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Seizures often exhibit striking circadian-like (∼24-h) rhythms. While chronotherapy has

shown promise in treating epilepsy, it is not widely used, in part because the patterns

of seizure rhythmicity vary considerably among patients and types of epilepsy. A better

understanding of the mechanisms underlying rhythmicity in epilepsy could be expected

to result in more effective approaches which can be tailored to each individual patient.

The excitatory neurotransmitter glutamate is an essential modulator of circadian rhythms,

and changes in the extracellular levels of glutamate likely affect the threshold to seizures.

We used a reverse translational rodent model of mesial temporal lobe epilepsy (MTLE)

combined with long-term intracerebral microdialysis to monitor the hourly concentrations

of glutamate in the seizure onset area (epileptogenic hippocampus) over several days.

We observed significant 24-h oscillations of extracellular glutamate in the epileptogenic

hippocampus (n = 4, JTK_CYCLE test, p < 0.05), but not in the hippocampus of

control animals (n= 4). To our knowledge, circadian glutamate oscillations have not been

observed in a seizure onset region, and we speculate that the oscillations contribute to

the rhythmicity of seizures in MTLE.

Keywords: chronobiology, excitotoxicity, hippocampus, neurotransmission, seizures, circadian, epilepsy

INTRODUCTION

Many physiological and pathological processes exhibit 24-h cycles, such as melatonin secretion
(1), body temperature (2), cognitive impairment in patients with Alzheimer’s disease (3), major
depressive disorders (4), and spontaneous seizures in humans and animals with epilepsy (5–8).
These cycles may be due to endogenous circadian rhythms, exogenous cyclical factors, or both
(6, 7, 9).

Knowledge about biological rhythms in diseases such as epilepsy is important because the
information obtained will likely result in more precise and effective treatments of seizures. For
example, studies have shown that adjusting the dose of antiseizure drugs according to 24-h cycles
results in better control of seizures and fewer drug-related side effects (10, 11). However, while
chronotherapy of seizures has shown promise, the approach is not widely used due to critical
gaps in knowledge. For example, the patterns of seizure periodicity are highly variable, making
it difficult to implement a “one size fits all” therapeutic approach. This variability may be caused
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by the combined effects of several factors such as the
expression of circadian core genes (12), day/night patterns
(13), sleep wake cycles (14), location of the seizure onset
area, and intrinsic metabolic rhythms (15). Understanding the
mechanisms underlying seizure periodicity is important as it may
allowmore precise and effective approaches which can be tailored
to each patient.

The excitatory neurotransmitter glutamate is an essential
modulator of circadian rhythms (16), and studies have shown
that extracellular glutamate levels fluctuate during the circadian
cycle in the suprachiasmatic nucleus, striatum, and nucleus
accumbens of rats (15). Moreover, the circadian changes in
extracellular glutamate levels are likely driven by astrocytes
and may play a role in the circadian timekeeping of the
suprachiasmatic nucleus (17). Because glutamate has potent
excitatory effects, changes in extracellular glutamate levels are
also likely to affect the threshold for seizures (18). In fact,
extracellular glutamate is chronically elevated in the seizure onset
region (i.e., the epileptogenic hippocampus) in patients with
mesial temporal lobe epilepsy (MTLE) (19) and administration of
glutamate analogs to the hippocampus of rodents causes a clinical
syndrome similar to MTLE (20, 21).

Seizures and epileptiform discharges in patients with MTLE
exhibit 24-h cycles, which may be driven by endogenous
circadian rhythms or exogenous cyclical factors (6, 7, 9, 22).
However, the role of glutamate in the chronobiology of MTLE
is unknown. Thus, we used a method that allows continuous in
vivo measurement of extracellular brain glutamate over several
days—long-term microdialysis—to track the glutamate levels in
the seizure focus in a reverse translational rodent model of MTLE
(23). Our hypothesis was that glutamate in the seizure onset
region (epileptogenic hippocampus) would exhibit significant
circadian concentration changes, consistent with a role for the
neurotransmitter in the chronobiology of MTLE.

MATERIALS AND METHODS

Animals and Chemicals
Eight male Sprague Dawley rats (400–500 g) (Harlan,
Indianapolis, IN) underwent at least 1 week of acclimation
prior to surgery. They were housed in a temperature-controlled
colony room (21–23◦C) on a strict 12 h: 12 h light: dark cycle
with lights on from 07:00 to 19:00. All procedures were approved
by the Institutional Animal Care and Use Committee at Yale
University. The chemicals were of analytical grade and purchased
from Sigma-Aldrich (St. Louis, MO) unless specified otherwise.

Creation of Epileptic Model and
Implantation of Microdialysis Guide
Cannulas
The animals were anesthetized with 0.5–2% isoflurane (Baxter,
Deerfield, IL) in O2 and placed in a stereotaxic frame (David
Kopf Instruments, Tujunga, CA). A 30G brain infusion cannula
(Plastics One, Roanoke, VA) connected to an Alzet osmotic pump
(model 2004, Durect Corp., Cupertino, CA) was implanted into
the right entorhinal cortex, as described in (24). The pump

was filled with either methionine sulfoximine (MSO, 2.5 mg/mL
dissolved in Dulbecco’s phosphate buffered saline, PBS) (n = 4)
or with PBS (n = 4) (24). All animals were implanted with a
microdialysis guide cannula (4mm, Eicom, SanDiego, CA) in the
right hippocampus using the following coordinates from bregma:
AP−6.2mm andML 4.5mm along with 2 epidural stainless steel
screw electrodes positioned over the left and right hippocampus.
The implants were secured by a head cap using UV light cured
acrylated urethane adhesive (Loctite 3106 Light Cure Adhesive,
Henkel, Rocky Hill, CT).

Microdialysis and EEG Acquisition
Two weeks after implantation of the osmotic pump, an Eicom
AZ-4-3 microdialysis probe (MWC 50 kDa) was introduced
into the guide cannula. The rats were subsequently single
housed and connected to a movement responsive caging system
(Raturn; Bioanalytical Systems, West Lafayette, IN). The Raturn
system consists of a cage placed on a motorized platform to
facilitate untangled microdialysis and simultaneous video-EEG
recordings. The latter was performed using the PowerLab EEG
acquisition system (ADInstruments Inc., Colorado Springs, CO)
and digital video cameras with infrared light detection capability
(Foscam F18918W; Houston, TX). The probes were perfused
at a rate of 0.5 µL/min with sterile artificial extracellular fluid
(aECF) containing 147mMNaCl, 3mM KCl, 1.2mM CaCl2, and
1mM MgCl2, with pH adjusted to 7.2. Samples were collected
in 1-h aliquots continuously for several days using a fraction
collector cooled to 5 ◦C (Eicom) followed by transfer to a−80◦C
refrigerator within 12 h of acquisition.

Seizure Detection
Seizures were identified by visual inspection of the EEG record.
As detailed in (25) seizures were defined by EEG characteristics
and by the duration of the discharge. The video record was
examined to stage the seizures, using a modification of Racine’s
criteria (26), as follows: subclinical, no remarkable behavior; stage
1, immobilization, eye blinking, twitching of vibrissae and mouth
movements; stage 2, head nodding, often accompanied by facial
clonus; stage 3, forelimb clonus; stage 4, rearing; stage 5, rearing,
falling and generalized convulsions.

Measurement of Glutamate
Glutamate was quantified by liquid chromatography—tandem
mass spectrometry (LC-MS/MS) using the AccQ-Tag Ultra
Derivatization Kit (Waters, Milford, MA). Briefly, 5 µL of
microdialysis sample, calibrator, or quality control sample was
added to 75 µL of borate buffer containing U-13C-glutamate
(Cambridge Isotope Laboratories, Tewksbury, MA). Twenty µL
of derivatizing agent was added and the solution was heated to
55◦C for 10min. The samples were processed by LC-MS/MS
(Xevo TQS mass spectrometer, Waters) using positive electron
spray ionization. For additional methodological details see Zhou
et al. (27). The recovery (probe efficiency) was determined in
a separate experiment by immersing 3 probes in a standard
solution of glutamate and perfusing them with aECF at a rate
of 0.5 µL/min for 6 h. The glutamate concentrations in the
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TABLE 1 | Seizures in Epileptogenic (MSO-infused) animals.

Animal Total number of seizures Racine stage 1 Racine stage 2 Racine stage 3 Racine stage 4 Racine stage 5

MSO A 10 10 0 0 0 0

MSO B 4 1 0 0 1 2

MSO C 5 1 0 0 3 1

MSO D 7 4 0 1 2 0

Total number of seizures exhibited by each epileptogenic (MSO) animal. Columns 3–7 represent the number of seizures by each animal categorized according to the Racine stage.

dialysate and the standard solution were determined by LC-
MS/MS and the dialysis glutamate concentration was divided
by the standard concentration to determine the recovery, which
was 0.36 (36%). The glutamate concentrations in the rat dialysis
samples were divided by 0.36 to more accurately reflect the
brain concentration.

Statistical Analysis
Student’s t-test was used to compare average glutamate
concentrations from non-epileptogenic and epileptogenic
hippocampi. Outliers in the glutamate measurements, i.e., values
of 1.5 interquartile range above the third quartile or below the
first quartile, were removed from the analysis [see (28)]. For
assessments of glutamate cyclicity, the concentration at each hour
of measurement was divided by the average concentration over
3 consecutive days for each animal, expressed as a percentage.
The JTK_CYCLE algorithm (29, 30) (R v3.6.0, Vienna, Austria)
with a period set to 24 was used to test for a possible circadian
rhythm of extracellular glutamate. This algorithm has been
widely implemented to detect chemical rhythms in humans and
animals (31, 32). It uses a non-parametric rank correlation to
detect significant rhythms. A cosinor linear model fit were used
to graphically represent the rhythms (33). P < 0.05 was deemed
to be statistically significant.

RESULTS

We first quantified the number of seizures in the epileptogenic
(MSO) and non-epileptogenic (PBS) animals. All four MSO
animals exhibited recurrent seizures during the microdialysis
phase. The number of seizures was 6.5 ± 2.7 (mean ± SD).
(Table 1) gives details about the seizure severity for each animal.
None of the PBS animals exhibited electrographic seizures.

Next, we determined the average extracellular glutamate
concentration over several days (average 4.4 days SD ± 1.6) in
the non-epileptogenic (PBS-infused, n = 4) and epileptogenic
(MSO-infused, n = 4) hippocampus. Extracellular glutamate
was not significantly different between the two experimental
groups (non-epileptogenic: 8.0µM vs. epileptogenic: 11.6µM,
Figure 1).

The hourly concentration changes of glutamate were
subsequently assessed in the non-epileptogenic (Figure 2A, n =

4) and epileptogenic (Figure 2B, n = 4) hippocampi over the
first 72 h for all animals. Intriguingly, only the epileptogenic

FIGURE 1 | Average extracellular glutamate concentrations in control

(PBS-infused, n = 4) and epileptic (MSO-infused, n = 4) hippocampi. The

concentrations were not significantly different between the groups

(Student’s t-test).

hippocampi exhibited significant glutamate rhythmicity (p <

0.001, Figure 2B).
Finally, we evaluated the rhythmicity of glutamate for each

animal separately. Only 1 of 4 non-epileptogenic hippocampi
but three of the four epileptogenic hippocampi exhibited
significant circadian rhythmicity (Table 2). Moreover, the
glutamate concentration was found to be higher during the
dark period of the 24-h cycle in both non-epileptogenic and
epileptogenic animals. Table 2 lists the amplitude and phase
(lag) of the glutamate cycles for both groups as well as for the
individual animals.

DISCUSSION

The novel finding of this study is that extracellular glutamate
exhibits 24-h concentration changes in the seizure onset area
in a model of MTLE. While other investigators have described
24-h oscillations of glutamate in the suprachiasmatic nucleus,
the nucleus accumbens, and the striatum (15), this is the first
demonstration of such changes in an epileptogenic region of
the brain.
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FIGURE 2 | Circadian changes in extracellular glutamate concentrations in (A) non-epileptogenic (PBS-infused, n = 4) and (B) epileptogenic (MSO-infused, n = 4)

hippocampi. There is a significant circadian concentration change in the epileptogenic hippocampus (JTK_CYCLE, p < 0.001) but not in the control hippocampus.

Each dot represents the hourly (relative) concentration of glutamate in non-epileptogenic (blue) and epileptogenic (red) hippocampi. n.s., not significant.

The enzyme glutamine synthetase (GS) is critical for
metabolism of glutamate and ammonia in the central nervous
system, and changes in the expression level or activity of GS
have been linked to several brain disorders, including epilepsy
(34). For instance, the activity of GS is diminished by ∼40% in
parts of the hippocampal formation in human patients with drug-
resistant MTLE (34). Moreover, experimental inhibition of GS in
the hippocampal formation of laboratory rats by chronic infusion
of methionine sulfoximine (MSO) into the structure, replicates
several features of human MTLE (23, 24).

The concentrations of extracellular brain glutamate are
under strict homeostatic control due to the potent excitotoxic
effects of this amino acid. The extracellular levels are primarily
determined by release of the amino acid from axon terminals
during neurotransmission and by cellular uptake via several
types of amino acid transporters [EAATs, see (35) for an
excellent review]. It is interesting to note that circadian genes
modulate the expression of the most abundant transporters in
the neocortex and hippocampus, EAAT1 and EAAT2, thereby
affecting the capacity for extracellular glutamate clearance (36).
For example, deletion in the PAS domain of the period gene
Per2 in mice is associated with lowered expression of EAAT1
and decreased glutamate uptake (37). Likewise, loss of function
mutations in the circadian genes Npas2, and CLOCK, are
associated with decreased expression of EAAT2 mRNA (38,
39). Thus, we speculate that the 24-h oscillations of glutamate
reported here could be caused by genetically driven, circadian
changes in glutamate transporters in epileptogenic regions of
the brain.

While increased glutamatergic signaling has been linked to
the causation of some epilepsies (19, 40), glutamate is also an
integral part of the sleep wake regulation system. Recent studies
on the neuroanatomical regulation of sleep and wakefulness
implicate three main neurotransmitter systems in the basal
forebrain: cholinergic, GABAergic, and glutamatergic, with the
glutamatergic neurons firing most rapidly during wakefulness

TABLE 2 | Wave properties of glutamate oscillations.

Animal P-value Amplitude (%) Lag (hours)

PBS A n.s. 23.74 15

PBS B n.s. 3.44 23

PBS C n.s. 11.70 1.5

PBS D <0.001 14.19 1.5

MSO A <0.001 19.58 14

MSO B n.s. 5.29 16

MSO C <0.01 15.13 0.5

MSO D <0.001 21.61 22.5

PBS–group n.s. 4.60 21

MSO–group <0.001 6.60 21.5

Significance level (p-value), amplitude, and phase-lag of extracellular hippocampal

glutamate concentrations over the 24-h cycle in control (PBS-infused) and epileptic (MSO-

infused) rats. The data were analyzed using the JTK_CYCLE algorithm (see Materials and

Methods for details). Abbreviation: n.s., not significant.

(41). It is established that temporal lobe seizures occur at a
preferred time of day in humans (7, 42–44), as well as in
animal model of MTLE (5). Although we do not have a definite
explanation as to what drives this process, it is likely that
glutamatergic neurons within several brain regions, including
the parabrachial, pediculopontine, lateral hypothalamic, and
supramammillary areas play a role (45). Thus, we postulate
that the observed peak levels of extracellular glutamate in the
seizure onset area contributes to the modulation of neuronal
excitability and epileptiform activity, while in normal animals
these peak levels are dampened, and does not result in
epileptiform activity.

This is one of the first studies to link periodicity of glutamate
to seizure cyclicity; however, at this time, we can only speculate
on the cause and functional consequences of the observed
glutamate oscillations in epilepsy. Moreover, we do not know
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whether other periodic neurochemical changes play a role in
epilepsy, if the changes vary with types of epilepsy, or if the
changes are implicated in the modulation of seizures in humans
with epilepsy. Additional studies are needed to resolve these
issues. Finally, while we have focused on epilepsy, several other
brain disorders are associated with aberrant glutamate signaling
and circadian features, such as Alzheimer’s disease (46) and
major depressive disorders (4). By understanding the causes and
consequences of the circadian glutamate rhythm in epilepsy, we
may gain new insight into the chronobiological mechanisms of
other neurological and psychiatric disorders as well.
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