at 3 months. It is noteworthy that none of the sheep with
occluded cortical veins displayed neurological sequelae such as
difficulty walking, reduced feeding or focal neurological signs
(14). Hypothetically, this may be secondary to compensatory
flow through collateral venous channels. For example, in human
cohorts implanted with transvenous cardiac leads, it is known

that collateral channels develop in order to reroute blood flow in
response to lead-associated venous occlusion (40). Furthermore,
there is some data to suggest that the presence and extent of
collateral veins in the brainmay influence the outcome in cerebral
venous sinus thrombosis (41), lending support to this hypothesis.
However, there was no post-implantation angiographic data
presented in Oxley et al.’s study to confirm the formation
of collateral channels. Such data would greatly contribute to
our understanding of the long-term response of the cerebral
vasculature to StentrodeTM implantation.

The StentrodeTM implantation procedure itself carries
potential risks. In 39 sheep that underwent cerebral catheter
venography (37) using 2, 4, 5, or 6 F coaxial catheters, significant
catheter-related complications were encountered with catheters
larger than 4 F. Thirty-three per cent, or 6 out of the 18 animals
that underwent catheterisation with 5 F catheters, experienced
subdural haematomas secondary to venous dissection. These
dissections occurred at either the torcula herophili or the
anterior SSS, and in 5 out of 6 cases resulted in non-recovery
after anesthesia. Similarly, 6 F catheters had a 36% complication
rate (4 out of 11 animals). Two of these complications were
subdural hemorrhages secondary to torcula herophili dissection
and both caused nonrecovery after anesthesia. The other two
cases were thrombus formation within the SSS and were not
associated with any clinically detectable sequelae. Thesemay have
been secondary to a longer procedure time associated with the 6 F
catheter. Somewhat reassuringly, all catheterisations performed
with the 2 and 4 F catheters were uncomplicated, suggesting
that a small diameter catheter is favored for navigation into the
anterior SSS for successful StentrodeTM deployment (37).

There are some important remarks to be made about the
generalizability of this ovine model to humans. The SSS in sheep
was chosen as an initial target primarily because of its ease of
access through catheter venography and its parallel orientation
to the ovine motor area. Furthermore, it has a diameter of
1.2 to 2.4mm (37), which is comparable to the diameter of
the human CSV (2.3 to 4.9mm) (14). The CSV is the ideal
corresponding target in humans because it is adjacent and
parallel to the coronally orientated primary motor cortex in the
human brain. However, unlike the SSS, it lacks a dural wall which
may have significant implications for stent safety and electrode
incorporation into the vessel wall (37). Additionally, the clinical
endpoints measured in the sheep model were limited to gross
motor function. It was not possible to detect subtle cognitive
deficits or speech disturbance in these animals. Furthermore,
it is not possible to train sheep to perform complex motor
tasks, making it difficult to assess the utility of the StentrodeTM

as a closed loop brain machine interface in an ovine model.
These limitations highlight the necessity of a human trial of
the StentrodeTM.

STENT SAFETY: LESSONS FROM VENOUS
SINUS STENTING

There is an expanding body of literature on stenting of
intracranial venous sinuses for a range of indications (24–31, 42–
47). This literature exposes the possible risks of intracranial
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stenting, particularly in-stent thrombosis, and provides strategies
for prevention of these complications, namely anticoagulation
and antiplatelet therapy. The lessons from these studies may
help to define optimum preventative strategies in human
StentrodeTM recipients.

Stenting of the SSS is not a new concept. Several case series and
case reports describing SSS stenting exist (42–47) (summarized in
Table 1). The largest clinical series of SSS stenting was performed
by Raper et al. in 19 subjects with non-thrombotic veno-occlusive
disease involving the SSS (42). Stents ranging in diameter from
8 to 10mm were utilized. Either one, two or three stents were
implanted adjacent to one another. Patients were premedicated
with 7 days of aspirin and clopidogrel and received 100 units/kg

of IV heparin during the procedure. Whilst two patients suffered
a femoral artery pseudoaneurysm at the puncture site, there
were no intraprocedural complications and no stent associated
stenosis at a median follow-up of 5.2 months (42). Similarly, in
all other case reports of SSS stenting, the SSS remained patent at
long-term follow-up (43–47).

Greater experience exists with stenting of the transverse
sinuses for the treatment of idiopathic intracranial hypertension
(24–31). According to recent systematic reviews, the
overall complication rate associated with this intervention,
including minor complications such as wound hematomas
or pseudoaneurysms, is 1–7% (24–29). Major neurological
complications, such as in-stent thrombosis and subdural,

TABLE 1 | Case series and case reports of SSS stenting.

References N Indication Stent model and

dimensions

Implant location Antithrombotic

regimen

Outcome and

complications

Raper et al. (42) 19 Non-thrombotic

veno-occlusive disease.

Stent models not

specified. Stent diameters

of 8 and 10mm.

Total length of stent

constructs ranged from

60 to 180mm.

One, two or three stents

deployed in tandem in

proximal SSS (posterior to

vein of Trolard). In 12

patients the stent construct

spanned into the traverse

sinus. In 6 patients the stent

construct spanned into the

sigmoid sinus.

7 days of premedication

with aspirin and

clopidogrel. Intravenous

heparin 100 units/kg

during procedure.

No intraprocedural

complications.

Two patients developed

femoral artery

pseudoaneurysm at arterial

puncture site. All stents

remained patent and no

patients had junctional SSS

stenosis distal to the stent

construct, at a mean

follow-up of 5.2 months.

Matsumoto et al.

(43)

1 CVST of SSS ENTERPRISE Vascular

Reconstruction Device

(Codman & Shurtleff,

Johnson & Johnson).

Diameter 4.5mm.

Three stents placed in

tandem in posterior SSS

Intravenous heparin to

achieve an APTT of

250-300 seconds.

Postoperative

anticoagulation for three

months (agent

not specified).

SSS patent at 3 months. No

recurrence of CVST at 3

year follow-up.

Matsumoto et al.

(44)

2 CVST of SSS ENTERPRISE VRD.

Diameter not specified

Two stents placed in

tandem in posterior SSS.

Preoperative

anticoagulation. aspirin

200mg and clopidogrel

300mg load on table.

Anticoagulation and

antiplatelet therapy

continued postoperatively.

SSS patent at long-term

follow-up (2 years in first

patient and 1.5 years in

second patient).

Ohara et al. (45) 1 Occlusion of posterior

third of SSS in setting of

dural

arteriovenous fistulas.

Carotid WALLSTENT

(Boston Scientific). Length

21mm, diameter 8mm.

Three stents placed in

tandem in posterior SSS.

Intravenous heparin

during procedure and

aspirin loading dose on

table. No postoperative

antithrombotics.

SSS patent at 3

months follow-up

Entezami et al. (46) 1 SSS stenosis due to

external compression by

parasagittal meningioma

Carotid WALLSTENT

Length 21mm,

diameter 8mm.

Single stent in posterior

third of SSS.

Seven days of 325mg

daily aspirin

preoperatively,

continued for 6 months

postoperatively, followed

by 81mg daily

aspirin indefinitely.

SSS patent at 3

months follow-up.

Ganesan et al. (47) 1 SSS stenosis due to

external compression by

parasagittal meningioma

Omnilink.018

balloon-mounted stent.

Diameter not specified.

Single stent in

posterior SSS.

Intravenous heparin

during procedure.

Warfarin postoperatively

for 8 weeks, then

indefinite aspirin.

SSS patent at 14

months follow-up.

APTT, activated partial thromboplastin time; CVST, cerebral venous sinus thrombosis; SSS, superior sagittal sinus; VRD, vascular reconstruction device.
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extradural, subarachnoid, or intracerebral hemorrhage, due
to venous injury, occur at a rate of 1–3% (24–29). Delayed
re-stenosis within, or adjacent to, the stent construct is another
undesirable outcome after this therapy. According to one
systematic review the rate of in-stent stenosis was 3.4% after a
mean radiographic follow-up period of 15.2 months (28). Stent-
adjacent stenosis is comparatively more common, occurring
in approximately 10-15% of patients (28, 29). However, these
complications may be secondary to high intracranial pressure
gradients encountered in patients with IIH and may be less
likely if stents were to be implanted in individuals with
normal intracranial pressure. Additional factors that limit
the generalizability of these studies to future StentrodeTM

recipients include their non-randomized retrospective design
and significant inter-cohort heterogeneity.

It must be noted that there is currently minimal clinical
experience with stenting of the anterior part of the SSS, which is
the planned StentrodeTM implantation site. The entry point of the
central sulcal vein may pose a particular risk in this region, given
that this vein drains the sensorimotor cortex (14). As an analogy,
a similar threat is posed to the vein of Labbe (VOL) in transverse
sinus stenting procedures. Interestingly, data from retrospective
studies in this setting suggest that occlusion of the VOL is a
rare event, even when the ostium of the vein is traversed by an
implanted stent (30, 31). For example, in a series of 56 patients by
Raper et al., the implanted stent crossed the VOL ostium in 92.9%
of cases. Immediate postoperative angiograms were performed
on 32 of these patients, showing that only 1 patient (3.1%) had
complete VOL occlusion, whilst 6 patients (18.8%) had sluggish
VOL filling and a further 1 patient had diminished VOL caliber
with normal transit time. At 3 months follow-up, 5 out of 6
patients with initially sluggish filling improved to normal transit
time, whilst 1 patient went on to have complete VOL occlusion.
Importantly, there were no neurological sequelae in any of the
patients with altered VOL drainage patterns (30). This correlates
with the ovine data on StentrodeTM implantation, in which sheep
with bridging vein occlusion displayed no clinical deficits (14).

In-stent thrombosis is a potentially serious complication that
could result in adverse neurological outcomes in StentrodeTM

recipients. The risk of in-stent thrombosis can be minimized
through the use of antiplatelets and anticoagulants in the
perioperative period (26). However, the ideal antithrombotic
regimen for intracranial venous sinus stenting is not well defined.
A systematic review of transverse sinus stenting showed that the
most commonly employed regimen involved three to five days
of aspirin and clopidogrel preoperatively, intravenous heparin
during the procedure, and aspirin and clopidogrel for three to
six months postoperatively. This was then followed by aspirin
alone for a year or more. In contrast, some studies employed
warfarin for eight weeks, followed by aspirin for six months or
longer. In this same systematic review, there were 2 reports of in-
stent thrombosis out of a total of 207 patients with a follow-up
ranging from 2 to 108 months (26). These findings suggest that
dual antiplatelet therapy with aspirin and clopidogrel may be a
suitable initial regimen for human StentrodeTM recipients.

The appropriate duration of antithrombotic medications in
StentrodeTM recipients is also presently unknown. This duration

may be influenced by the rate of stent incorporation into the
vascular endothelium. The risk of stent-associated thrombosis is
highest when stent struts are exposed to the bloodstream, and
decreases as stent struts are endothelialized. In cardiac coronary
stents, for example, the risk of delayed in-stent thrombosis falls
when greater than 70% of stent struts are covered by endothelium
(48), suggesting that this may be a cut-off value for stent safety.
Data from phase angle measurements, histological studies and
micro-CT imaging of Stentrodes implanted in sheep suggest that
within four weeks of implantation, greater than 85% of stent
struts become covered in neo-intima, and after 100 days of
implantation, nearly all stent struts are covered in endothelium
(38, 39). These findings suggest that a course of antiplatelet
therapy as short as 3 months may be sufficient for thrombosis
prophylaxis. However, as is the current practice in human venous
sinus stenting cohorts, longer durations of antiplatelet therapy
are favored.

LEAD SAFETY: LESSONS FROM
IMPLANTABLE CARDIAC DEVICES

Due to limitations in stent design and electrode size, current
endovascular electrode arrays are not capable of wireless
operation, and are reliant on transmission of signals through
a permanent transvenous lead. The long-term safety of this
approach is as yet unknown. Possible complications of a
transvenous lead include thrombosis, infection and lead failure,
each of which could result in significant neurological morbidity.
In order to ensure successful and sustained human application,
these complications must be minimized.

Whilst transvenous leads have not been previously utilized
in the neurological setting, a number of established cardiac
applications rely on the long-term presence of leads within veins:
Namely, implantable cardiac defibrillators (ICDs) and permanent
pacemakers (PPMs), collectively known as cardiac implantable
electronic devices (CIEDs). These technologies provide valuable
insights into the risks of intravenous wiring (49), which may
be translated to the neurological setting in order to guide the
development of endovascular neuromodulation leads that are
safe for human use.

Lead Induced Stenosis and Thrombosis
Lead-associated stenosis and thrombosis are amongst the most
serious potential complications of a transvenous lead (49).
Several studies have examined the incidence and risk factors
for these complications in the cardiac setting (32–36). The
quoted rates of lead associated stenosis and occlusion in these
studies are highly variable, due to significant differences in study
methodology. Data from the most robust studies, which were
conducted in a prospective fashion and employed both pre- and
post-implantation venography to establish a baseline occlusion
rate (Table 2), suggest a modest but not insignificant risk of
venous stenosis and occlusion secondary to lead implantation.

Clinical symptoms from lead-associated venous occlusion
are exceedingly rare, due to the indolent nature of stenosis
progression. (40) Stenosis is driven by two interrelated
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TABLE 2 | Venous stenosis and occlusion rates following transvenous pacemaker or defibrillator lead insertion.

References Number of patients and follow-up

duration

Definition of stenosis Baseline

stenosis/

occlusion rate

New stenosis/

occlusion rate

Oginosawa et al. (33) Total 131 patients. Baseline DSV

performed in all. Post implantation

DSV performed in 79 patients, mean

follow-up 44 ± 6 months

Venous narrowing > 60% of the

maximal diameter of the vessel,

measured distal to the stenosis site

Stenosis: 6.8%

Occlusion: 6.8%

Stenosis: 13.2%

Occlusion: 6.2%

Abu-El-Haija et al. (32) Total 150 patients. Baseline DSV

performed in all. Post implantation

DSV performed in 136 patients at 6

months

Maximum (Dmax) and minimum (Dmin)

diameters were measured. Stenosis

defined as Dmin/Dmax < 0.4 and Dmin

less than 5th centile of all Dmax

Stenosis: 5%

Occlusion: 0%

Stenosis: 10%

Occlusion 3.6%

pathogenic mechanisms: endothelial trauma, which results in
fibrous tissue proliferation, and coagulation cascade activation,
resulting in thrombus formation. Both are sufficiently gradual
to allow for the development of collateral draining vessels to
maintain venous return. (40) When symptoms do occur, they
typically include upper limb oedema, cyanosis and pain. (49)

Whilst there are several factors that determine the risk
of venous stenosis (49), a central question concerning lead
design for neurological applications is the role of lead diameter.
Although smaller diameter leads may theoretically reduce
stenosis risk, the clinical data are equivocal. In adult populations,
most implanted cardiac leads range in diameter from 5 to
12 F (1.7 to 4mm). By comparison, the mean diameter of the
innominate vein in adults is 13mm (50). Whilst multiple leads
within the same vein may increase risk of venous occlusion
(34), the majority of adult cohort studies demonstrate no
significant correlation between individual lead diameter and
stenosis risk (33–35).

In contrast, there is some evidence that reducing lead
diameters in pediatric patients, who have smaller caliber veins,
may confer a lower stenosis risk. Bharmanee et al. compared a low
profile 4.1 F (1.4mm) pacing lead (Medtronic 3830 SelectSecure)
with standard 5-7 F leads in a cohort of young patients. Venous
stenosis, defined as>60% reduction in diameter, was lower in the
SelectSecure group (11%) compared to the group with standard
leads (24%) (P = 0.0004) (51). Additionally, Figa et al. indexed
the cross-sectional area of implanted leads to total body surface
area in a cohort of pediatric patients, demonstrating that patients
who developed venous obstruction had a higher mean index than
patients without obstruction (P < 0.0002) (52). These findings
may be more relevant to the neurological setting, given that
intracranial veins have a smaller diameter than cardiac veins (53).
However, further studies are required to establish the tolerable
range of lead to vein ratios that minimize thrombosis risk.

Lead diameter is not the sole determinant of stenosis risk.
Some studies have reported that stenosis is more frequently
observed at the innominate vein or innominate/SVC junction
rather than the subclavian vein, even though the subclavian vein
has a smaller diameter (33). This may be due to the proclivity
for thrombosis to form where leads are adjacent to the vessel
wall, or where there are irregularities in leads, such as tines
or defibrillator coils. (35) Furthermore, some literature suggests
that patients with previously implanted transvenous pacing leads,

whether temporary or permanent, have a higher risk of venous
occlusion compared to patients who have not had any prior
venous instrumentation. (34, 36, 54) Similarly, venous occlusion
appears to correlate with longer procedure duration. (32) These
findings support the concept that venous occlusion is driven by
endothelial damage.

A number of methods to reduce lead-associated thrombosis
have been investigated. Therapeutic anticoagulation may have
some protective benefit. In one randomized controlled trial
(RCT), (55) which involved 101 CIED recipients at high risk of
venous occlusion, defined as having a left ventricular ejection
fraction of <40% or having previous temporary transvenous
pacing, warfarin therapy (target INR 2.0–3.5) reduced the risk
of venous obstruction compared to placebo (risk ratio 0.63, P =

0.018). In contrast, the majority of retrospective cohort studies
do not show an association between the use of anticoagulation or
antiplatelet therapy and reduced stenosis rates (32, 34, 56).

Some investigators have compared the thrombogenicity of
different lead coatings. Overall, there is no difference in
thrombotic risk associated with two main insulation materials
employed in lead design: silicone and polyurethane. (34, 36, 56)
More recently, expanded polytetrafluoroethylene (ePTFE), which
is highly inert and low in friction, has been used to insulate ICD
leads, resulting in lower rates of fibrotic ingrowth and therefore
improved ease of lead extraction, (57, 58). However, there is
limited data on the rates of vein thrombosis and stenosis related
to ePTFE coated leads.

Infection
Infection remains one of the most feared complications
of permanently implanted endovascular devices. In the
cerebrovascular system, infection could result in meningitis,
septic emboli, and subsequent ischaemic complications. Device
associated infection has been comprehensively studied in the
cardiac setting, providing parallels that can be translated to
neurological applications. However, the epidemiology of CIED-
related infections is complex, and must be carefully assessed to
determine how this complication may be prevented or managed
in the neurological setting.

Most contemporary studies with long-term follow-up report
the incidence of CIED-related infection at 1–2% (59–63). Sixty
percent of infections occur in the first year post-implantation,
and are thought to be related to local contamination of
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the device at time of implantation. (64, 65) Infections
occurring after one year are more likely to be due to
blood-borne bacterial seeding. (66) The majority of infections
are caused by skin-dwelling Staphylococcus spp. (63) CIED-
related infections have several different presentations: They
can occur as localized pocket infections, infective endocarditis,
or bacteraemia. (63) Infective endocarditis constitutes about
20% of total device-related infections. (67) Whilst localized
infections can be treated with a course of oral antibiotics,
endocarditis, and bacteraemia necessitate total removal of the
CIED and intravenous antibiotics. (68) This epidemiology
demonstrates that device-related infection has a spectrum of
severity. If extrapolated to the neurological setting, this suggests
that there may be a considerable buffer between a simply
managed, localized infection and a severe complication such as
bacterial meningitis.

Several risk factors, modifiable and non-modifiable, increase
the rates of CIED-related infection. Patient factors include
comorbidities such as diabetes mellitus, end stage renal failure
and heart failure. (63) The use of anticoagulation has been shown
to increase infection rates by one to three-fold. (65, 69) This may
be secondary to an increased risk of bleeding and subsequent
pocket haematoma, which provides a fertile environment for
bacterial replication. (63) Procedural factors have also been
implicated. Longer procedure duration, inexperienced operators
and use of temporary pacing prior to lead implantation all
increase infection rates. (59, 63) The complexity of the implanted
device has a major effect on the likelihood of infection. (63) ICDs,
for example, which are larger devices with larger leads, can have
infection rates up to five-fold greater than PPMs. (70) This is
likely due to an interplay between increased procedure times, the
need for larger incisions, implantation pockets with more skin
tension and potential dead space, and the presence of greater
comorbidities in recipients. (63) Larger leads may also provide
increased surface area for bacterial colonization (71). However,
the relationship between lead diameter and infection rates in
CIEDs remains to be formally investigated.

There are established approaches to infection prevention in
CIEDs, that may be successfully translated to the StentrodeTM

implantation procedure. Periprocedural intravenous antibiotics
provide the mainstay of infection prophylaxis, reducing
infection risk by ∼75%. (64) Whilst protocols vary, typically
an anti-staphylococcal beta-lactam such as flucloxacillin or
cephalosporins, are commenced one to two hours before
implantation, and continued for several hours or days post-
implantation. (64) Given the correlation between device
complexity and infection risk, it also stands to reason that the
StentrodeTM lead and receiver size should be miniaturized
as much as possible without compromising function and
durability, and that the insertion technique should be optimized
to minimize procedural duration. Although never formally
tested in the cardiac setting, there may be rationale to develop
antibiotic impregnated leads, given the presence of controlled
trials that have shown reduced infection rates with antibiotic
coated catheters in different settings, such as central venous
catheters, haemodialysis catheters and ventricular drains. (72) If
this approach were to be employed in the StentrodeTM, the effects

of antibiotic impregnation on signal transmission through the
lead, and the structural integrity of the StentrodeTM attachment
to the lead, would require further study in animal models.

Lead Failure
Intravenous cardiac leads are subject to a chemically and
mechanically stressful environment. (73) Current leads are
optimized to withstand these stresses whilst enabling reliable
transmission of electrical signals and have an average life
expectancy of 10 years. (74) Despite this, some lead models have
suffered earlymechanical failure, providing significant lessons for
future neuro-endovascular lead design.

Key lessons about conductor design can be drawn from
the small diameter (6.6 F) Sprint Fidelis defibrillation lead
(Medtronic). Originally developed on the presumption that
smaller diameter leads have lower thrombosis risk, it has a ten
year failure rate of ∼20%. (74) In the majority of cases failure
is due to conductor fracture. (74) The tendency to fracture is
related to its extreme flexibility secondary to small diameter,
combined with excessive titanium inclusion bodies within the
MP35N conductor alloy (Fort Wayne Metals, Fort Wayne, IN).
(74) Fracture risk is further increased when the lead implantation
point is in the subclavian or axillary vein rather than the cephalic
vein, which subjects the lead to higher bending stress at the
costoclavicular junction (75).

There are several possible countermeasures against conductor
fractures. The first is to minimize bending stress, by keeping
the lead course as anatomically straight as possible, avoiding
implantation points that are close to bony junctions and avoiding
excess redundant lead. (73) Secondly, improvements in metallic
alloys may also reduce fracture rates. For example, the new
MP35N LT alloy, with fewer titanium inclusion bodies than
its precursor, has greater tensile strength, fatigue resistance
and corrosion resistance, and is now the industry standard for
lead construction. (73) Lastly, given the aforementioned weak
relationship between lead diameter and thrombosis (33–35),
excessive reduction in lead diameter should ideally be avoided.

An additional cause of lead failure is insulation abrasion.
This occurs either externally (“outside-in”), resulting in electrical
failure, or internally (“inside-out”), resulting in externalization
of conductors without necessarily impairing electrical function.
(74) Typically, leads are designed with a durable external polymer
coating such as polyurethane, and a flexible inner coating such
as silicone (74). Both components appear to be crucial for the
long-term durability of leads. For example, the RiataTM lead (St
Jude Medical), which is composed of bare silocone and lacks an
external polyurethane layer, has a cable externalization rate of
23.1% and an electrical failure rate of 6.3% (76). To avoid similar
negative outcomes in endovascular neuromodulation leads, close
attention must be paid to the constituents of the lead coating.

DISCUSSION AND FUTURE DIRECTIONS

The intracranial venous system represents a promising
conduit for neuromodulation devices. The ideal endovascular
neuromodulation device would have low thrombogenicity, high
biocompatibility without compromising durability, and carry a
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low infection risk. To achieve this goal, there are several areas in
which further research is necessary.

A number of further optimisations of the StentrodeTM array
are possible. The current StentrodeTM is essentially a modified
self-expanding arterial stent (Solitaire, Covidien) composed of
nitinol, with chemically bonded electrodes (14). The original
application of the Solitaire stent was for endovascular clot
retrieval in the setting of ischaemic stroke (77). It is not
necessarily optimized for long-term deployment within the
venous sinuses or cerebral veins. Whilst previous human studies
of intracranial venous sinus stenting have also successfully used
arterial stents (24–31, 42–47), most of these studies are in the
setting of stenosed sinuses, where self-expanding stents with
high radial forces are justified because they provide intramural
pressure to counteract the stenosis. Normal non-stenotic veins
would have lower transmural pressures and therefore a stent
with higher radial forces may not be necessary. In addition
to radial forces, another key variable in stent design is the
biocompatibility of the stent material, which may influence
in-stent stenosis or thrombosis rates. Novel coatings, such as
the ShieldTM phosphorylcholine coating utilized on pipeline
embolization devices (78), may reduce thrombogenicity and in-
stent stenosis, however animal testing and human trials would be
required to affirm their efficacy in the StentrodeTM setting.

Given the lack of previous experience with intravenous leads
in the brain, lead-associated complications of the StentrodeTM

are perhaps of greatest concern. In order to avoid these
complications, several factors must be addressed. One of these
is lead diameter. Cardiac studies demonstrate an equivocal
relationship between lead diameter and thrombosis risk. (33–35,
51, 52) Additionally, theremay be limited rationale to reduce lead
diameter given the associated increased risk of lead fracture. (74)
Higher quality quantitative data are therefore needed to establish
the optimal lead: vein diameter ratio without compromising
durability or information carrying capacity of the lead, as the
present literature does not adequately address this issue. Another
key factor is the unique anatomical course of the StentrodeTM

lead. The lead may encounter compressive forces at the jugular
foramen or be subject to increased bending stress in the neck
due to repetitive neck motion. Indeed, in Oxley’s study, this issue
caused lead fractures in the neck region in 3 sheep. (14) The
optimumdesignmodifications to prevent fatigue fracture at these
vulnerable sites require further research.

Anatomical variations in cerebral venous drainage patterns
must also be considered during patient selection for the
StentrodeTM implantation procedure. For example, the
StentrodeTM lead must traverse the ostium of the superior

anastomotic vein of trolard (VOT), and may therefore
theoretically occlude the VOT. This may pose a particularly high
risk of territorial cortical venous infarction if there is a lack of
sufficient collateral drainage from adjacent bridging veins on the
same hemisphere. Furthermore, given that the VOT displays
unilateral dominance in up to 50% of cases (79), occlusion of this
vein may have serious implications for overall cerebral venous
blood flow and intracranial pressure if there is an absence of a
co-dominant drainage system on the opposite side. An additional
area of concern are the transverse and sigmoid sinuses, which
may also display unilateral dominance, and must be traversed
by the StentrodeTM lead en route to the internal jugular vein.
Occlusion of the transverse sinus on the left side may result
in an aphasia due to its drainage of the temporal lobe (80).
Furthermore, in patients where there is a significant difference
in transverse sinus caliber, occlusion of the dominant sinus may
have catastrophic sequelae. Appropriate patient selection using
pre-operative cerebral venograms is necessary to minimize the
risk of these complications.

Endovascular neuromodulation is a promising field, with
numerous potential diagnostic and therapeutic applications.
However, significant hurdles must be crossed before this
technology reaches routine clinical practice. Robust preventative
strategies must be devised in order to minimize complications
such as stent- or lead-associated venous thrombosis, device-
associated infection, and hardware failure. To optimize the
StentrodeTM for future clinical usage, further animal studies and
human trials of the device are ultimately necessary. Indeed, the
ongoing SWITCH trial, which will test the feasibility and safety
of this device in 5 recipients over a follow-up period of 12
months, will provide highly anticipated human data to guide this
optimisation process.
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