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Background: REEP1 is a common cause of autosomal dominant hereditary spastic

paraplegia (HSP) but is rare in China. The pathological mechanism of REEP1 is not

fully understood.

Methods: We screened for REEP1 mutations in 31 unrelated probands from Chinese

HSP families using next-generation sequencing targeting pathogenic genes for HSP and

other related diseases. All variants were validated by Sanger sequencing. The proband

family members were also screened for variants for the segregation analysis. All previously

reported REEP1 mutations and cases were reviewed to clarify the genetic and clinical

features of REEP1-related HSP.

Results: A pathogenic mutation, REEP1c. 125G>A (p.Trp42∗), was detected in a pure

HSP family from North China out of 31 HSP families (1/31). This locus, which is located in

the second hydrophobic domain of REEP1, is detected in both Caucasian patients with

complicated HSP phenotypes and Chinese pure HSP families.

Conclusion: REEP1-related HSP can be found in the Chinese population. The 42nd

residue is a novel transethnic mutation hotspot. Mutations in this spot can lead to both

complicated and pure form of HSP. Identification of transethnic hotspot will contribute to

clarify the underlying pathological mechanisms.

Keywords: hereditary spastic paraplegia, receptor expression-enhancing protein 1,mutation analysis, transethnic,

hotspot

INTRODUCTION

Hereditary spastic paraplegia (HSP) comprises a group of neurodegenerative diseases characterized
by spastic paraplegia of the lower limbs (1). Hereditary spastic paraplegia is classified as pure
or complicated HSP based on whether impairment is restricted to the pyramidal system (2).
Approximately 79 pathogenic genes for HSPs have been found (3). These diseases can be inherited
in various ways, including autosomal dominant (AD), recessive, X-linked, mitochondrial, and other
mechanisms (4). The only treatment to date for HSP is symptomatic treatment. Because HSPs are
monogenic diseases, gene therapies, and precision medicine may be appropriate (3).

Loss-of-function mutations of REEP1 (receptor expression enhancing protein 1), a mediator of
endoplasmic reticulum (ER)–mitochondrial interactions, can lead to AD HSP (5–7). In a previous
study of HSP cohorts, REEP1 mutations were found to be rare in the Chinese population (8).
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Here, we screened for REEP1 mutations using next-generation
sequencing (NGS) in 31 Chinese HSP families and performed a
general review of REEP1-related HSP, which helped to elucidate
the genetic and clinical features of this disease.

METHODS

Subjects
From January 2012 to September 2019, 31 Chinese families
clinically diagnosed with HSP according to Harding’s criteria
(2) in Peking University Third Hospital were enrolled in this
study. All the probands and their relatives received detailed
clinical examinations. All participants provided written informed
consent. The study was approved by the Peking University Third
Hospital ethics committee.

Genetic Test and Mutation Analysis
Peripheral blood was obtained from all the participants, and
DNA was isolated. Next-generation sequencing targeting
∼160 genes related to Charcot-Marie-Tooth disease, HSP, and
amyotrophic lateral sclerosis, including REEP1(NM_022912.2),
was conducted (the gene list and detailed sequencing and
mutation analysis procedure are shown in Supplementary File

and Supplementary Table 1). All identified variants were
validated by Sanger sequencing. The relatives of the probands
were also screened for these variants via Sanger sequencing
for the segregation analysis. The detailed Sanger sequencing
procedure for the identified REEP1 variants is shown in
Supplementary Table 2.

RESULTS

Thirty-one unrelated HSP probands and their relatives from
mainland China were recruited for the study (Table 1). Twenty-
one probands were male, and 10 were female. The average age
at onset was 33.8 ± 13.3 years. Ten families presented with a
complicated phenotype. The accompanying symptoms included
neuropathy (5/10), extrapyramidal impairments (parkinsonism
1/10, dystonia 1/10), white matter lesions (1/10), dysphagia
(1/10), deafness (1/10), nystagmus (1/10), and cognitive
impairment (1/10).

Genetic Results
Genetic variants in pathogenic genes of HSP were identified
in eight probands, with a diagnostic rate of 25.8%. Three of
them were known causative mutations for HSP (Table 2) (9–
11). Two known pathogenic mutations and a novel mutation
of SPAST were detected in three probands (9.7%). The possible
damaging variants were listed in Supplementary Table 3,
including KIAA0196 (1/31), AP5Z1 (1/31), DDHD1 (1/31), and
SPG7 (1/31). A previously reported (9) pathogenic non-sense
mutation of REEP1 c. 125G>A (p.Trp42∗) (RefSeq NM_022912)
in exon 3 was detected in a pure HSP proband via NGS and then
validated by Sanger sequencing (Figure 1).

This mutation was detected in all affected members but not
the unaffected ones via Sanger sequencing, which is consistent
with an AD model of inheritance. Moreover, the mutation was

TABLE 1 | Clinical features of the HSP cohort in this study.

Total 31

Sex: male/female 21/10

Age at onset of the probands (mean ± SD) 33.8 ± 13.3 years

Phenotypes (complicated) 10 (32.3%)

Polyneuropathy 5

Extra pyramidal signs(parkinsonism, dystonia) 2

White matter lesion 1

Dysphagia 1

Deafness 1

Nystagmus 1

Cognitive impairment 1

Pure 21 (67.7%)

not found in population databases such as ExAC and 1,000
Genomes. Obvious cosegregation was found in the examined
family. Next-generation sequencing showed no pathogenic or
likely pathogenic mutations in other causative genes of spastic
paraplegia such as SPAST and so on. The phenotype of these
individuals was also consistent with a previous case. Therefore,
we concluded that REEP1 c.125G>A (p.Trp42∗) is a pathogenic
mutation in this family.

Clinical Manifestation of the HSP Family
With REEP1 Mutation
All the cases in the family from North China with the mutation
were consistent with pure HSP (Figure 1B). The proband (III-
4) was a 51-year-old woman who complained of walking
difficulty and lower limb stiffness starting at ∼20 years of age.
Recently, she had also experienced urgency of urination without
urinary incontinence. Her symptoms progressed slowly during
subsequent years. Her family members (I-1, II-1, III-3, III-5, and
III-6) had similar symptoms that were limited to lower limb
stiffness and urgency of urination. They all received detailed
clinical examinations. Other systems were normal. The age at
onset for III-3, III-4, III-5, and III-6 ranged from 10 to 30 years.
Patient III-6 died of a traffic accident when he was 31 years old.

DISCUSSION

In this study, genetic variants in HSP genes were detected in eight
probands. The frequencies of rare HSP genes in our study are
similar to those in a previous study (12). Although SPAST was
the most common cause for ADHSP (12), accounting for ∼50%
of ADHSP families in China (13), known pathogenic SPAST
mutations were detected in only two probands in our cohort
(the detailed information are shown in Supplementary File).
That may be due to different sequencing methods and small
sample size. (We used NGS-based method to detect copy number
variation in Supplementary File). Our study may indicate
the advantages and disadvantages of NGS. Other sequencing
methods could not be substituted.
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TABLE 2 | Pathogenic and likely pathogenic mutations of REEP1 and SPAST detected in the HSP cohort.

Gene Nucleotide

change

Amino acid change Function prediction Frequency in population

database

Reference Pathogenicity

REEP1 c. 125G>A p.Trp42* Disease-causing 0 (9) Pathogenic (PVS1,PM1,PP1-PP5)

SPAST c.1664A>G p.Asp555Gly Deleterious/probably

damaging/disease-causing

0 (10) Likely pathogenic (PM2, PP1-5)

SPAST c.1176dupT p.Lys393* Deleterious/probably

damaging/disease-causing

0 (11) Pathogenic (PVS1, PM1,2,4, PP1-5)

REEP1, receptor expression-enhancing protein 1; SPAST, spastin; PVS, very strong evidence of pathogenicity; PM, moderate evidence of pathogenicity; PP, supporting evidence of

pathogenicity. Functional prediction was made by PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2), SIFT-2 (http://sift.jcvi.org) and Mutation Taster (http://mutationtaster.org). Other

unreported possible pathogenic mutations were not shown in this table.

FIGURE 1 | Family pedigree and genomic sequencing electropherograms of the investigated HSP family. (A) Pedigree of the investigated family. Males and females

are represented by squares and circles, respectively, and filled and unfilled symbols represent affected and unaffected individuals, respectively. The crossed symbols

indicate deceased individuals. W, wild type; M, mutated. (B) Genomic sequencing electropherograms. The c.125G>A(p.Trp42*) heterozygous non-sense mutation of

REEP1 was detected in this HSP family. This mutation cosegregated with an early-onset pure HSP phenotype, supporting the notion that this mutation is pathogenic

for HSP.

A known pathogenic mutation, p.W42∗, in the second
hydrophobic domain (HD) of REEP1, was detected, which
was previously detected in a pure HSP patient in Norway
(9). W42R is a missense mutation in the same amino acid
that was found to cause complicated HSP with neuropathy in
French Caucasians (14). Both non-sense and missense mutations

at the W42 locus have been found to be pathogenic in
different ethnicities, indicating that this locus is a transethnic
hotspot that plays an important role in the pathogenesis of
HSP. Mutations in this locus can lead to both pure and
complicated phenotypes, indicating substantial heterogeneity of
this transethnic hotspot.
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FIGURE 2 | Illustration of the REEP1 protein. REEP1 contains 2 hydrophobic domains and a conserved TB2/DP1/HVA22 domain. There is also a miRNA target region

in the 3′ UTR of REEP1 mRNA. All reported pathogenic mutations of REEP1 are shown except for 2p11.2-2p12 deletions. HD, hydrophobic domain.

TABLE 3 | REEP1 mutation rate in different regions.

Region Result Reference

China 0/120 (54 ADHSP families and 66 sporadic cases) (13)

1/31 (31 HSP families) Our study

Germany 4.3% ADHSP (162 pure HSP families) (26)

The United Kingdom 2.3% ADHSP (133 families and 80 cases) (27)

The Netherlands 7.4% in SPAST negative AD HSP (27 families and 110 cases) (28)

Europe 6.5% all HSP (90 families) (7)

France 4.5% ADHSP (175 families) (14)

North America 5.0% all HSP (120 patients) (29)

Poland 3.2% all HSP (85 families and 131 cases) (31)

Korea 0/27 (27 patients) (36)

Japan 4.1% ADHSP (66 families and 63 cases) (24)

ADHSP, autosomal dominant hereditary spastic paraplegia; SPAST, spastin.

REEP1 is a causative gene of HSP and distal hereditary motor
neuropathy type 5B (15), and REEP1-related diseases also include
2p11.2-2p12 deletion syndrome (16). The extension of the REEP1
protein and mislocalized REEP1 can lead to “toxic gain of
function” and result in dHMN (15, 17), whereas loss of function
may lead to HSP (5–7).

The REEP1 protein is located in the mitochondria and ER
and participates in the functional activities of organelles, such
as the interaction between the tubular ER and microtubules
and peripheral ER shaping (5–7). To date, ∼60 pathogenic
mutations of REEP1 have been reported, including missense
mutations, non-sense mutations, exon deletions, splicing site
mutations, and miRNA binding site mutations (Figure 2). The

REEP1 protein has a conserved TB2/DP1/HVA22 domain that
may have a chaperone-like function (7, 18). Additionally, it
contains a mitochondria-localization domain (6) (between aa116
and aa157 in NP_075063.1) and a cytoplasmic C-terminus that
is in contact with microtubules (19). There is also a highly
conserved miRNA binding site in the 3′ UTR of REEP1 mRNA,
and pathogenic mutations in this region influence its post-
transcriptional regulation (20). Many missense mutations of
REEP1 are located near the N terminus (20, 21), indicating that it
is a hotspot region. Mutations in the N terminus (before the 55th
amino acid) influence the localization of REEP1 in the ER (21).
This region contains two HDs, HD1 in the N terminus, and HD2
near the middle, which is located in the conserved domain. HD2
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forms a hairpin-like structure to interact with SPAST and ALT1
in the ER (19, 21). Their interactions mediate ER shaping and
are very important for the ER network between the cell body and
axon in motor neurons (22). Disruption of the hairpin domain
harms the ER organization in distal axons, which may explain the
length-dependent degeneration of upper motor neurons in HSP
(22). The novel transethnic hotspot W42 is located in the hairpin
domain. Thus, it can disturb the normal function of this domain
and lead to pathogenesis.

More than 70 REEP1-related HSP pedigrees have been
reported (7, 9, 14, 15, 17, 20, 23–35), and their genotypes and
phenotypes are summarized in Supplementary Table 4. There
is generally an early age at onset, commonly 0–20 and 30–35
years of age (14). The mutation of REEP1 typically results in AD
pure HSP but can cause complicated HSP. The accompanying
symptoms include neuropathy (23), tremor, and cognitive
impairment (14). Few mutations can lead to both complicated
and pure HSP phenotypes. The clinical manifestations can also
vary among different ethnicities.

The mutation rate of REEP1 in HSP varies in different
regions (7, 13, 14, 24, 26–29, 31, 36) (Table 3). Although
REEP1 was reported to be the third most common cause
of HSP in some countries (20), previous screening studies
in Chinese patients did not find pathogenic REEP1 variants
(8, 13). In the present study, we found one family with
pathogenic REEP1 mutation out of 31 HSP families, which
is uncommon.

CONCLUSION

REEP1-related HSP can be found in the Chinese population. The
42nd residue is a novel transethnic mutation hotspot. Mutations
in this spot can lead to both complicated and pure form of HSP.

Identification of transethnic hotspot will contribute to clarify the
underlying pathological mechanisms.
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