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Pathogenic variants in the gene encoding RAB39B, resulting in the loss of protein

function, lead to the development of X-linked early-onset parkinsonism. The gene is

located within a chromosomal region that is susceptible to genomic rearrangement,

and while an increased dosage of RAB39B was previously associated with cognitive

impairment, the potential role of dosage alterations in Parkinson’s disease (PD) remains

to be determined. This study aimed to investigate the contribution of the genetic variation

in RAB39B to the development of early-onset PD. We performed gene dosage studies

and sequence analysis in a cohort of 176 individuals with early-onset PD (age of onset

≤50 years) of unknown genetic etiology. An assessment of the copy number variation

over both coding exons and the 3′ untranslated region (UTR) of RAB39B did not identify

any alterations in gene dosage. An analysis of the UTRs identified two male individuals

carrying single, likely benign, nucleotide variants in the 3′UTR (chrX:154489749-A-G

and chrX:154489197-T-G). Furthermore, one novel variant of uncertain significance was

identified in the 5′UTR, 229 bp upstream of the start codon (chrX:154493802-C-T). In

silico analyses predicted that this variant disrupts a highly conserved transcription factor

binding site and could impact RAB39B expression. The results of this study do not

support a significant role for genetic variation in RAB39B as contributing to early-onset

PD but do highlight that additional molecular studies are required to determine the

mechanisms regulating RAB39B expression and their association with the disease.

Genetic investigations in larger parkinsonism/PD cohorts and longitudinal studies of

individuals with cognitive impairment due to an altered dosage of RAB39Bwill be required

to fully delineate the contribution of RAB39B to parkinsonism.
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INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative condition that manifests with a
spectrum of motor symptoms including tremor, rigidity, bradykinesia, and gait disturbances.
PD can be classified according to initial clinical presentation as early-onset PD (<50
years) or late-onset PD (>60 years). Despite a difference in disease onset, a post-mortem
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TABLE 1 | Sequencing primers.

Primer name Sequence Amplicon size

hRAB39B 5′UTR F TGGCAGTTTGAACGACAGAG 397bp

hRAB39B 5′UTR R GCTCTGCAGGTCTCCTTGG

hRAB39B 3′UTR 1F CATGCTCTCCTACTTGAACTGAA 1,000bp

hRAB39B 3′UTR 1R CCTGGCCAAGTGATTTTCAT

examination of the central nervous system in both classifications
demonstrates the hallmark pathological features of the disease,
including neuron loss in the substantia nigra pars compacta
and the presence of intraneuronal α-synuclein (α-syn)-positive
inclusions, termed as Lewy bodies.

Currently, the molecular mechanisms underlying the
development and the progression of PD remain largely
unknown, and most disease cases are idiopathic. However, in
a subset of ∼10% of cases, the disease etiology is genetic—the
result of a monogenic mutation (1). Pathogenic variants in
PD-associated genes can be point mutations or small in/dels that
affect protein function or gene expression or can be larger copy
number variants (CNV) that impact gene dosage. For example,
protein-disrupting mutations and gene dosage alterations,
which do not encompass the entire gene and result in loss of
function, are an important mutation mechanism in recessive
parkin-mediated PD (2). Similarly, multiplication of the entire
gene encoding α-syn (SNCA), with associated increased dosage,
expression, and elevated SNCA steady-state level, correlates
with severity and disease progression in dominant PD (3–5).
Genome-wide association studies have also identified additional
risk loci contributing to the burden of the disease, including
susceptibility alleles that can modulate the risk of developing
PD through dysregulated gene expression. For example, the
non-coding polymorphisms of the SNCA locus that impact
promoter or enhancer activity correlate with a strong risk of
developing sporadic PD (6–8).

Loss-of-function mutations in RAB39B were originally
identified in two independent families who displayed the clinical
features of early-onset Parkinson’s disease (EOPD) with non-
progressive intellectual disability and macrocephaly (9). RAB39B
is a member of the RAB GTPase family with a putative role
in vesicle trafficking. Several subsequent studies of the coding
sequence and the splice junctions of RAB39B in large PD cohorts
failed to identify additional pathogenic mutations, suggesting
that the single-nucleotide variants in RAB39B that directly
disrupt protein function are a rare cause of PD (10–14). However,
genetic validation of the gene has been established by the
identification of six additional causal RAB39Bmutations, to date,
in unrelated PD patients and families [reviewed in Ciammola
et al. (15)]. Notably, a pedigree of European origin carrying a
missense mutation in RAB39B (c.574G>A, p.G192R) manifested
X-linked dominant PD in males, but the heterozygous females
presented with later-onset parkinsonism and no intellectual
disability (16). This potentially reduced penetrance in females
suggests that the relative level of RAB39B expression may have
an impact on the clinical presentation of PD.

RAB39B is located at Xq28 in a region flanked by low-
copy repeats, making it susceptible to chromosomal aberrations
mediated by a non-allelic homologous recombination. Indeed
duplications at the Xq28 region, including the genes methyl
CpG-binding protein 2 and GDP dissociation inhibitor 1, are
frequently observed in males with intellectual disability and
brain malformations (17). A single study investigating RAB39B
copy number in a familial Chinese PD cohort (n = 195) did
not identify any cases with dosage alterations (12). However,
duplication and triplication of RAB39B have been previously
reported to be associated with the development of X-linked
intellectual disability (XLID) in male children (18, 19). It was not
reported if the affected individuals presented with a movement
disorder at the time of assessment.

The collective results, to date, have implicated RAB39B in the
development of EOPD and parkinsonism. Although an altered
dosage of RAB39B has been reported to cause XLID, it has not
been associated with the development of PD to date. To further
investigate the potential role of RAB39B in PD, we screened an
EOPD cohort for CNV that could lead to an altered dosage of
the gene. In addition, we performed sequence analysis of the
untranslated regions (UTR) and immediately upstream of the
putative transcription start site (TSS) to identify variants with the
potential to dysregulate RAB39B expression.

MATERIALS AND METHODS

Patient Samples
Prior to commencing the study, appropriate institutional ethics
approval and informed consent from patients were obtained.
Genomic DNA isolated from the whole blood of 232 individuals
diagnosed with EOPD (onset ≤50 years) was made available
by author GDM. This EOPD cohort, consisting of 71 females
and 161 males with mean age of onset of 42.7 ± 6.5 years,
comprises participants in the Queensland Parkinson’s Project in
Queensland, Australia (20) and is representative of a Caucasian
population. All patient DNA samples were collected under
protocols approved by the Griffith University Human Research
Ethics Committee (Project ESK/04/11/HREC). The samples were
previously sequenced to exclude mutations in known PD-
associated genes, including SNCA (MIM 163890), PARK2 (MIM
602544), DJ1 (MIM602533), PINK1 (MIM 608309), and LRRK2
(MIM 609007). The samples were also previously screened for
variants in the coding region of RAB39B (MIM 300774). A subset
of the cohort (176 individuals, consisting of 58 females and 118
males with mean age of onset of 42.6 ± 6.5 years) was utilized in
this study.

Sequencing
We amplified genomic DNA corresponding to regions of the
upstream regulatory region, the 5′UTR and the 3′UTR of
RAB39B, using the primers detailed in Table 1 and Figure 1.
Sanger sequencing was performed using Big Dye Terminator v3.1
(Applied Biosystems, 4336697), according to the manufacturer’s
instructions, on 3730 Genetic Analyzer platform (Applied
Biosystems). The sequences were aligned and analyzed using
Sequencher 5.0 software (Genecodes). The detected variants
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FIGURE 1 | Depiction of sequencing and copy number variant analyses performed for RAB39B in this study (black text) and previously (gray text) of an early-onset

Parkinson’s disease cohort. The three variants identified in the study are indicated.

were annotated using Varsome (https://varsome.com/) and
filtered with GnomAD (https://gnomad.broadinstitute.org/). The
variants not present in GnomAD were considered as novel. The
pathogenicity of the variants was predicted using Combined
Annotation Dependent Depletion (CADD) (https://cadd.gs.
washington.edu/snv) and Deleterious Annotation of genetic
variants using Neural Networks (DANN) (21), two in silico
prediction tools designed to annotate both coding and no-
coding variants. The reference cDNA and genomic sequences
utilized for RAB39B were NM_171998.4 and GRCh37/hg19,
respectively. The novel variants identified in this study have
been submitted to the LOVD gene-specific database for
RAB39B (https://www.lovd.nl/).

CNV Analysis
We performed an analysis of RAB39B CNV by quantitative
real-time PCR (RT-PCR), utilizing commercially available
Taqman assays interrogating exon 1, exon 2, or the 3′UTR of
RAB39B (Life Technologies, Hs00817269_cn, Hs00745075_cn,
and Hs02637133_cn, respectively; Figure 1). The reactions were
duplexed with the human RNaseP copy number reference assay
(Life Technologies, 4403326) and 10–20 ng gDNA amplified on
a LightCycler LC480 II (Roche) according to the manufacturer’s
instructions. Each sample was assessed in triplicate. The
threshold cycle was determined using LightCycler LC480
software 1.5.1.62 SP2, and RAB39B copy number was calculated
using the 11CT method.

RESULTS

We screened for CNVs over both coding exons of RAB39B
and the 3′UTR by quantitative RT-PCR (Figure 1) but did not
identify any variations in RAB39B exon or gene dosage. In
addition, we analyzed 404 bp of sequence upstream of the
initiating codon and 1,021 bp downstream of the termination
codon for sequence variants in RAB39B in 176 individuals with
EOPD of unknown genetic etiology (Figure 1). We identified

three male individuals carrying single-nucleotide variants. One
variant of uncertain significance (chrX:154493802-C-T) was
identified in the 5′UTR, 229 bp upstream of the ATG start
codon and close to the predicted TSS of Refseq NM_171998.4
(Figure 2A), of a male patient with a disease onset age of 50
years. This nucleotide is highly conserved (GERP 4.6) and the
variant is predicted to disrupt a consensus activator protein-1
(AP-1) transcription factor binding site located within a DNase
1 hypersensitive peak (Figure 2B). This is a novel variant not
previously identified in GnomAD, with in silico support of
pathogenicity utilizing DANN (score 0.98) and CADD (score
21.2). Due to the study design of the Queensland Parkinson’s
Project (22), we were unable to test if the variant was de novo
or perform functional studies of the variant in patient-derived
cells. No intellectual issues were reported at the time of patient
examination and there was no familial history of parkinsonism.
Two likely benign variants were identified in the 3′UTR region
of RAB39B. One variant was identified in a male patient
with disease onset age of 48 years (NM_171998.4:c.∗339T>C;
chrX:154489749-A-G). This rare variant (rs781919581) has an
average allele frequency of 0.00086 in GnomAD, with DANN
and CADD scores of 0.75 and 5.29, respectively. The second
variant was identified in a male patient with a disease onset age
of 49 years (NM_171998.4:c.∗891A>C; chrX-154489197-T-G).
This rare variant (rs143765586) has an average allele frequency
of 0.00087 in GnomAD, with DANN and CADD scores of 0.66
and 1.67, respectively.

DISCUSSION

RAB39B is a member of the RAB GTPase family with a
putative role in vesicle trafficking in neurons. While there
is considerable genetic and functional evidence demonstrating
the loss of function mutations that cause an early-onset
familial parkinsonian disorder in males, a potential broader
role in idiopathic PD remains to be fully tested. Previously,
we investigated a Caucasian EOPD cohort (n = 187) for
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FIGURE 2 | In silico analyses of the 5′ region of RAB39B. (A) Screenshot of the UCSC browser (hg38, chrX:155,264,156-155,264,850) examining the 5′ region of

RAB39B. The location of the chrX:154493802-C-T variant is depicted by the red dotted line. The blue sequences represent Refseq NM_171998.3 (outdated) and

NM_171998.4, respectively. Spliced human expressed sequence tags are shown in black. The lower tracks demonstrate that the variant is located within a region of

DNase 1 sensitivity and displays high vertebrate conservation compared to immediate flanking sequence. The final track demonstrating GERP scores represents an

analysis of the corresponding sequence using the hg19 dataset. (B) An alignment of the 5′ region of RAB39B showing the reference genomic sequence (top) with the

variant sequence (middle). The predicted AP-1 transcription factor binding site is in bold highlight. The sequence logo (bottom) generated from ENCODE data

demonstrates the core AP-1 consensus sequence and the conservation of each nucleotide.

alterations in the coding regions of RAB39B and found no
variants of significance (9). In this study, we investigated a
subset of this EOPD cohort for CNVs and non-coding variants

that could potentially result in the dysregulated expression of
RAB39B. Although the non-coding variants may not directly
impact protein function, they can alter the protein levels in
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neurodegenerative diseases such as PD by modulating mRNA
synthesis, stability, localization, and translation. Non-coding
polymorphisms in SNCA, PARKIN, and DJ1 have all been
previously identified to be associated with the development
of PD in cohort screens (23–27). For example, while protein-
disrupting mutations in parkin are a common cause of
recessive EOPD (28), the variants in the promoter/5′UTR region
that affect parkin expression are associated with idiopathic
PD (29).

We did not identify any CNV alterations in the 176
samples analyzed, suggesting that increased RAB39B dosage
may not be associated with EOPD. While screening additional
large cohorts will further test this hypothesis, longitudinal
studies of individuals with XLID secondary to duplication
and triplication of RAB39B (18, 19) will also inform whether
an increased dosage of RAB39B can cause a parkinsonian
phenotype. Given that the PD phenotype associated with
the loss of RAB39B function appears to manifest later in
life compared to intellectual disability [>20 years; (15)], it
is probable that if the affected individuals are going to
develop parkinsonism, it will be at a later age than the time
of report.

Screening of the non-coding regions ofRAB39B revealed three
variants, one immediately proximal to the TSS and two within
the 3′UTR. Both UTR variants were classified as likely benign
according to the ACMG guidelines (30). In contrast, an in silico
analysis identified that the upstream variant chrX:154493802-
C-T was novel, with predictions supportive of pathogenicity.
Our analysis of both expressed sequence tags and genomic
conservation around the variant suggests that it disrupts a
highly conserved AP-1 transcription factor binding site. We
hypothesize that this motif is important for regulating the
RAB39B expression, and the variant likely downregulates the
expression by preventing the binding of important transcription
factors such as AP-1. The AP-1 family of transcriptional factors
can modulate a wide range of molecular functions, one of
which is neuronal plasticity (31). The AP-1 regulation of
neuron-enriched RABGTPases has not been previously reported,
although one study demonstrated that AP-1 can regulate
RAB11A promoter activity and thus endosomal recycling (32).
Interestingly, a phylogenetic analysis of the RAB GTPase family
shows that RAB39 shares the most recent common ancestor
with RAB11 (33), suggesting that the transcriptional regulation
of some RAB GTPases may be evolutionarily conserved.
Currently, knowledge of the transcriptional regulation of
RAB39B is lacking. Specifically, the promoter region, primary
TSS, and important transcription factors for RAB39B have
yet to be identified and functionally characterized. Therefore,
while our analysis of the chrX:154493802-C-T variant is
consistent with a potential effect on RAB39B expression, in the
absence of functional validation, the significance of the variant
remains uncertain.

Overall our results are consistent with previous reports
suggesting that the genetic variation in RAB39B is a rare
cause of EOPD. A genetic analysis of the UTRs and the

regulatory regions of RAB39B has not been reported
previously; our identification of a novel 5′ variant, with
in silico predictions supporting pathogenicity, warrants
further investigation. Moreover, a recent study in a small
cohort of individuals with idiopathic PD suggested that
steady-state levels of RAB39B in brain tissue might be
decreased (34). Therefore, further genetic and functional
studies are required to determine the consequences of
dysregulated RAB39B expression and test its potential role
as a susceptibility gene associated with PD or parkinsonism
more broadly.
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